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Preliminaries. Notice first that, for any t ≥ 0, if xt ∈ Xf then the optimal solution to problem

P(xt, ωt) is (V∗
t , z

∗
t , q

∗
t ) = (0, 0, 0), since the terminal control law (i.e., with Vt = 0) is able to

keep the predicted state trajectory in the terminal set while satisfying all constraints. Also, if

z∗t = 0 is the optimal objective of problem P(xt, ωt), then xt ∈ Xf , since z∗t is an upper bound

of d(xt,Xf ) (see also Remark 3.1), therefore z∗t = 0 ⇐⇒ xt ∈ Xf . Let then xt ̸∈ Xf .

Proof of statement (a). At time t = 0, Proposition 3.1 guarantees with practical certainty that the

first control correction satisfies the constraints on u0 and x1 with probability no less than p and

constraint violation qt = q∗t . At any generic time step t ≥ 1, the variables (Ṽt, z̃t, q̃t) are computed.

Then, two cases may occur. If z∗t ≤ (zt−1 − εd(xt−1,Xf )), then case 3.c) is detected, and the

first element v∗0|t of the optimal sequence V∗
t is applied to the system. Being this sequence the

solution of a scenario optimization problem, with practical certainty the probability of satisfying

state and input constraints is no less than p, with constraint violation qt = q∗t . If, on the other

hand, z∗t > (zt−1 − εd(xt−1,Xf )), then we are either in case 3.a) or 3.b), and in both cases the

element v∗k|t−k, for some k ∈ [1, N − 1], is applied to the system. Being this value part of the

solution sequence V∗
t−k, with corresponding constraint violation q∗t−k, again the probability of

satisfying state and input constraints is no less than p, with constraint violation qt = q̃t = q∗t−k.
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Thus, in any case, with practical certainty, at each time step the MPCS algorithm guarantees

satisfaction of state and input constraints with probability no less than p and constraint violation

qt.

Proof of statement (b). Each run of Algorithm 4.1 may have one of two possible be-

haviors, depending on whether or not there exists a finite time t > 0 such that z∗t >

(zt−1 − εd(xt−1,Xf )) and z̃t < d(xt,Xf ), that is, whether or not the situation in step 3.a is

ever satisfied. We then name A the situation when condition in step 3.a is met at some finite

t > 0, and Ā the complementary situation when this condition is not satisfied at any finite time,

that is when z∗t ≤ (zt−1 − εd(ξt−1,Xf )) or z̃t ≥ d(ξt,Xf ) holds for all t > 0.

I. Let us first consider the situation of case Ā. Consider a generic time t. At step 3) of the MPCS

algorithm, if z∗t > (zt−1 − εd(xt−1,Xf )), then, since it is assumed that we are in situation Ā,

it must hold that z̃t ≥ d(xt,Xf ), thus case 3.b) occurs, and the values Vt = Ṽt and zt = z̃t are

set. Now, recalling that z̃t = max(0, zt−1 − d(xt−1,Xf )), two cases may occur: either z̃t = 0 or

z̃t = zt−1 − d(xt−1,Xf ) > 0. If z̃t = 0, we have 0 = z̃t ≥ d(xt,Xf ), i.e. d(xt,Xf ) = 0, which

would imply that the terminal set has been reached. Otherwise, if z̃t = zt−1 − d(xt−1,Xf ) > 0,

then we have:

zt = z̃t ≥ d(xt,Xf ) ≥ 0, (.1)

and zt − zt−1 = z̃t − zt−1 = zt−1 − d(xt−1,Xf )− zt−1 = −d(xt−1,Xf ).

Thus, zt − zt−1 ≤ −εd(xt−1,Xf ), ∀xt−1 ̸∈ Xf , (.2)

and zt − zt−1 = 0 ⇐⇒ xt−1 ∈ Xf . (.3)

On the other hand, if at step 3) of the MPCS algorithm it happens that z∗t ≤ (zt−1 − εd(xt−1,Xf )),

then case 3.c) occurs, and the optimal values V∗
t and z∗t are retained, i.e. zt = z∗t , Vt = V∗

t . In this

case, it is straightforward to note that equations (.1)-(.3) still hold true. The same reasoning can

be repeated for any time step, as long as the case z∗t ≤ (zt−1 − εd(xt−1,Xf )) or z̃t ≥ d(xt,Xf )

holds true as assumed, so that we can conclude that the variable zt enjoys the following properties:

zt ≥ d(xt,Xf ) ≥ 0, ∀t ≥ 0

zt = 0 ⇐⇒ xt ∈ Xf

zt+1 − zt ≤ −εd(xt,Xf ), ∀xt ̸∈ Xf , ∀t ≥ 0

zt+1 − zt = 0 ⇐⇒ xt ∈ Xf .

