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Abstract: A control design approach for the autonomous crosswind flight of tethered wings,
to be used in airborne wind energy systems, is described. The proposed technique aims to learn
the behavior of a human pilot, by exploiting a finite number of data collected during manual
operation of the system, hence avoiding the need for an explicit model of the system dynamics.
Along with the design technique, a theoretical analysis as well as experimental data showing its
successful application are presented.

1. INTRODUCTION

Airborne wind energy technologies aim to produce power
exploiting the aerodynamic forces generated by a wing
tethered to the ground, hence realizing a wind generator
capable of reaching higher altitudes with respect to the
current wind turbines, see e.g. Ahrens et al. [2013], Fa-
giano and Milanese [2012] for details. In particular, the
lift force developed by the wing is large enough to sustain
its weight and that of the tethers, and to produce power.
In the configuration considered in this work, such a power
is extracted at ground level by executing a two-phase
(“pumping”) cycle consisting of reeling-out the lines under
large traction forces and subsequently reeling-in under low
forces, thus realizing a positive net energy balance Ahrens
et al. [2013]. The automatic control of the wing is a key
aspect of this technology, since the optimal trajectories
that the wing should fly are unstable in open loop and
the system is subject to external disturbances like wind
turbulence. In particular, one of the main control tasks
is to make the wing fly along figure-of-eight patterns in
the so-called crosswind conditions, i.e. roughly perpendic-
ularly to the wind. This problem has been addressed by
several researchers in the last years, leading to a num-
ber of contributions Canale et al. [2007], Williams et al.
[2008], Baayen and Ockels [2012], Houska and Diehl [2007],
Ilzhöfer et al. [2007], Fagiano et al. [2013a,b], Canale et al.
[2010], Fagiano et al. [2010]. Most of these techniques
employ a standard two-phase approach where a dynamical
model of the system is firstly derived and then a feedback
controller is designed on the basis of such a model. One of
the main potential difficulties in such approaches is that
the derivation of a dynamical model suited for control
design might be not easy, due to the mentioned open-
loop instability and the presence of disturbances which
make the use of model identification techniques hard. In
this paper, we show how this control problem can be
tackled effectively with a direct technique, i.e. an approach
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that aims to design a feedback controller directly from
measured data, without the need for an explicit model
of the system’s dynamics. In particular, we present an
approach to learn the behavior of a human operator (or
more in general of an existing, unknown feedback con-
troller) using a finite number of data collected in an initial
experiment. We present a theoretical analysis showing that
the approach provides stability guarantees as the number
of employed data-points increases, and we present the
successful experimental application of the approach on a
small-scale prototype built at the University of California,
Santa Barbara.

2. SYSTEM DESCRIPTION

We consider a flexible wing connected by three lines to a
ground unit (GU), as shown in Fig. 1.

The wing’s trajectory evolves downwind with respect to
the GU. For simplicity, we assume that the nominal wind
direction (i.e. neglecting turbulence and small, zero-mean
deviations) is aligned with the longitudinal symmetry axis
of the GU, denoted by X. The latter, together with the
Z axis being perpendicular to the ground and pointing
upwards and with the Y axis to complete a right-handed
system, forms the inertial frame G

.
= (X,Y, Z), centered

at the GU (see Fig. 2). By considering a fixed length of the
lines, denoted by r, the wing’s trajectory is confined on a
quarter sphere, commonly named “wind window”, see Fig.
2 (dashed lines).

The wing’s position p(t) can be expressed in the inertial
frame G by using the spherical coordinates θ(t), φ(t)
(see Fig. 2), where t is the continuous time variable.
We also consider a non-inertial coordinate system, L

.
=

(LN , LE , LD), centered at the wing’s position (depicted
in Fig. 2). The LN axis, or local north, is tangent to the
sphere of radius r, on which the wing’s trajectory evolves,
and points towards its zenith. The LD axis, called local
down, points the center of the sphere (i.e. the GU), hence
it is perpendicular to the tangent plane to the sphere at
the wing’s location. The LE axis, named local east, forms a
right-handed system and spans the tangent plane together
with LN . The system L is a function of the wing’s position
only, see Fagiano et al. [2013b] for a complete derivation.
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Fig. 1. Small-scale prototype built at the University of
California, Santa Barbara, to study the control of
tethered wings for airborne wind energy.
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Fig. 2. Reference system G = (X,Y, Z), wind window
(dashed lines), variables θ, φ, and local north, east
and down (LN , LE , LD) axes.

