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Abstract— This paper investigates the application of an in-
novative technology for high–altitude wind power generation
to naval propulsion. The basic idea is to exploit the traction
forces exerted by automatically controlled power kites, flying
fast in crosswind conditions, to pull a boat. Numerical analyses
are carried out employing a mathematical model of the system
and an efficient Nonlinear Model Predictive Control (NMPC)
law. Differently from existing approaches, the cost function
considered in NMPC design is directly the predicted traction
force exerted on the kite lines. The obtained numerical results
are compared with the data collected during experimental tests
carried out in the project KiteNav, undergoing at Politecnico
di Torino.

I. INTRODUCTION

During the last five years, several studies (see e.g. [1], [2])
have been devoted to develop technologies for high–altitude
wind energy generation using controlled tethered airfoils.
The basic idea is to capture wind energy using airfoils (e.g.
power kites used for surfing or sailing), linked to the ground
by one or two cables, whose flight is suitably driven by an
automatic control unit. Wind energy is collected at ground
level by converting the mechanical power transferred by the
kite lines into electrical power, using a suitable mechanism
and electric generators. This class of power generators is able
to exploit wind flows at higher altitudes (up to 1000 m) than
the actual wind technology, where quite strong and constant
wind can be found basically everywhere in the world.
In this paper, the focus is on the application of the concept
of high–altitude wind power using controlled power kites to
naval propulsion, instead of electricity generation. The use of
tethered airfoils to tow a boat brings several advantages with
respect to classical sails, due to the possibility for the airfoil
to reach stronger winds blowing at higher altitudes and to fly
fast in crosswind direction, thus generating surprisingly high
force values. Indeed, this idea is currently being developed
and industrialized by some companies around the world, like
SkySails GmbH [3]. Moreover, the potential of a kite boat
system similar to the one of [3] has been investigated in [4],
considering the problem of computing kite orbits that are
optimal with respect to the traction forces. In this work, a
small boat is considered (i.e. a 38–feet–long yacht), equipped
with a small–scale high–altitude wind power generator. In
the system configuration considered here, the kite is linked
with two cables to the boat, instead of the single cable
considered in [3], [4]. This way, the kite can be controlled
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by differentially pulling the lines via actuators placed on
the boat and avoiding the use of wireless actuators on the
airfoil. Moreover, in the case of breaking of one cable, the
presence of two lines makes it possible to recover both
the airfoil and the lines. Thus, the configuration considered
in this paper appears to be safer than the one of [3], [4].
Automatic control is the key point in this application, since
the system to be controlled is nonlinear, open–loop unstable
and subject to hard operational constraints. In order to tackle
such a challenging control problem, an efficient approximate
Nonlinear Model Predictive Control (NMPC) law is used
(see e.g. [5]). Differently from [2], [4], here the control
law is designed in order to directly maximize the predicted
traction force acting on the boat, without using any pre–
computed optimal kite orbit. Numerical simulations using
the designed NMPC law are performed to study the system
behaviour and its robustness to wind turbulence. Moreover,
the obtained numerical results are compared with the first
experimental data, collected during field tests performed near
Genoa, Italy, in order to evaluate the matching between real
world measures and simulation results.

II. SYSTEM DESCRIPTION AND MODEL EQUATIONS

A. System description

In the considered application of high–altitude wind power
to naval propulsion, the kite is connected to the boat by two
cables (see Fig. 1(a)), realized in composite materials, with a
traction resistance 8–10 times higher than that of steel cables
of the same weight. The cables are rolled around two drums,
linked to two electric drives which are able to act both as
generators and as motors. An electronic control system can
drive the kite flight by differentially pulling the cables. The
kite flight is tracked and controlled using on–board wireless
instrumentation (GPS, magnetic and inertial sensors) as well
as ground sensors, to measure the airfoil speed and position,
the power output, the cable force and speed and the wind
speed and direction. The system composed by the electric
drives, the drums, and all the hardware needed to control
a single kite is denoted as Kite Steering Unit (KSU, see
Fig. 1(b)). The next Section presents the mathematical model
employed to describe the dynamical behaviour of the system.

B. Model equations

A Cartesian coordinate system (X, Y, Z) is considered (see
Fig. 2), centered at the boat location (i.e. at the KSU, which is
fixed with respect to the boat), with X axis aligned with the
longitudinal symmetry axis of the boat. Wind speed vector is
denoted as ~Wl = ~W0 + ~Wt, where ~W0 is the nominal wind,



(a) (b)

Fig. 1. (a) Prototype of high–altitude wind power generator for naval propulsion operating near Genoa, Italy. (b) Kite Steering Unit installed on the
prototype.

