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Active pitch control of tethered wings for airborne wind energy

M. Buffoni, B. Galletti, J. Ferreau, L. Fagiano, and M. Mercangoez

Abstract— A study on the aerodynamics and on the active
pitch control of curved tethered wings for airborne wind
energy is presented. Computational fluid dynamics techniques,
previously validated with experimental data, are used to derive
the aerodynamic coefficients of a curved kite as a function
of the angle of attack. In contrast with previous results, such
analysis indicates that the kite efficiency is quite flat over a
wide range of values of the angle of attack. Based on such
analysis, an active pitch control strategy is proposed, which is
able to maximize the generated traction force during operation
without requiring neither an estimate of the angle of attack,
nor an accurate model of the system’s dynamics.

I. INTRODUCTION

The last decade has seen a steadily increasing number
of researchers and small companies developing a new class
of renewable energy generators, falling under the umbrella
name of airborne wind energy (AWE), which employ au-
tonomous tethered wings or kites to convert wind energy
into mechanical and then electrical power (see e.g. [1], [2]).
In this work, we consider in particular AWE systems with
generators installed on the ground which employ curved
kites. In these systems, energy is produced by continuously
repeating a two-phase cycle of line extension and retraction.
In the first phase, the kite is flown on a path roughly
perpendicular to the wind flow (in the so-called crosswind
conditions) and develops high pulling forces, hence generat-
ing power during line reel-out. In the second phase, the kite
is maneuvered in such a way that its lift is reduced, and a
fraction of the previously generated energy is spent to reel-in
the lines. Examples of companies developing such systems
include Skysails GmbH [3], Kitenergy [4], and EnerKite
[5]. Like most airborne wind energy systems, ground-based
AWE generators rely heavily on automatic control during
operation. The control tasks are essentially two: stabilize the
wing’s flight pattern, typically a figure-eight shape during
power generation, and control the line reeling in order to
maximize the average power. The variables that can be
manipulated to achieve these tasks are the so-called steering
deviation, which can be obtained by means of either onboard
actuators or ground based ones (for multi-lined kites), and
the line force, which is set by controlling the torque of
the generator on the ground. In recent years, several studies
have appeared, concerned with the modeling and control of
flexible wings to achieve figure-eight patterns, see e.g. [6],
[7], [8], showing that this control task can be achieved with
relatively simple and quite robust approaches, using only the
steering deviation as input variable and hence leaving the line
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force as free variable to control the line reeling. Indeed the
mentioned steering controllers have been also used together
with quite standard strategies that manipulate the line force
to achieve the mentioned power production cycles, see e.g.
[1] (Part IV) and [9]. In addition to the steering deviation and
the line force, many AWE system also feature a third control
variable, i.e. the pitch angle of the wing, which in principle
can be used to improve the system’s performance. A change
of the pitch angle produces directly a change of the angle of
attack of the wing, which in turn influences the aerodynamic
lift and drag coefficients, hence changing the aerodynamic
forces and the flight speed. For rigid wings, like those used
by Ampyx power [1] (Ch. 26) and Makani power [10], the
dependency of the lift and drag forces on the angle of attack
is well-studied, and established techniques and actuators can
be used to control this variable, which can be estimated with
good accuracy. On the other hand, when flexible curved
kites are used the situation is much different: in this case
the aerodynamics have been much less investigated in the
literature and the angle of attack is harder to estimate, hence
making the explicit use of this variable for feedback control
not viable. Indeed there are few studies that consider the
use of active pitch control in kites for airborne wind energy.
In [11], optimal power cycles for power generating kites
have been studied, considering also the derivative of the lift
coefficient among the available inputs. However, it is not
explicitly mentioned how the lift coefficient derivative can
be manipulated in practice with the required accuracy. The
dependency of the lift and drag coefficients on the angle of
attack for a curved wing has been studied in [12] and the
results have been used e.g. in [13] to study kite-based AWE
systems but without considering the use of an active pitch
strategy.
In this paper, we provide two main contributions towards
the effective use of active pitch control in AWE systems that
employ curved kites. The first contribution is a new com-
putational fluid dynamics (CFD) study of the aerodynamics
of such wings, where we account for the three-dimensional
effects. The approach we use for this study has been also
validated with experimental data [14], hence increasing the
confidence in the results. Building on the findings of the
aerodynamic analysis, as a second contribution we propose
an active control strategy for the kite pitch, which aims to
maximize the average traction force generated during the
crosswind patterns. To the best of our knowledge, this is the
first time that such an approach is proposed for kite-based
airborne wind generators. The proposed controller employs
as feedback variable the line force, which is measured with
good accuracy, hence avoiding the need to estimate the
angle of attack and the problems related to the estimation
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errors. The manipulated variable is a pitch deviation, which
can be issued by adjusting the length of the center line
in three-line systems (like the one used in [7] and by
[5]) or by suitable onboard actuators in two- and one-line
systems. After presenting the aerodynamic study and the
active control strategy, we evaluate the effectiveness of the
approach through numerical simulations.