The wing velocity vector can be expressed in the L frame
as

d

dt
p(t) = r

 θ̇
cos (θ)φ̇

0

 . (1)

Finally, the velocity angle γ(t) of the wing is defined as:

γ(t)
.
= arctan2

(
cos (θ(t))φ̇, θ̇

)
, (2)

where arctan2 is the four-quadrant arc-tangent function.
γ(t) is the angle between the local north, LN (t), and
the wing velocity vector, v(t), and it provides a good
description of the heading of the wing while flying on the
surface of the wind window.

The two lateral lines linking the wing to the GU, named
steering lines, are attached to the back tips of the wing
(see Fig. 1) and they are used to influence its trajectory:
a shorter left steering line with respect to the right

one impresses a left turn to the wing (i.e. a counter-
clockwise turn as seen from the GU), and vice-versa. In
the considered prototype, a single motor, together with a
linear motion system (visible in the lower-left corner of
Fig. 1), is able to change the difference of length of the
steering lines. In particular, a linear controller modulates
the motor current in order to track a desired position: such
a position reference is the manipulated variable u and it
can be set either by a human operator through an analog
joystick, or by an automatic controller.

The wing is equipped with inertial onboard sensors and
a radio transmitter; the receiver and other sensors are
installed on the GU, including a line angle measurement
system, load cells, and an anemometer. The available
sensors, together with suitable filtering algorithms, provide
real-time measurements of the wing’s position, velocity,
and velocity angle, which can then be used for feedback
control (see Fagiano et al. [2013a] for details on the filtering
and sensor fusion aspects).

The aim of the control system is to obtain crosswind tra-
jectories, i.e. flight paths that are symmetric and roughly
perpendicular with respect to the X axis (i.e. the wind
direction), whose shape is a that of an eight. This kind of
patterns has been shown to be optimal for power genera-
tion, see e.g. Houska and Diehl [2007], Canale et al. [2010],
Fagiano and Milanese [2012].

The described control problem involves open-loop unsta-
ble, nonlinear and time-varying dynamics. Mathematical
models for this kind of system have been derived for the
design of predictive control approaches, which have been
used in numerical simulations Houska and Diehl [2007],
Williams et al. [2008], Canale et al. [2010]. However, in a
real-world experimental setup it is not easy to employ such
approaches, due to difficulty of identifying the model pa-
rameters from experimental data, the absence of accurate
measurements of the wind speed at the wing’s location,
finally the need to solve a nonlinear program in real-time
at each time step. However, a human operator is able,
after some training, to obtain the desired flying paths by
issuing a suitable course of the actuator position reference
u, adapting to different wind conditions and counteract-
ing the effects of turbulence and gusts: hence, a possible
approach is to design a feedback controller by learning
the behavior of such a human operator from experimental
data. In the next section, we present a technique able to
achieve this goal.

3. LEARNING A CONTROLLER FROM DATA:
THEORY AND COMPUTATION

3.1 Problem formulation

The setting we consider in this work is the following. A
single-input, discrete time, nonlinear dynamical system of
interest operates in closed loop with an existing controller.
Both the system and the controller are not known. The
system’s input variable u(t), i.e. the controller’s output, is
known and it can be measured at discrete time instants
t ∈ Z. Moreover, u is limited in a compact U = [u, u].
The system’s output variable y(t), i.e. the controller’s
input, is not known a priori but the control designer
can rely on sensors to acquire measurements of different
“candidate” feedback variables, based on her/his intuition
and experience with the physical process under study. The
output y is assumed to belong to a compact set Y ⊂ Rny .
After a choice of y(t) has been made, we assume that the
controller is a static function of this variable:
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u(t) = κ(y(t))
κ : Y → U. (3)

Moreover, we assume that a disturbance variable es(t) is
acting on the dynamical system. The variable es accounts
for (a) exogenous disturbances, (b) neglected and time-
varying dynamics, and (c) the approximation error in-
duced by choosing the input of the controller to be equal
to y. The value of es(t) is also assumed to belong to a
compact set Es ⊂ Rne . We then assume that the chosen
output variable evolves in time as follows:

y(t+ 1) = f(y(t), u(t), es(t))
f : Y × U × Es → Y. (4)