Fig. 2. Model diagram of the system.

supposed to be known and expressed in (X, Y, Z) as:

~W0 =




Wn(Z) cos(Θ)
−Wn(Z) sin(Θ)

0


 (1)

Θ is the angle between the nominal wind speed direction
and X axis, while Wn(Z) is a known function which gives
the nominal wind magnitude at the altitude Z. In this paper,
function Wn(Z) corresponds to a wind shear model (see e.g.
[6]), which has been identified using the data contained in the
database RAOB (RAwinsonde OBservation) of the National
Oceanographic and Atmospheric Administration, see [7]. An
example of winter and summer wind shear profiles related to
the site of Cagliari in Italy is reported in Fig. 3. The term ~Wt

may have components in all directions and is not supposed
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Fig. 3. Wind shear model related to the site of Cagliari, in Italy, for winter
months (model: solid line, measured data: asterisks) and for summer months
(model: dashed line, measured data: triangles)

to be known, accounting for wind unmeasured turbulence.
In system (X,Y, Z), the kite position can be expressed as
a function of its distance r from the origin and of the two
angles θ and φ, as depicted in Fig. 2, which also shows
the three unit vectors eθ, eφ and er of a local coordinate
system centered at the kite center of gravity. Unit vectors
(eθ, eφ, er) are expressed in the Cartesian system (X,Y, Z)



by:
(

eθ eφ er

)
=


cos (θ) cos (φ) − sin (φ) sin (θ) cos (φ)
cos (θ) sin (φ) cos (φ) sin (θ) sin (φ)
− sin (θ) 0 cos (θ)


 (2)

The dynamical equations of motion of the boat and of the
kite will be now briefly resumed.

1) Boat model: the following assumptions are considered:

• the boat rudder is commanded in such a way that the
boat speed vector ~v is aligned with axis X;

• the boat moves along a straight path;
• the effects of the lateral forces exerted by the cables

on the boat are negligible and/or balanced by a suitable
action on the rudder.

According to such assumptions, the angular speed Θ̇ is zero
or negligible. The considered assumptions are reasonable
in the context of this paper and allow to describe with
satisfactory accuracy the longitudinal motion of the boat
pulled by the kite lines, which is of interest in this work.
Since the speed vector ~v is supposed to be aligned with
axis X , its direction with respect to the nominal wind speed
direction is univocally defined by angle Θ. Thus, in the
following the boat speed will be described simply by its
magnitude v. On the basis of the considered assumptions,
the boat model is given by the following equation:

v̇ =
F c,trc sin(θ) cos(φ)− FR(v)

M
(3)

where M is the boat mass, F c,trc is the traction force exerted
by the lines on the boat (see Section II-B.2) and FR(v) is
the longitudinal drag force acting on the boat moving at a
given speed v. Function FR(v) can be identified through
experimental tests on the boat; in this paper the following
form is considered:

FR(v) = R4v
4 + R3v

3 + R2v
2 + R1v (4)

where R4 = 56.9, R3 = −130.7, R2 = 256.9 and R1 =
165.4. Such values have been identified through tests on
the real boat employed in the KiteNav project, built by the
project partner Azimut–Benetti s.p.a., and can be considered
valid for boat speed values ranging from 0 m/s to 5 m/s.

2) Airfoil’s model: applying Newton’s laws of motion
to the kite in the local coordinate system (eθ, eφ, er), the
following dynamic equations are obtained:

θ̈ =
Fθ

mr

φ̈ =
Fφ

mr sin θ

r̈ =
Fr

m

(5)

where m is the kite mass. Forces Fθ, Fφ and Fr include
the contributions of gravity force ~F grav of the kite and
the lines, apparent force ~F app, kite aerodynamic force ~F aer,
aerodynamic drag force ~F c,aer of the lines and traction

force F c,trc exerted by the lines on the kite. Their relations,
expressed in the local coordinates (eθ, eφ, er) are given by:

Fθ = F grav
θ + F app

θ + F aer
θ + F c,aer

θ

Fφ = F grav
φ + F app

φ + F aer
φ + F c,aer

φ

Fr = F grav
r + F app

r + F aer
r + F c,aer

r − F c,trc
(6)