II. SYSTEM DESCRIPTION AND MODEL EQUATIONS

A. System layout
We consider a curved flexible wing, or power kite, con-

nected to a ground unit (GU), see Fig. 1 for an example of
small-scale prototype with three lines. In three-line systems,

Fig. 1. Example of small-scale prototype built at the University of
California, Santa Barbara, employing a curved flexible kite.

the two lateral lines linking the wing to the GU, named
steering lines, are attached to the back tips of the wing
(see Fig. 1) and they are used to influence its trajectory
by applying a steering deviation, δ: a shorter left steering
line with respect to the right one impresses a left turn to the
wing (i.e. a counter-clockwise turn as seen from the GU), and
vice-versa. The center line, named power line, splits into two
lines connected to the front of the wing (or leading edge) and
sustains about 70% of the generated load. By changing the
relative length of the steering lines with respect to the center
one, one can change the kite’s pitch by an angle denoted
by α0 (“pitch deviation”), which in turn affects the kite’s
angle of attack, α, and hence the aerodynamic forces. In
other systems, like the one-line generator developed at TU
Delft (see e.g. [1](Ch. 23)), onboard actuators are used to
influence δ and α0. On the ground, the lines are rolled around
drums, linked to electric generators. Power is produced
by making the kite fly fast in crosswind conditions (i.e.
roughly perpendicularly to wind flow) and reeling-out the
lines (traction phase, see e.g. [13]). When a maximum length
of the lines has been reached, some power is spent to reel-
in (recovery phase). In this work, we focus on the traction

phase and we employ the control system presented in [7]
to manipulate δ in order to achieve consistently figure-eight
flight paths. Then, our aim is to address the problem of using
α0 to maximize the produced power. Before introducing our
main contributions, we recall the equations of a dynamical
model of the considered system, which we need to introduce
the main variables of interest and their roles.

B. Model equations

We employ a point-mass model already used in previous
works (see e.g. [15] and [7] and references therein), and we
recall in particular the equations that model the aerodynamic
forces and the angle of attack and link these variables to
the control inputs δ and α0. We define an inertial frame
G

.
= (X,Y, Z), centered at the GU, with the X axis parallel

to the ground, contained in the longitudinal symmetry plane
of the GU and pointing downwind, the Z axis pointing
upwards, and the Y axis to form a right hand system. By
denoting the line length with r(t), the wing’s position can be
expressed in the inertial frame using the spherical coordinates
θ(t), φ(t), r(t) as:

G~p(t) =

r(t) cos (φ(t)) cos (θ(t))
r(t) sin (φ(t)) cos (θ(t))

r(t) sin (θ(t))

 , (1)

where t is the continuous time variable. In (1) and throughout
the paper, the subscript letter in front of vectors (e.g. G~p(t))
denotes the reference system considered to express the vector
components.
We define also a non-inertial coordinate system L

.
=

(LN , LE , LD), centered at the wing’s position. The LN axis,
or local north, is tangent to the sphere of radius r(t) and
points towards its zenith. The LD axis, called local down,
points the center of the sphere (i.e. the GU), hence it is
perpendicular to the tangent plane to the sphere at the wing’s
location. The LE axis, named local east, forms a right hand
system and spans the tangent plane together with LN . We
note that the system L is a function of the wing’s position
only, and it is different from the local systems used in
previous works (see e.g. [13] and the references therein), due
to the different definition for angle θ. The kite’s motion is
influenced by the aerodynamic force, gravity, apparent forces
and line traction. In particular, the aerodynamic force ~Fa(t)
is given by the contributions of the lift and drag generated by
the wing and of the drag induced by the cable. These forces
depend on the effective wind speed vector, ~We(t), computed
as:

~We(t) = ~W (t)− ~v(t), (2)

where ~W (t) is the wind speed relative to the ground and
~v(t)

.
= d

dt~p(t) is the wing speed vector. ~Fa(t) can be
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computed as (see e.g. [13]):

~Fa(t) =
1

2
ρCL(t)A| ~We(t)|2~zw(t)+ (3a)

1

2
ρCD(t)A| ~We|2~xw(t)+ (3b)

1

8
ρCD,lAl cos (∆α(t))| ~We(t)|2~xw(t) (3c)

=
1

2
ρCL(t)A| ~We(t)|2~zw(t)+

1

2
ρ

(
CD(t) +

CD,lAl cos (∆α(t))

4A

)
︸ ︷︷ ︸

CD,eq(t)

A| ~We(t)|2~xw(t).

(3d)

In (3), the contributions (3a)-(3b) are, respectively, the lift
and drag forces generated by the wing, while (3c) is the drag
induced by the lines. CL(t) and CD(t) are the aerodynamic
lift and drag coefficients of the wing, CD,l is the drag
coefficient of the lines, A is the reference area of the wing,
Al is the reference area of the lines, ρ is the air density, and
~xw(t) and ~zw(t) are the directions of the drag and lift forces,
respectively. The parameter CD,eq(t) is called the equivalent
aerodynamic drag coefficient, since it accounts for the drag
of both the wing and the lines. We note that the aerodynamic
coefficients are considered as time-varying parameters here,
since they depend on the wing’s angle of attack α(t), which
in turn changes in time as a function of the flight conditions
and of the control input α0(t). In particular, we have:

α(t) = ∆α(t) + α0(t), (4)

where the variable ∆α(t) is the angle between the effective
wind speed vector ~We(t) and the plane spanned by vectors
(LN , LE), i.e. the tangent plane to the sphere of radius
r(t) at the wing’s location. The vectors ~xw(t) and ~zw(t),
defining the directions of the lift and drag forces (see (3)),
depend on the direction of the effective wind and on the
roll angle ψ(t) of the wing, which is related to the steering
input variable δ(t). In particular, ~xw(t) points in the direction
of the effective wind ~We(t), while ~zw(t) is perpendicular to
~xw(t) and to a further vector, denoted by ~et(t), which points
from the right tip of the wing to the left one, as seen from
the GU (see e.g. [13] for a formal definition). Vectors ~xw(t)
and ~zw(t) can be expressed in the L frame as:

L~xw(t) =

(− cos (β(t)) − sin (β(t)) 0
− sin (β(t)) cos (β(t)) 0

0 0 −1

)(
cos (∆α(t))

0
sin (∆α(t))

)
(5a)

L~xz(t) =

(− cos (β(t)) − sin (β(t)) 0
− sin (β(t)) cos (β(t)) 0

0 0 −1

)
(5b)( − cos (ψ(t)) cos (η(t)) sin (∆α(t))

cos (ψ(t)) sin (η(t)) sin (∆α(t)) + sin (ψ(t)) cos (∆α(t))
cos (ψ(t)) cos (η(t)) cos (∆α(t))

)
.

In (5), ψ(t) is a function of δ(t):

ψ(t) = arcsin

(
δ(t)

ds

)
(6)

where ds is the wing span; η(t) is given by (see e.g. [16]):

η(t) = arcsin (tan (∆α(t)) tan (ψ(t))); (7)

and β(t) is referred to as the heading angle of the wing, and
it is computed as the angle between the local north LN and
the effective wind speed ~We(t) projected on the (LN , LE)
plane:

β(t) = arctan

(
~We(t) ·~eLE

(t)

~We(t) ·~eLN
(t)

)
. (8)

In (8), the four-quadrant version of the arc tangent function
shall be used, such that β(t) ∈ [−π, π].

Equations (2)-(8) give an analytic expression for the
aerodynamic forces acting on the wing and their links to the
control inputs. In the following, we focus on the dependence
of the lift and drag coefficients, CL and CD, on the angle of
attack α and we provide the results coming from a new CFD
analysis of a curved kite. Based on these results, we will then
propose an approach to manipulate the pitch deviation α0 in
order to maximize the power produced during the traction
phase of the energy generation cycle.