Remark 1. Equation (4) can be seen as a “generalized
state equation”. Indeed, if the output y(t) includes the
system’s state, then equation (4) corresponds to a classical
state-space description of nonlinear dynamics. If the state
is not directly measured but it is observable from the
available input-output measurements, then a pseudo-state
y(t) can be constructed by taking a suitable number
(typically no less than the number of states) of past
measurements, such that equation (4) holds (see e.g. the
controllers κ̂1 and κ̂4 in Section 4). In the latter case, f
would include a series of unit delay operators in addition to
the nonlinear functions describing the system’s dynamics.
It is important to remark that, in the present framework,
the choice of the output signals to be used as feedback
variables is an important step of the control design. As
discussed above, this choice can be carried out on the basis
of the available sensors and of the designer’s intuition and
experience, see for instance the experimental application
presented in Section 4. �

Let us now introduce three assumptions on functions f
and κ. In the following, we will make use of the function
sets K and KL: to this end, we recall that K is the set of
all strictly increasing functions α : R+ → R+ such that
α(0) = 0, while KL is the set of all functions β : R+ ×
R+ → R+ such that for fixed t, β(x, t) ∈ K, and for fixed
x, lim

t→∞
β(x, t) = 0.

Assumption 1. The function f is Lipschitz continuous over
the compact Y × U × Es. In particular, it holds that

∃γf ∈ (0,+∞) : ∀es ∈ Es,∀y ∈ Y, ∀u1, u2 ∈ U,
‖f(y, u1, es)− f(y, u2, es)‖∞ ≤ γf |u1 − u2|. (5)

�
Assumption 2. The function κ is Lipschitz continuous over
the compact Y . �

Assumptions 1-2 imply that the closed loop system:

y(t+ 1) = g(y(t), es(t))
.
= f(y(t), κ(y(t)), es(t))

g : Y × Es → Y (6)

is also described by a Lipschitz continuous function g.
In particular, by construction, the function g enjoys the
following properties:

∃γg,y ∈ (0,+∞) : ∀es ∈ Es,∀y1, y2 ∈ Y,
‖g(y1, es)− g(y2, es)‖∞ ≤ γg,y‖y1 − y2‖∞,

(7)

∃γg,e ∈ (0,+∞) : ∀y ∈ Y,∀e1
s, e

2
s ∈ Es,

‖g(y, e1
s)− F (g, e2

s)‖∞ ≤ γg,e‖e1
s − e2

s‖∞.
(8)

Assumptions 1-2 are quite standard in nonlinear control
analysis and design and they are reasonable, since in
practice the inputs, disturbance and outputs of the process
under study are often bounded in some compact sets and
the functions describing the system and the controller are
assumed to be differentiable on such compact sets, hence
Lipschitz continuous.

The dynamical system described by g has es as input and
y as output. We denote with g0

.
= g(0, 0) the value of g

evaluated at y = 0, es = 0. The properties of the closed-
loop system clearly depend on the controller κ, which is
assumed to be stabilizing. In particular, we consider the
following notion of stability:

Definition 1. A nonlinear system with input es and output
y, is finite-gain `∞ stable if a function α ∈ K, a function
β ∈ KL and a scalar δ > 0 exist, such that:

∀t ≥ 0, ‖y(t)‖∞ ≤ α(‖es‖∞) + β(‖y(0)‖∞, t) + δ. (9)

�

In Definition 1, the generic signal v
.
= {v(0), v(1), ...} is

given by the infinite sequence of values of the variable
v(t), t ≥ 0, and ‖v‖∞

.
= max

t≥0
‖v(t)‖∞ is the `∞−norm

of the signal v with the underlying norm taken to be the
vector ∞−norm ‖v‖∞.
The stabilizing properties of κ are formalized by the
following assumption:

Assumption 3. The functions κ and f are such that prop-
erty (7) holds with γg,y(x) < 1. �

Assumption 3 implies that the closed-loop system (6)
enjoys finite-gain `∞ stability as given in Definition 1, in
particular we have:

∀t ≥ 0, ‖y(t)‖∞ ≤
γg,e

1− γg,y
‖es‖∞︸ ︷︷ ︸

α(‖es‖∞)

+ γtg,y‖y(0)‖∞︸ ︷︷ ︸
β(‖y(0)‖∞,t)

+

1

1− γg,y
‖g0‖∞︸ ︷︷ ︸

δ

,
(10)

see the Appendix for a derivation of this inequality.