Each force contribution will be now briefly described.
Gravity forces. The magnitude of the overall gravity force
applied to the kite center of gravity is the sum of the kite
weight and the contribution F c,grav given by the weight of
the lines. Assuming that the weight of each line is applied at
half its length (i.e. r/2), F c,grav can be computed considering
the rotation equilibrium equation around the point where the
lines are attached to the KSU:

r cos(θ)
2

2 ρl π d2
l r

4
g = F c,gravr cos(θ) (7)

where g is the gravity acceleration, ρl is the line material
density and dl is the diameter of each line. Thus, the
magnitude of the overall gravity force ~F grav can be computed
as:

|~F grav| = mg + F c,grav =
(

m +
ρl π d2

l r

4

)
g (8)

Vector ~F grav in the fixed coordinate system (X, Y, Z) is
directed along the negative Z direction. Thus, using the
rotation matrix (2) the following expression is obtained for
the components of ~F grav in the local coordinates (eθ, eφ, er):

~F grav =




F grav
θ

F grav
φ

F grav
r


 =




(
m +

ρl π d2
l r

4

)
g sin (θ)

0

−
(

m +
ρl π d2

l r

4

)
g cos (θ)




(9)
Apparent forces. Assuming little acceleration v̇ of the boat,
the components of vector ~F app result to be:

F app
θ = m(φ̇2r sin θ cos θ − 2ṙθ̇)

F app
φ = m(−2ṙφ̇ sin θ − 2φ̇θ̇r cos θ)

F app
r = m(rθ̇2 + rφ̇2 sin2 θ)

(10)

Kite aerodynamic forces. The aerodynamic force ~F aer

depends on the effective wind speed ~We, which in the local
system (eθ, eφ, er) is computed as:

~We = ~Wl − ~Wa (11)

where ~Wa is the kite speed with respect to the ground, which
can be expressed in the local coordinate system (eθ, eφ, er)
as:

~Wa =




θ̇ r + v cos(θ) cos(φ)
φ̇ r sin θ − v sin(φ)
ṙ + v sin(θ) cos(φ)


 (12)

Let us consider now the kite wind coordinate system
(~xw, ~yw, ~zw) (Fig. 4(a)–(b)), with the origin in the kite center
of gravity, ~xw basis vector aligned with the effective wind
speed vector, pointing from the trailing edge to the leading
edge of the kite, ~zw basis vector contained in the kite
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Fig. 4. (a) Scheme of the kite wind coordinate system (~xw,~yw,~zw) and body coordinate system (~xb,~yb,~zb). (b) Wind axes (~xw, ~zw), body axes (~xb, ~zb)
and angles α0 and ∆α. (c) Command angle ψ

symmetry plane and pointing from the top surface of the
kite to the bottom and wind ~yw basis vector completing the
right handed system. Unit vector ~xw can be expressed in the
local coordinate system (eθ, eφ, er) as:

~xw = −
~We

| ~We|
(13)

According to [8], vector ~yw can be expressed in the local
coordinate system (eθ, eφ, er) as:

~yw = ew(− cos(ψ) sin(η))+(er×ew)(cos(ψ) cos(η))+er sin(ψ)
(14)

where:

ew =
~We − er(er · ~We)

| ~We − er(er · ~We)|
η

.= arcsin

(
~We · er

| ~We − er(er · ~We)|
tan(ψ)

) (15)

Angle ψ is the control input, defined by

ψ = arcsin
(

∆l

d

)
(16)

with d being the distance between the two lines fixing points
at the kite and ∆l the length difference of the two lines
(see Fig. 4(c)). ∆l is considered positive if, looking the
kite from behind, the right line is longer than the left one.
Basically, angle ψ influences the kite motion by changing
the direction of vector ~F aer. Finally, the wind unit vector ~zw
can be computed as:

~zw = ~xw × ~yw (17)

Then, the aerodynamic force ~F aer in the local coordinate
system (eθ, eφ, er) is given by:

~F aer =




F aer
θ

F aer
φ

F aer
r


 = −1

2
CD A ρ | ~We|2 ~xw − 1

2
CL A ρ | ~We|2 ~zw

(18)

where ρ is the air density, A is the kite characteristic area,
CL and CD are the kite lift and drag coefficients. As a first
approximation, the drag and lift coefficients are nonlinear
functions of the kite angle of attack α. To define angle
α, the kite body coordinate system (~xb, ~yb, ~zb) needs to be
introduced (Fig. 4(a)–(b)), centered in the kite center of
gravity with unit vector ~xb contained in the kite symmetry
plane, pointing from the trailing edge to the leading edge of
the kite, unit vector ~zb perpendicular to the kite surface and
pointing down and unit vector ~yb completing a right–handed
coordinate system. Such a system is fixed with respect to
the kite. The attack angle α is then defined as the angle
between the wind axis ~xw and the body axis ~xb (see Fig.
4(b)). Note that in the employed model, it is supposed that
the wind axis ~xw is always contained in the kite symmetry
plane. Moreover, it is considered that by suitably regulating
the attack points of the lines to the kite, it is possible to
impose a desired base angle of attack α0 to the kite: such an
angle (depicted in Fig. 4(b)) is defined as the angle between
the kite body axis ~xb and the plane defined by local vectors
eθ and eφ, i.e. the tangent plane to a sphere with radius r.
Then, the actual kite angle of attack α can be computed as
the sum of α0 and the angle ∆α between the effective wind
~We and the plane defined by (eθ, eφ):

α = α0 + ∆α

∆α = arcsin

(
er · ~We

| ~We|

)
(19)

Functions CL(α) and CD(α) employed in this paper are
reported in Fig. 5 (see [1] for more details).
Line forces. The lines influence the kite motion through
their weight (that has been already taken into account in
the gravity forces), their drag force ~F c,aer and the traction
force F c,trc. An estimate of the drag of the lines has been
considered in [9], where the overall angular momentum
~Md = r er× ~F c,aer exerted by the line drag force is computed
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Fig. 5. Kite Lift coefficient CL (solid) and drag coefficient CD (dashed)
as functions of the attack angle α.

by integrating, along the line length, the angular momentum
given by the drag force acting on an infinitely small line
segment:

~Md =

r∫

0


s er × −ρCD,l dl cos (∆α)

2

(
s | ~We|

r

)2

~xw


 ds

= r er × −ρCD,l Al cos (∆α)
8

| ~We|2 ~xw

(20)

where CD,l is the line drag coefficient and Al cos(∆α) =
r dl cos(∆α) is the projection of the line front area on the
plane perpendicular to the effective wind vector (see [1] for
details). The line drag force is then computed as:

~F c,aer =




F c,aer
θ

F c,aer
φ

F c,aer
r


 = −ρ CD,l Al cos (∆α)

8
| ~We|2 ~xw

(21)
The traction force F c,trc is always directed along the local
unit vector er and cannot be negative in equation (6), since
the kite can only pull the lines. Moreover, F c,trc is measured
by a force transducer on the KSU and, using a local controller
of the electric drives, it is regulated in such a way that ṙ(t) =
0, i.e. a constant line length is employed to tow the boat.

3) Overall model equations: considering that the nominal
wind speed magnitude Wn(Z) can be obtained by computing
the kite altitude Z as Z = r sin(θ), equations (1)–(21) give
the system dynamics in the form:

ẋ(t) = f(x(t), u(t),Θ, ~Wt(t)) (22)

where x(t) = [θ(t) φ(t) r(t) θ̇(t) φ̇(t) ṙ(t) v(t)]T are
the model states and u(t) = ψ(t) is the control input. All
the model states are measured using the available sensors
placed on the kite and on the KSU. The model f(·) can
be employed to design the control law and to simulate the
system behaviour, as it will shown in the next Sections.

III. CONTROL DESIGN

The control problem and related objectives are now de-
scribed. As highlighted in Section I, the control objective

is to maximize the traction force exerted by the cables on
the boat along its path. In order to accomplish this aim while
satisfying the constraints that are inherent in this problem,
a Nonlinear Model Predictive Control strategy (NMPC, see
e.g. [10]) is employed. In this framework, the control move
computation is performed at discrete time instants defined on
the basis of a suitably chosen sampling period ∆t. At each
sampling time tk = k∆t, k ∈ N, the measured values of the
state x(tk) and of the angle Θ between the nominal wind
speed direction and the boat direction are used to compute
the control move through the optimization of a performance
index of the form:

J(U, tk, Tp) =
∫ tk+Tp

tk

L(x̃(τ), ũ(τ),Θ)dτ (23)

where Tp = Np∆t, Np ∈ N is the prediction horizon,
x̃(τ) is the state predicted inside the prediction horizon
according to the state equation (22), using x̃(tk) = x(tk)
and the piecewise constant control input ũ(t) belonging to
the sequence U = {ũ(t)}, t ∈ [tk, tk+Tp