III. AERODYNAMIC ANALYSIS OF CURVED WINGS AND
ACTIVE PITCH CONTROL STRATEGY

A. 3D CFD analysis of a curved kite

The topic of the evaluation of the aerodynamic forces on
a soft kite has been addressed in the literature by means of
flow models of different accuracy and complexity. In [13],
the aerodynamic data comes from a three-dimensional CFD
analysis conducted for a kite with a constant Clark-Y airfoil
profile and a circular leading edge extending spanwise of
±45◦ with respect to the kite symmetry plane (see [12]). In
[1] (Ch. 16) is shown that the high airfoil camber, typical
of soft kites, induces strong flow separation and that such
separation exists even for small angles of attack. As a
consequence, the authors account for such flow feature in
the calculation of their aerodynamic coefficients by using
two-dimensional CFD simulations. This approach, however,
does not consider the contribution to the aerodynamic forces
of the significant three-dimensional effects due to the finite
span of the wing and its strong spanwise bending.

In this work the latter issue is addressed by calculating
the aerodynamic coefficients through three-dimensional CFD
simulations. We derived the geometry of the wing from the
small-scale curved flexible kite used in experiments carried
out at the University of California at Santa Barbara, see
e.g. [17]. Different views of the simplified three-dimensional
kite model are shown in Fig. 2. We assumed the kite to be
rigid; such an assumption is reasonable during crosswind
flight when the kite is subject to quite large loads. The kite’s
leading edge tube centerline is represented by a semicircle
and the wing was symmetric and tapered. In addition, to
render the complex meshing procedure somewhat easier,
unlike the real kite we considered the airfoil as double
membrane. Nonetheless, its leading edge tube, its trailing
edge tube and its top boundary were geometrically the same
of the actual kite. The kite airfoil cross-section lying on the
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Fig. 2. Top, front, side and isometric view of the kite.

symmetry plane is shown in Fig. 3. It is worth noting that the
profile displays the strong camber typical of soft kite wings.
The model’s main characteristic dimensions are 4.5 meters

Fig. 3. Airfoil considered for the CFD analysis as seen in the kite symmetry
plane cross-section.

tip-to-tip distance, 2.64 meters arc height, 1.98 meters root
chord and 0.6 meters tip chord.

In terms of root chord units, the computational domain
extended for 12 times upstream from the kite, 21 times
downstream from it, 13 times above and 12 below, and 14
times in the direction normal to the symmetry plane. Since
we assumed symmetric flight conditions for the kite, only
one of the symmetric halves of the computational domain
was simulated. We divided the computational domain in
several mappable sub-volumes, so to have a structured mesh
everywhere made of hexahedral elements. The mesh was
built in ANSYS GAMBIT 2.4.6 and consisted of 2.5 106

cells. We took particular care in dimensioning the boundary
layer wrapping the kite in order to have a y+ value of
around 1 for the layer of cells adjacent to the kite surfaces.
The boundary layer was made of 17 layers with a first
layer thickness of 0.091 mm. The surface mesh on the kite
walls consisted of 14,479 rectangular elements, becoming
finer towards the wing tip. This was done to better resolve
the vortical structures arising in that region which are then
transported downstream in the wake. A detail of the surface
mesh is shown in Fig. 4.

Once the mesh was completed, we imported it into AN-
SYS FLUENT 14.0. We set the boundary conditions at the
outer surfaces of the computational domain as follows: the
front surface as velocity inlet, the back and side surfaces as
pressure outlet, the top and bottom surfaces as either velocity
inlet or pressure outlet according to whether the far field flow
was entering in the domain or exiting from it, respectively.

As for the numerical settings, we used the FLUENT
3D steady pressure-based solver. We employed the simplec
method to handle the pressure-velocity coupling, with gradi-

Fig. 4. Detail of the computational grid on kite surfaces and symmetry
plane.

ents discretized with the Green-Gauss cell based option. The
viscous effects have been represented using the k-ω SST
model. We used a second order upwind spatial discretization
scheme for pressure and momentum equations, whereas a
first order upwind spatial discretization scheme was used for
the turbulent equations. The working fluid was air in either
the incompressible or compressible ideal gas approximation
depending on the Mach number of the flow at study.