Overall, Assumptions 1-3 are quite common in the con-
text of system identification, function approximation and
learning, since a stable system is needed to collect data and
carry out identification experiments. In particular, in this
work we will consider a finite number N of input and out-
put measurements, indicated as ũ(k), ỹ(k), k = 0, . . . , N−
1, collected from the system operating in closed loop with
the unknown controller κ. These data points are assumed
to be affected by additive noise variables, indicated as eu(t)
and ey(t), respectively:

ũ(t) = u(t) + eu(t)
ỹ(t) = y(t) + ey(t). (11)

Note that eu(t) may include both measurement noise and
errors arising in the application of the control law. The
latter can be present for example if the aim is to learn
a controller from the behavior of a human operator, who
might be subject to fatigue and mistakes.

The noise variables are assumed to satisfy the follow-
ing boundedness properties where, for a generic vari-
able q ∈ Rnq and scalar ρ ∈ (0,+∞), we denote the
nq−dimensional∞-norm ball set of radius ρ as Bρ

.
= {q ∈

Rnq : ‖q‖∞ ≤ ρ}:
Assumption 4. The following boundedness properties hold:

(a) eu(t) ∈ Bεu , ∀t ≥ 0 ;
(b) ey(t) ∈ Bεy , ∀t ≥ 0 . �

According to (3), with straightforward manipulations, the
measured data can be described by the following set of
equations:

ũ(k) = κ(ỹ(k)) + d (k) , k = 0, . . . , N − 1
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where d (k) accounts for the noises eu(t) and ey(t) in
(11). Since eu(t) and ey(t) are bounded and κ is Lipschitz
continuous, it follows that d (k) is also bounded:

d (k) ∈ Bε, ∀k ≥ 0. (12)

The following assumption on the pair (ỹ(k), d (k)) is con-
sidered.

Assumption 5. The set of points DNyd
.
= {(ỹ(k), d (k))}N−1

k=0

is dense on Y × Bε as N → ∞. That is, for any
(y, d) ∈ Y × Bε and any λ ∈ R+, a value of Nλ ∈
N, Nλ <∞ and a pair (ỹ(k), d (k)) ∈ DNλyd exist such that

‖(y, d)− (ỹ(k), d (k))‖∞ ≤ λ. �

Assumption 5 essentially ensures that the controller do-
main Y is “well explored” by the data ỹ(k) and, at the
same time, the noise d(k) covers its domain Bε, hitting
the bounds −ε and ε with arbitrary closeness after a
sufficiently long time. This latter noise property is called
tightness, see Novara et al. [2013] and, for a probabilistic
version, Bai et al. [1998].

In the described setting, the problem we want to address
can be stated as follows:

Problem 1: learn a controller κ̂ from N measurements ỹ
and ũ, obtained from the system operating in closed-loop
with an unknown controller κ, such that:

(1) asymptotically, i.e. as N → ∞, κ̂ renders the closed
loop system finite-gain `∞ stable;

(2) the trajectory deviation induced by the use of κ̂
instead of κ is “small”;

(3) κ̂ has “low” complexity, to be easily implementable
on real-time processors. �

Remark 2. The control design problem considered here is
different from the one considered in Novara et al. [2013],
where the aim of control is to track reference sequences
belonging to a certain signal set. As a consequence, the
stability analysis, design algorithm and asympotic proper-
ties presented in the following are different from those in
Novara et al. [2013]. �

3.2 Learning algorithm

In this section, we present an approach that is able to
solve Problem 1. In order to do so, we first derive a
sufficient condition for a generic controller κ̂ ≈ κ to
stabilize the closed-loop system and then we propose a
technique, based on convex optimization, that is able
to learn a controller κ̂ which enjoys asymptotically the
derived stability condition.