] defined as:

ũ(t) =

{
ūi, ∀t ∈ [ti, ti+1], i = k, . . . , k + Tc − 1
ūk+Tc−1, ∀t ∈ [ti, ti+1], i = k + Tc, . . . , k + Tp − 1

(24)
where Tc = Nc∆t, Nc ∈ N, Nc ≤ Np is the control
horizon.
The function L(·) in (23) is suitably defined on the basis of
the performances to be achieved. In the considered problem,
function L(·) is chosen as the towing force exerted by the
cables on the boat, i.e.:

L(x, u, Θ) = F c,trc sin(θ) cos(φ)

Moreover, in order to take into account the existing physical
limitations on both the kite flight and the control input ψ,
constraints of the form x̃(t) ∈ X, ũ(t) ∈ U have been
included too. In particular, the following state constraint is
considered to keep the kite sufficiently far from the ground:

θ(t) ≤ θ (25)

with θ < π/2 rad. Actuator physical limitations give rise to
the constraints:

|ψ(t)| ≤ ψ

|ψ̇(t)| ≤ ψ̇
(26)

As a matter of fact, other technical constraints have been
added to force the kite to go along “figure eight” trajectories
rather than circular ones, in order to prevent the lines from
wrapping one around the other. Such constraints force the
kite φ angle to oscillate with double period with respect to
θ angle, thus generating the proper kite trajectory.
The predictive control law is then computed using a receding
horizon strategy:

1) At time instant tk, get x(tk).
2) Solve the optimization problem:

min
U

J(U, tk) (27a)

subject to (27b)
x̃(tk) = x(tk) (27c)

˙̃x(t) = f(x̃(t), ũ(t), Θ) ∀t ∈ (tk, tk+Tp ] (27d)
x̃(t) ∈ X, ũ(t) ∈ U ∀t ∈ [tk, tk+Tp ] (27e)



3) Apply the first element of the solution sequence U to
the optimization problem as the actual control action
u(tk) = ũ(tk).

4) Repeat the whole procedure at the next sampling time
tk+1.

The NMPC law results to be a nonlinear static function of
the system state x, and the boat direction Θ w.r.t. the nominal
wind direction:

ψ(tk) = κ(x(tk), Θ) = κ(w(tk)) (28)

As a matter of fact, an efficient NMPC implementation is
required to ensure that the control move is computed within
the employed sampling time, of the order of 0.2 s. This can
be obtained using e.g. the Fast Model Predictive Control
(FMPC) techniques introduced and described in [5], based
on Set Membership (SM) approximation.
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IV. SIMULATION RESULTS

In the presented simulation tests, the nominal wind speed (1)
is given by the following wind shear model:

Wn(Z) =
log

(
Z

0.1

)

log
(

80
0.1

)4.4 (29)

Nominal wind speed is about 3.5 m/s at 20 m of altitude and
grows to 4.5 m/s at 100 m of height. Moreover, uniformly
distributed random wind turbulence ~Wt has also been intro-
duced, with maximum absolute value along each direction
equal to 1 m/s, i.e. about 25% of the nominal wind speed at
100 m of altitude. The numerical values of model and control
parameters introduced in Sections II–III are reported in Table
I. Fig. 6 shows the obtained kite and boat trajectory, while

TABLE I
YO–YO CONFIGURATION: MODEL AND CONTROL PARAMETERS

m 3 Kite mass (kg)
A 10 Characteristic area (m2)
dl 0.0035 Diameter of a single line (m)
ρl 970 Line density (kg/m3)
CD,l 1 Line drag coefficient
α0 3.5 Base angle of attack (◦)
ρ 1.2 Air density (kg/m3)
M 12 Boat mass (t)
Θ 45 Boat direction (◦)
∆t 0.2 Sample time (s)
Nc 1 Control horizon (steps)
Np 10 Prediction horizon (steps)
θ 70◦ State constraint
ψ 10◦ Input constraints
ψ̇ 40 ◦/s
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Fig. 8. Simulation results with Θ = 45◦: courses of wind speed magnitude
at the kite location (dashed line) and of the boat speed (solid line).