(.4)
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Properties (.4) are sufficient to prove convergence of the state xt to the set Xf :

0 ≤ lim
t→∞

d(xt,Xf ) ≤ lim
t→∞

zt = 0,⇒ lim
t→∞

d(xt,Xf ) = 0.

Therefore, we obtain that in case Ā the MPCS algorithm guarantees that lim
t→∞

d(xt,Xf ) = 0.

II. Let us next analyze what happens in case A. Let t̄ > 0 be the time instant at which the case

z∗t > (zt−1 − εd(xt−1,Xf )) and z̃t < d(xt,Xf ) is met for the first time, and let t∗ < t̄ be the

last time at which case z∗t ≤ (zt−1 − εd(xt−1,Xf )) was satisfied, that is the last time previous

to t̄ when an optimal command sequence was retained, together with its constraint violation q∗t ,

according to case 3.c) of Algorithm 4.1; let ℓ = t̄− t∗ ≥ 1. According to step 3.a) of the MPCS

algorithm, we set

Vt̄ = Ṽt̄, zt̄ = 0, qt̄ = q̃t̄. (.5)

Thus, at step 4) of the algorithm, the control move ut̄ = Kfxt̄ + v0|t̄ is applied to the

system at time t̄, where v0|t̄ = v∗ℓ|t∗ , i.e., v0|t̄ is the optimal correction predicted for time

t∗ + ℓ = t̄, computed at time t∗. At time step t = t̄ + 1, the state variable xt̄+1 is observed

and (Ṽt̄+1, z̃t̄+1, q̃t̄+1) are computed as z̃t̄+1 = max(0, zt̄ − d(xt̄,Xf )), q̃t̄+1 = qt̄, Ṽt̄+1 =

{v1:N−1|t̄, 0} = {v∗ℓ+1|t∗ , v
∗
ℓ+2|t∗ , . . . , v

∗
N−1|t∗ , 0, . . . , 0}. Since (.5) holds, it must be z̃t̄+1 = 0.

Then, z∗t̄+1, q∗t̄+1 and V∗
t̄+1 are computed at step 2), and we notice that, by definition, z∗t̄+1 ≥ 0.

Therefore, at step 3) of the algorithm either (i) case 3.a) {z∗t̄+1 > (zt̄ − εd(xt̄,Xf )) and z̃t̄+1 <

d(xt̄+1,Xf )} is detected again, or (ii) one of cases 3.b) or 3.c) are detected, which would imply,

respectively, 0 = z̃t̄+1 ≥ d(xt̄+1,Xf ), or 0 ≤ d(xt̄+1,Xf ) ≤ z∗t̄+1 = z̃t̄+1 = 0. Hence (in either

case) xt̄+1 ∈ Xf , so that convergence to the terminal set would be achieved. Consider then case

(i): the values Vt̄+1 = Ṽt̄+1, zt̄+1 = 0 and qt̄+1 = qt̄ are set in the algorithm, and the control

move ut̄+1 = Kfxt̄+1 + v∗ℓ+1|t∗ is applied to the system. Now, the same circumstances actually

reproduce for all time steps t = t̄ + k, k ≥ 0, so the algorithm is such that the optimal input

sequence V∗
t∗ , computed at time t∗ by solving a scenario FHOCP, is the one actually next applied

to the system, and the related constraint violation q∗t is retained for all t ≥ t∗. Thus, in case A,

there exists a finite time t∗ such that the sequence V∗
t∗ is applied to the system for all subsequent

instants t = t∗ + k, k = 0, . . . , N − 1. Now, the sequence V∗
t∗ is the result of the solution of the

scenario-FHOCP P(xt∗ , ωt∗), and Proposition 3.1 states that, with practical certainty, we have

R(ωt∗) ≥ p, where R is the reliability defined in Section III-A of the paper, which means that

P{δ : h(s∗t∗ , xt∗ , δ) ≤ 0} ≥ p. Therefore, in the situation A, there exists a finite time t∗ at which
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an optimal control sequence is computed by solving a scenario-FHOPC and next applied to the

actual system for the subsequent N time instants: we can hence claim with practical certainty

this sequence will satisfy the problem constraints and reach the terminal set within the time

window from t∗ to t∗ +N , with probability at least p and constraint violation q∗t .
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