The controller κ̂ is chosen to be a Lipschitz continuous
function over the compact Y . Let us define the error
function ∆ : Y → R:

∆(y)
.
= κ(y)− κ̂(y). (13)

We denote with ∆0
.
= ∆(0) the error function evaluated

at y = 0. By construction, the error function is Lipschitz
continuous, with some constant γ∆. We indicate with ĝ
the closed loop system obtained by using the controller κ̂.
In particular, ĝ is defined as follows:

y(t+ 1) = ĝ(y(t), es(t), ey(t))
.
= f(y(t), κ̂(y(t) + ey(t)), es(t))

ĝ : Y × E ×Bεy → Y.
(14)

Note that the feedback variable used by the learned
controller κ̂ is the noise-corrupted measurement of the
output y. The next result provides a sufficient condition
for the controller κ̂ to stabilize the closed loop system.

Theorem 1. Let Assumptions 1-3 and 4-(b) hold. If

γ∆ <
1− γg,y
γf

, (15)

then the closed-loop system ĝ is finite-gain `∞ stable. More
precisely, it holds that

∀t ≥ 0, ‖y(t)‖∞ ≤
γg,e

1− γ
‖es‖∞︸ ︷︷ ︸

α(‖es‖∞)

+ γt‖y(0)‖∞︸ ︷︷ ︸
β(‖y(0)‖∞,t)

+
1

1− γ
(‖g0‖∞ + γf |∆0|+ γfγκ̂εy)︸ ︷︷ ︸

δ

,
(16)

with γ
.
= (γ∆γf + γg,y) < 1.

Proof. See Fagiano and Novara [2013]. �

This result serves as a theoretical justification of the
learning algorithm that we present in the following, which
indeed is able to satisfy condition (15) in the limit, hence
providing a solution to Problem 1.

A parametric representation is considered for the con-
troller κ̂:

κ̂ (y) =

M∑
i=1

âiϕi (y) (17)

where ϕi : Y → U are Lipschitz continuous basis func-
tions. The coefficients âi ∈ R are identified by means of
the following Algorithm 1.

Algorithm 1. Controller learning.

(1) Take a set of basis functions {ϕi}Mi=1. The choice of
this set can be carried out by means of the procedure
in Fagiano and Novara [2013].

(2) Using the data set DN .
= {ũ(k), ỹ(k)}N−1

k=0 and the
basis functions chosen at step 1), define the following
quantities:

Φ
.
=

 ϕ1 (ỹ(0)) · · · ϕM (ỹ(0))
...

. . .
...

ϕ1 (ỹ(N − 1)) · · · ϕM (ỹ(N − 1))

 ∈ RN×M

ũ
.
= (ũ(0), . . . , ũ(N − 1)) ∈ RN×1.

(3) Using the procedure in Fagiano and Novara [2013],
obtain an estimate ε̂ of the noise bound ε in (12),
and estimates γ̂f and γ̂g,y of the Lipschitz constants
γf and γg,y in (5) and (7). Choose γ′∆ ' (1− γ̂g,y) /γ̂f
such that γ′∆ < (1− γ̂g,y) /γ̂f .

(4) Solve the following convex optimization problem:

a1 = arg min
a∈RM

‖a‖1
subject to
(a) ‖ũ− Φa‖∞ ≤ αε̂
(b) |ũ(l)− ũ(k) + (Φrk − Φrl ) a| ≤

γ′∆ ‖ỹ(l)− ỹ(k)‖∞ + 2ε̂,

{
l = 0, . . . , N − 1
k = l + 1, . . . , N − 1

(18)
where Φrk

.
= [ ϕ1 (ỹ(k)) · · · ϕM (ỹ(k)) ] and α ≥ 1 is

a number slightly larger than the minimum value for
which the constraint (a) is feasible.

(5) Obtain the coefficient vector â = (â1, . . . , âM ) from
the following convex optimization problem:



(â, γs∆) = arg min
a∈RM , γ′′

∆
∈R+

γ′′∆

subject to
(a) ‖ũ− Φa‖∞ ≤ αε̂
(b) |ũ(l)− ũ(k) + (Φrk − Φrl ) a| ≤

γ′′∆ ‖ỹ(l)− ỹ(k)‖∞ + 2ε̂,

{
l = 0, . . . , N − 1
k = l + 1, . . . , N − 1

(c) ai = 0, ∀i /∈ supp
(
a1
)