Before carrying out the CFD study on the kite, we vali-
dated the mentioned settings by reproducing numerically a
wind tunnel experiment of a 45◦ sweptback wing reported
in [14]. In the experiment, the aerodynamic polar was
determined for the wing immersed in a flow with a Reynolds
number Re = 4 × 106 and a Mach number Ma = 0.2. For
the validation, we carried out four simulations with the air
assumed as a compressible ideal gas and for four different
angles of attack, i.e. 5◦, 10◦, 15◦ and 20◦. The differences
were measured in terms of the percentile error on the total
aerodynamic force coefficient defined as CT =

√
C2

L + C2
D.

Table I summarizes the validation results. It can be seen
that the numerical results are in good agreement with the
experimental data, giving good confidence in the accuracy
of the numerical methodology used for the simulations.

In symmetric flight conditions the only forces and mo-
ments at play are lift, drag and pitch moment and for the
operative velocities they depend on the angle of attack α,
but also on the Reynolds number Re = V∞L/ν, i.e. on
the upstream far field velocity. We neglected the dependency
of the forces on the time derivatives of the angle of attack
assuming that the kite is manoeuvered in a way that its
flight conditions can be approximated as a sequence of steady
states.

We used the numerical setup described above to build
an aerodynamic database for characterizing the aerody-
namic behavior of the kite model under investigation. In
particular, the simulations were run for all possible pairs
of angles of attack and upstream velocities in the sets
of values α[◦] = 0, 5, 10, 15, 20, 25 and V∞[m/s] =
1, 2.2, 4.6, 10, 20, 40, 60. As a consequence, the Reynolds
number ranged from 9.9 × 104 to 5.9 × 106, while the
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TABLE I
NUMERICAL VALIDATION OF THE CFD APPROACH: SIMULATED VS. MEASURED AERODYNAMIC COEFFICIENT FOR THE WING [14].

α CLexp CDexp CTexp CLsim
CDsim

CTsim
% CTerr

5◦ 0.322 0.011 0.322 0.325 0.018 0.325 0.9
10◦ 0.590 0.027 0.591 0.618 0.035 0.619 4.5
15◦ 0.819 0.082 0.823 0.788 0.086 0.793 3.8
20◦ 1.000 0.198 1.019 0.911 0.241 0.942 8.4

Fig. 5. Flow streamlines around the wind tip and on the symmetry plane for α = 0◦ and V∞ = 1m/s.

Mach number varied between 0.003 and 0.17. Given these
values of the Mach number, the flow was assumed to be
incompressible. The validity of this assumption was verified
by observing that the difference between the simulation
results obtained with the compressible model and those
obtained with the incompressible one were negligible for the
cases with the largest velocity inlet.

We then computed the coefficients of lift, drag and pitch
moment for each simulation in the following way

CL =
L

1/2ρV 2
∞A

, CD =
D

1/2ρV 2
∞A

, CM =
M

1/2ρV 2
∞AL

i.e. by dividing the corresponding force by qA and the
corresponding moment by qAL, where q = 1/2ρV 2

∞ is the
dynamic pressure at the upstream boundary of the domain. In
these relationships ρ, L,A, and V∞ are density, characteristic
length, characteristic area and velocity respectively. In par-
ticular, A was set equal to one half of the kite mean surface
(A = 6.06m2) since only one of the two symmetric halves
of the flow domain is solved for, whereas L was assumed
equal to the mean aerodynamic chord

L =
1

A

∫
halfspan

c2(s)ds,

where s is the curvilinear coordinate along the leading edge
centerline and c is the local kite chord. The air density
was set equal to 1.225 kg/m3. The values for ρ, L,A are
provided as reference values and do not vary throughout the
simulations.

Each simulation was deemed to be converged when the
residuals of the equations had dropped by at least four
orders of magnitude and the monitored force and moment
coefficients became constant. For larger angles of attack

the steady solver exhibited a bad convergence behavior due
to a significant vortex shedding from the stalled parts of
the kite top surface. In those cases the unsteady solver
was used with a suitably small time step. The simulation
then were stopped when the monitored force and moment
coefficients had reached periodic oscillations. The values
taken for the coefficients at convergence were then the mean
values averaged over a sufficiently long time interval.

In Fig. 5 the flow streamlines around the wing tip and
on the symmetry plane are depicted for α = 0◦ and V∞ =
1m/s. The typical tip vortex is clearly shown, as well as a
large recirculation zone under the kite bottom surface. The
latter is due to the flow separation that takes place at the kite
leading edge, even for small angle of attack values, due to
the strong camber of the airfoil cross-section.