Fig. 7 shows the course of angle φ (which roughly gives the
position of the kite with respect to the boat direction). It can
be noted that, after the initial transient, the average value of
φ is φ̃ = −35◦, i.e. φ̃ ' −Θ: this result is consistent with
the optimality analyses carried out in [4], thus showing that
the controller employed here is able to effectively command



the kite flight in order to maximize the traction force, even
in the presence of quite strong turbulence. The course of the
boat speed is depicted in Fig. 8, together with the wind speed
magnitude at the height where the kite flies. The boat speed
reaches a steady state value of about ṽ = 1.9 m/s, with small
oscillations due to the kite movement and wind turbulence,
while the average wind speed at the kite altitude is W̃ = 4.58
m/s. Considering that a quite small kite is employed (i.e. 10
m2 area), this result confirms the great potential of wind
power generation using airfoils. Furthermore, the courses of
the cable traction forces and of the kite speed magnitude
| ~Wa| are shown in Fig. 9 and 10 respectively. The maximal
traction force acting on each cable is about 1.8 103 N (i.e.
about 15% of the breaking force of 1.2 104 N), while the
average kite speed magnitude is equal to 16.13 m/s. Finally,
according to the simulation results, the average kite efficiency
is equal to 8.41, while the average overall efficiency (i.e.
taking into account the cable drag, see [4]) is Ẽ =6.41. The
average value of θ is θ̃ = 62◦. The obtained results are
consistent with the simplified formulation of average kite
speed as a function of the projection of the effective wind
speed along the cable direction (see e.g. [11]):

| ~Wa| '
(
W̃ cos(φ̃ + Θ)− ṽ cos(φ̃)

)
sin(θ̃)Ẽ = 16.8

(30)
In the next Section, the obtained numerical results will be
compared to the data collected in the first experimental tests
carried out in the KiteNav project at Politecnico di Torino.
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V. EXPERIMENTAL TESTS

The experimental data shown in this section is part of the
measures collected during field tests performed near Varazze,
Italy, in July 2009 (see Fig. 11). A movie of the experimen-
tal test is also available [12]. During the test, a wind of 2 m/s
on average was present at sea level. The employed kite had
an effective area of 10 m2. A GPS was installed both on the
kite and on the boat, moreover the kite was equipped with
a magnetometer, three gyroscopes and three accelerometers
in order to measure its position, speed and orientation. Fig.
12 shows the measured trajectories of the boat and the kite
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Fig. 10. Simulation results with Θ = 45◦: course of the kite speed
magnitude | ~Wa|.

Fig. 11. (KiteNav project, picture of the experimental test carried out near
Varazze (Italy), in July 2009

during part of the tests, while Fig. 13 and 14 show the courses
of the boat speed and of the kite speed respectively. The
kite flight was commanded by a human operator through
two joysticks that allow to set reference values of torque
and differential cable length for the electric drives of the
KSU. Thus, the obtained kite trajectories were not optimal;
however, according to equation (30) the experimental results
are quite consistent with the numerical results obtained using
the NMPC approach and presented here, giving a good
confidence level in the accuracy of the employed model
and in the obtained simulation results. In fact, the average
measured speed value of the boat was ṽ =1.2 m/s, the
average measured values of angles θ and φ were θ̃ = 70◦ and
φ̃ = −72◦ respectively, the angle between the boat path and
wind direction was about 90◦ and the estimated wind speed
at the kite altitude (i.e. 120 m above sea level) was about 2.5
m/s. Applying equation (30), the computed value of the kite
speed magnitude is 10.45 m/s. Such a value matches with
the average measured kite speed of 10.9 m/s.
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Fig. 12. KiteNav project, experimental test carried out near Varazze (Italy),
in July 2009: measured paths of the boat (thick solid line) and of the airfoil
(thin solid line).
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Fig. 13. KiteNav project, experimental test carried out near Varazze (Italy),
in July 2009: measured course of the boat speed v.

VI. CONCLUSIONS AND DEVELOPMENTS

The paper presented simulation and experimental results
regarding an application of high–altitude wind power using
power kites to naval propulsion. A model of the boat and
the kite has been introduced and a NMPC law has been
employed to maximize the traction force acting on the boat,
while satisfying operational constraints. Moreover, the results
of the first experimental tests carried out at Politecnico di
Torino in the KiteNav project have been also presented,
showing a good consistency with the numerical results. The
next objectives of the project are the use of experimental data
in order to assess and improve the accuracy of the employed
mathematical model and the design, implementation and
experimental testing of a reliable and efficient automatic
control law.
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