(19)
where supp

(
a1
)

is the support of a1, i.e. the set of

indices at which a1 is not null. �

The rationale behind the algorithm can be explained as
follows. After the preliminary operations carried out in
steps 1-3, the `1 norm of the coefficient vector a is min-
imized in step 4), leading to a sparse coefficient vector
a1, i.e. a vector with a “small” number of non-zero el-
ements. Constraint (a) in (18) ensures the consistency
between the measured data and the prior information on
the noise affecting these data (assuming that ε̂ is a reliable
estimate of ε and α is close to 1). Constraints (b) allow
us to guarantee closed-loop stability when a sufficiently
large number of data is used, see Theorem 2 below. Step
5) aims at reducing the Lipschitz constant of the error
function, maintaining the same sparsity level obtained
in step 4), and satisfying the constraints for closed-loop
stability. Indeed, the magnitude of this constant is linked
to the maximal deviation from the trajectory achieved by
the unknown controller κ, see Fagiano and Novara [2013],
hence step 5) of the algorithm accounts for the requirement
2) of Problem 1.
The reason why a sparse controller is looked for is twofold.
First, a sparse function is easy to implement on real-time
processors, which may have limited memory and computa-
tional capacity, hence accounting for the requirement 3) of
Problem 1. Second, sparse functions have nice regularity
properties and are thus able to provide good accuracy on
new data by limiting well-known issues such as over-fitting
and the curse of dimensionality.

3.3 Convergence analysis

The asymptotic properties of Algorithm 1 are analyzed
here. In particular, a result is presented, showing that the
controller κ̂ identified by means of Algorithm 1 satisfies the
stability condition (15) when the number of data N tends
to infinity. Before stating the result, we need to introduce
two technical assumptions. Consider the signals vf (k) and
vg(k) defined as

vf (k)
.
= f(y(k), u(k), es(k))− f(y∗, ũ(k), e∗s) + ey(k + 1)

vg(k)
.
= g(y(k), es(k))− g(ỹ(k), e∗s) + ey(k + 1).

Assumption 6. The set of points DNuv
.
= {ũ(k), vf (k)}N−1

k=0
is dense on U ×Bεf as N →∞. �

Assumption 7. The set of pointsDNyv
.
= {(ỹ(k), vg(k))}N−1

k=0
is dense on Y ×Bεg as N →∞. �

In Assumptions 6-7, density of the sets DNuv, DNyv is in-
tended in the same sense as in Assumption 5.
Theorem 2. Let the optimization problem (18) be feasible
for anyN ≥ 0. Let Assumptions 1-2, 4, and 5-7 hold. Then,
the error function ∆

.
= κ− κ̂ is Lipschitz continuous on Y ,

with constant γ∆ such that

lim sup
N→∞

γ∆ ≤ γs∆ <
1− γg,y
γf

.

Proof. See Fagiano and Novara [2013]. �

4. EXPERIMENTAL RESULTS

4.1 Data collection and controller learning

We have considered θ, φ, θ̇, φ̇, and γ as candidates feed-
back variables, since they can be measured or estimated
with good accuracy and they provide a representation of
the quantities that the human operator observes when
controlling the wing. In particular, we present here the
results obtained by considering four different combinations
of these signals to form the feedback variable y, and we
indicate the corresponding controllers as κ̂i, i = 1, . . . , 4.
Table 1 shows the choice of output vector y for these
four cases. The employed sampling time is Ts = 0.02 s.
Albeit also the line forces and the ground wind speed and
direction are measured, we do not consider such variables
for feedback control, since the human operator does not
exploit this information.

We have collected experimental data from a flight session
of 12 minutes, i.e. about 3.5 104 data points, where the
wing was controlled by a human operator. Fig. 3 shows a
typical full cycle, i.e. a single 8-shaped trajectory, in the
φ, θ plane, together with the related courses of φ̇, θ̇, of the
velocity angle γ, and of the control input u. As it can be
noted, the period of a single cycle is about 5 s, hence a
total of about 130 cycles has been used for the design of
the four controllers. Fig. 4 shows the course of the wind
speed during the time when the identification data were
collected. The average wind speed was 5.44 m/s.