The simulation results are summarized in Fig. 6 and Fig. 7
in terms of both kite efficiency (i.e. lift to drag ratio) and lift
coefficient as a function of the angle of attack for different
upstream velocities. It can be seen that for a given value
of the inlet velocity the efficiency curves have a maximum
at approximately 10◦. Moreover the maximum value for the
CL(α) curves occurs at about 15◦, that is for values of α
larger than those that maximize the efficiency.

The described CFD analysis provided us with a new set of
lift and drag coefficients as a function of the wing’s angle of
attack. The main added value of the coefficients computed
in this work with respect to those used previously in the
literature (see e.g. [13]) is that the considered geometry is
much closer to that of a curved power kite, that the em-
ployed computational method takes into account 3D effects
neglected by previous analyses, and that the approach has
been previously validated against experimental data. In the
next section, we exploit the outcome of the CFD analysis
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to address the problem of controlling the pitch deviation α0

in order to increase the power generated during the traction
phase of the energy generation cycle.
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Fig. 6. CFD simulation results. Kite aerodynamic efficiency vs. angle of
attack for different upstream velocities.
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Fig. 7. CFD simulation results. Kite aerodynamic efficiency vs. angle of
attack for different upstream velocities.

B. Active pitch control strategy

In order to optimize the power production, one would need
to maximize the line force for given flight conditions and
tether reel-out speed. To achieve this goal, the kite’s angle
of attack should be kept within a certain optimal range that
depends on the aerodynamics of the kite itself. The idea
is to exploit the pitch deviation α0 to adjust the angle of
attack (see e.g. eq. (4)). In order to study this problem,
we first carried out a set of closed loop simulations with
the model recalled in section II-B, using the aerodynamic
coefficients computed with the CFD analysis of section III-
A. In the simulations, the kite’s steering was controlled by
the approach of [7] in order to achieve figure-eight paths.
For each simulation, we set a fixed value of the pitch
deviation α0. The obtained results are shown in Fig. 8,
where the traction force (averaged over one figure-eight
cycle) is plotted as a function of α0. For a given reel-
out speed, the power produced is directly proportional to

the average traction force. From the plot of Fig. 8, two
important observations can be made: first, operating the kite
with a suboptimal choice of α0 may reduce power production
significantly. Second, the 3D CFD model as proposed in
section III suggests that the generated force as function of
α0 is quasi-concave, hence one can in principle compute the
value of the angle of attack which maximizes the line force,
and then design a controller that manipulates the the pitch
deviation α0 to track such an optimal angle of attack.
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Fig. 8. Simulation analysis. Average traction force vs. control input α0

according to proposed CFD model.

However, an attempt to control the angle of attack directly
would give rise to at least three significant issues. The first
one is that, differently from standard rigid wings, the angle of
attack is very difficult to estimate or measure for curved kites,
like the ones used in the existing prototypes of airborne wind
energy generators, hence making this variable not suited for
feedback control. The second problem is that the effect that
the pitch deviation has on the angle of attack (see eq. (4))
is not known exactly, rather it is prone to uncertainties. In
this respect, a reasonable assumption is that by increasing
or decreasing the pitch deviation one is able to increase or
decrease the angle of attack, but it is unrealistic to assume
that the latter can be set to a specific numerical value. In fact,
it is possible to set the pitch actuator to a desired position,
but the actual change of pitch angle (hence of angle of attack)
corresponding to such a position is uncertain. Finally, a third
issue is given by the fact that the computed aerodynamic
coefficients are still subject to uncertainty, so that one can not
rely solely on those curves to compute a reference, optimal
angle of attack.

In order to overcome all these problems, we propose here
to use a simple feedback control strategy to maximize the
traction force during operation of the kite. As the pitch
angle and the angle of attack are difficult to be measured
or controlled in case of flexible kites, we propose to adjust
α0 using directly the traction force on the line as feedback
variable. The latter is indeed easy to measure with good
accuracy. In particular, since we are interested in the average
force, we use as feedback variable the mean force over a
fixed number of n ≥ 1 figure-eight cycles. In this way, the
effects of wind turbulence are also mitigated. The start of a
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new cycle can be detected easily and reliably by observing
the crossings of the azimuthal angle φ(t) at its mean value.
This yields a one-dimensional function

Fn : R → R
α0 7→ Fn(α0) .