We have chosen polynomial basis functions of the following
form:

ϕi(y) = yαj1y
β
j2

; j1, j2 = 1, . . . , ny; α, β = 0, . . . , 3. (20)

For each combination of j1 , j2, α , β in (20), we assigned a
progressive index i = 1, . . . ,M to the corresponding poly-
nomial, where M = (q ny + 1)(q ny + 2)/2. We estimated
the values of the design parameters ε̂, γ̂g,y andγ̂f , involved
in Algorithm (1), by means of the algorithms presented in
Subsection 3.2. The corresponding number of optimization
variables in problems (18)-(19) is indicated in Table 1, too,
together with the times required for the learning algorithm
to derive the different controllers and the related numbers
of resulting non-zero components. It can be noted that,
starting from a quite large number of decision variables,
the approach yields control laws with few non-zero terms,
which we implemented on a real-time machine using the
xPC Targetr toolbox of Matlabr. The computational
times for the learning phase (referred to a laptop with 2.8
Ghz core i7 processor, 8 GB RAM and the CVX tool Grant
and Boyd [2010]) are quite low. Indeed, a considerable
number of data have been used for design: N = 10501.
The data with indexes l = 1, 30, 60, . . . , N − 1 have been
used to form the constraints (b) in (18) and in (19) (we did
not use all the data due to memory saturation). The total
number of constraints in (18)-(b) and (19)-(b) resulted
to be 61075. As regards the times required for the on-
line control computation, these were of the order of 10−5 s
(including the time required to condition the measured
signals and to log the test results on a hard-drive), far
below the employed sampling time of 0.02 s.

4.2 Experimental results and discussion

We tested the controllers in 15-minutes-long experiment
batches (including take-off and landing phases), each one
corresponding to roughly 140 full cycles of autonomous
flight. We denote with θk, φk the average position, in



Table 1. Characteristics of the learned con-
trollers.

Controller
Feedback

variables y
N. of optim.
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terms
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θ(t)
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Fig. 3. Sample figure-eight trajectory during manual flight.
From top: wing’s path in φ, θ coordinates and related
gradient estimated by the velocity angle γ (arrows);

angular velocities φ̇ (solid) and θ̇ (dash-dot); control
input u.

spherical coordinates, of the k−th full cycle, and with K
the total number of cycles carried out in a test. In order to
evaluate the results obtained with the different controllers,
we computed the following quantities:

φ
.
=

1

K

K∑
k=1

φk, θ
.
=

1

K

K∑
k=1

θk

∆φ
.
=

√√√√ 1

K − 1

K∑
k=1

(φk − φ)2, ∆θ
.
=

√√√√ 1

K − 1

K∑
k=1

(θk − θ)2

∆φ
.
= max
k=1,...,K

|φk − φ|, ∆θ
.
= max
k=1,...,K

|θk − θ|.

(21)
The variables (21) provide the average position of the
trajectories flown during each test, as well as an indication
on the average and maximal deviation of each single
flown trajectory from the overall average. The choice of
these quantities as performance indicators is motivated
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Fig. 4. Wind speed measured at 4 m above the ground
during the manual flight.

Table 2. Experimental results of 15-minutes
test batches: average position and related de-
viations (rad), and average wind speed at 4 m

above the ground (m/s).

θ φ ∆θ ∆φ ∆θ ∆φ W
κ̂1 0.61 0.02 0.03 0.03 0.09 0.1 2.9
κ̂2 0.62 0.01 0.06 0.02 0.13 0.06 3.2
κ̂3 not stable 2.9
κ̂4 0.54 -0.02 0.14 0.11 0.25 0.17 3.5
κ 0.79 0.02 0.08 0.08 0.33 0.35 5.5

by the fact that theoretical, numerical and experimental
results show that, within quite slack limits, the most
important aspect for the sake of power generation is the
average position of a flown path, rather than its shape
Zgraggen et al. [2013]. Hence, the flight control system
shall achieve flying paths with consistent average position,
and a flight controller can be considered to be “better”
than another if it is able to obtain trajectories whose
average position is less variable, i.e. with smaller values
of ∆φ, ∆θ, ∆φ, ∆φ. The task of regulating the power
output, i.e. of setting the average flown position according
to the desired corresponding average power, can then be
carried out by a supervisory control approach, like the
adaptive strategy proposed in Zgraggen et al. [2013].

The results obtained with the four designed controllers are
reported in Table 2. The table also shows the performance
achieved by the human operator, indicated as κ, in the
test whose data have been used to learn the controllers.
The learned controllers κ̂1, κ̂2 were able to keep the wing’s
path inside the wind window and to stabilize the system
according to Definition 1, achieving a good consistency
of average position of the flown paths. The differences
in average position achieved by these controllers with
respect to κ are due to the difference in wind speed
during the tests, whose average value W measured at
4 m above the ground is shown in Table 2. The wind
speed can be considered as an exogenous, unmeasured
disturbance, which can be embedded in the variable es(t)
of (4). Different wind speeds induce a change in the
position of the closed loop trajectories in the φ, θ plane. In
particular, the lower was the wind speed, the closer were
the flight paths to the ground. This result is consistent
both with the theoretical results of Subsection 3.2 and
with physical considerations on the system. The controller
κ̂4 was able to achieve figure-eight trajectories, however
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Fig. 5. Experimental results for the learned controller κ̂2

and. From top: wing’s path in φ, θ coordinates and
related gradient estimated by the velocity angle γ
(arrows); angular velocities φ̇ (solid) and θ̇ (dash-dot);
control input u.

with quite poor repeatability as evidenced by the high
average and maximal deviations. Finally, the controller κ̂3

was not able to keep the wing airborne and the closed
loop trajectories gradually neared the ground until the
wing crashed. Considering that the same data set and
the same form of the basis functions were used to design
all the controllers, the main reason for such differences in
performance lie in the choice of the feedback variables. The
ones used by κ̂3, namely the current position and velocity
of the wing, were not sufficient to extrapolate with high
enough accuracy the behavior of the human operator. The
use of the same values at the current time and 1 second
in the past, adopted by κ̂4, yielded a controller able to
stabilize the plant, but whose performance in terms of
variability of the flown paths were the worst.

The use of the current position plus the velocity angle
in controller κ̂2 provided much better results (a movie of
the experimental tests with the controllers κ̂2 and κ̂4 is
available online Fagiano [2012]). It has to be noted that
the velocity angle is determined by the wing’s position
and velocity, so in principle the feedback variables used
by controller κ̂3 provide the same information as those
used by κ̂2. However such a relationship, given by (2),
is not described exactly by the polynomials (20), hence
the learning algorithm was not able to extract this infor-
mation. The controller κ̂1, which uses the same feedback
variables as κ̂2 both at the current time and with 1 second
delay, gives performance similar to κ̂2, hence indicating
that these additional variables do not provide significant
new information. We remark that the controllers κ̂1 and
κ̂2 have similar complexity in terms of number of non-
zero terms, despite the fact that κ̂1 uses twice as many
variables as κ̂2: this effect is due to the use of the `1-norm
cost function in (18), which encourages sparsity and hence

the automatic selection of the terms (hence also of the
feedback variables) whose importance is higher.

In summary, the obtained results highlight that 1) with the
proposed approach, the control design effort lies mainly
in the choice of the feedback variables and of the basis
functions, 2) physical insight still plays an important
role in selecting the most appropriate variables (like the
velocity angle in this specific case), 3) the use of `1-norm
minimization allows the control designer to start with a
relatively large number of candidate feedback variables,
leaving to the algorithm the task to identify the most
relevant ones. Finally, we comment on the comparison
between the performance obtained by κ̂1 and κ̂2, which
gave the best results among the learned controllers, and
those of the human operator κ. From Table 2, it can
be noted that the learned controllers were able to obtain
less erratic flight trajectories than those pertaining to the
identification data collected during manual flight, which
are affected by larger deviations in the average trajectory
position. The relatively poor performance of the human
operator can be due to inexperience but also fatigue and
loss of concentration. These aspects can be regarded to
as disturbances acting on the input variable, and their
effect is accounted for by the design parameter ε̂. The
experimental results indicate that the proposed approach
is able to cope effectively with outliers and dispersed data
sets caused by such disturbances.

5. CONCLUSIONS

We presented an approach to design a feedback controller
that stabilizes crosswind flight patterns of a tethered wing.
The proposed technique is able to derive a controller
directly from the data measured on an existing feedback
control system, where both the controller and the plant are
not known. A theoretical analysis unveiled that closed loop
stability depends on the variability of the approximation
error function, expressed in terms of its Lipschitz constant,
over the set of feedback variables. This finding leads
to the inclusion of a new constraint in the regularized
optimization approach employed to learn the controller.
The learning algorithm involves the solution of convex
optimization problems only, and it is shown to converge
to a stabilizing controller as the number of employed data
points tends to infinity. We presented the experimental
application of the approach on a small-scale prototype,
showing promising results.
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