The actual adjustment of α0 to find a value that maxi-
mizes Fn(α0) can be done in different ways. As evaluating
derivatives of this function through finite-differences might
prove cumbersome due to measurement noise, we suggest
to employ a simple search algorithm for optimizing Fn with
respect to α0 as summarized in Algorithm 1.

Algorithm 1 Pitch Adaptation

Input: α0(ti), ∆α0(ti), Fn(α0(ti)), Fn(α0(ti−1))
Output: α0(ti+1), ∆α0(ti+1)

if |∆α0(ti)| > ∆min then
if Fn(α0(ti)) ≥ Fn(α0(ti−1)) then

∆α0(ti+1)← − 1
2∆α0(ti)

else
∆α0(ti+1)← ∆α0(ti)

end if
α0(ti+1)← α0(ti) + ∆α0(ti+1)

else
α0(ti+1)← α0(ti)
∆α0(ti+1)← ∆α0(ti)

end if

This procedure can be started at any time ti (corresponding
to the ith start of a sequence of n figure-eight cycles) by
making an initial change ∆α0(ti) > ∆min to the current
control input α0(ti). As the step size ∆α0 is never increased
and decreased by a constant factor whenever the last step
reduced the average traction force Fn, this procedure is
guaranteed to converge to a constant value of α0 after a
finite number of cycles. Moreover, it is easy to see that it
will always find the optimal value of α0 if Fn is a quasi-
concave function. Note that this simple pitch control strategy
does not require any model of the actuator’s or system’s
dynamics nor knowledge of the aerodynamic coefficients: the
only underlying assumption is that the qualitative behavior
of the traction force as a function of the pitch angle is like the
one predicted by the CFD analysis of section III. Finally, it
can be noted that, by acting through an incremental change
∆α0 of the pitch deviation, the approach is able to reject
eventual constant disturbances acting on the pitch deviation
itself, e.g. due to a tracking error in the low level controller
for the pitch actuator.

IV. SIMULATION RESULTS

We will now present simulation results based on the
kite model described in section II using the aerodynamic
coefficients obtained by the CFD analysis of section III-A
and applying the pitch controller of section III-B. In the
simulation, we use a logarithmic wind shear model with
wind speed of 5 m/s at 32.5 m of altitude, and parameter

6 10−4 m (see e.g. [13]). We set an initial value of α0(t0) =
−0.9 (deg). We average the traction force over n = 1
full figure-eight cycles and start with an initial change of
∆α0 = 1 deg after 25 seconds.

Fig. 9 shows how the pitch adaptation algorithm adjusts
the control input α0 and steers it to its optimal value. We
recall that this optimal value is only known in simulations
and that the adaptation procedure does not require any
knowledge about it to run successfully. The corresponding
average traction force is shown in Fig. 10, again comparing
it to its theoretical optimal value.
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Fig. 9. α0(t) is automatically adapted during the simulation (solid line);
also the optimal value is shown (red, dotted).
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Fig. 10. Average traction force F1 during the simulation (solid line); also
the optimal value is shown (red, dotted).

Fig. 11 depicts the angle of attack α(t) as resulting from
the adjustments of α0. Fig. 12 and Fig. 13 illustrate the
corresponding continuous traction force and kite trajectory
in spherical coordinates, respectively. In our case, optimizing
the angle of attack slightly reduces the aerodynamic effi-
ciency, but increases CL(t) even more; as a consequence, the
steering gain of the kite increases (see [7] for more details),
leading to slightly tighter kite trajectories.

Finally, we note that further simulations have confirmed
that the proposed controller also works well in the presence
of turbulent wind conditions.
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Fig. 11. Angle of attack α(t) as automatically adapted during the
simulation.
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Fig. 12. Traction force during the simulation.

V. CONCLUSIONS

We presented a study on the use of active pitch control to
maximize the power produced by an airborne wind energy
system that uses a curved kite. The approach exploits the
outcome of a new CFD analysis of a curved kite, using
a method that has been benchmarked against experimental
results. The advantages of the proposed technique is that
it employs only the measured traction force, without the
need to estimate the kite’s angle of attack. Moreover, the
only underlying assumption is that the qualitative shape
of the traction force as a function of the wing’s angle of
attack is like the one predicted by our CFD study, while
the exact quantitative values are irrelevant for the sake of
convergence to the maximum. We showed the effectiveness
of the approach through numerical simulations.
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