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Abstract— This note extends a recently proposed algorithm
for model identification and robust model predictive control
(MPC) of asymptotically stable, linear time-invariant systems
subject to process and measurement disturbances. Independent
output predictors for different horizon values are estimated
with Set Membership methods. It is shown that the correspond-
ing prediction error bounds are the least conservative in the
considered model class. Then, a new multi-rate robust MPC
algorithm is developed, employing said multi-step predictors to
robustly enforce constraints and stability against disturbances
and model uncertainty, and to reduce conservativeness. A
simulation example illustrates the effectiveness of the approach.

I. INTRODUCTION

In a recent paper [6], we presented a unitary approach
to model identification and robust Model Predictive Control
(MPC) design for linear, asymptotically stable, discrete time
systems subject to process and measurement disturbances. A
Set Membership (SM) identification approach was used to
obtain multi-step prediction models used in the cost function
definition, while state and control constraints were tightened
by propagating the uncertainty bound of a simulation model,
tuned using the knowledge of the multi-step models and the
associated error intervals. Being the multi-step predictors
linear in their parameters, it was possible to derive tight
uncertainty bounds in a tractable way. However, these bounds
were not directly exploited to deal robustly with constraints,
with a consequent limited advantage in terms of conserva-
tiveness reduction in the constraint tightening procedure.
In the present paper, we develop this line of research with
two main contributions: first, we prove that the prediction
error bounds obtained with the SM approach proposed in [6]
are smaller than those of any linear simulation model iterated
p times. This further motivates the use of such predictors
both in the cost function and for constraint tightening. We do
so in our second contribution, since we propose a new robust
MPC scheme that explicitly relies on the optimal SM multi-
step models, thus dramatically reducing conservativeness. To
deal with the particular structure of the multi-step predictors,
which prevents the use of a standard robust MPC approach,
we adopt a novel multi-rate receding horizon strategy, for
which we prove guaranteed constraint satisfaction and con-
vergence properties. Many multirate schemes have been
proposed in the literature for predictive control design, see
for example [5], [8], [7] and the references therein, usually
to cope with different sampling rates in outputs sampling,
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Bioingegneria, Politecnico di Milano, Via Ponzio 34/5, 20133, Milano, Italy.
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state update, and control implementation. On the contrary,
here the multirate implementation stems from the particular
form of the predictors.
In the last section of the paper, the new approach is compared
with that of [6] in a simulation example. The proofs of the
main results are reported in Appendix.
Notation: In is the identity matrix of dimension n, Īn is the
matrix with zero entries except for those on the anti-diagonal,
which are equal to 1, 0m,n is the null matrix of dimensions
m and n. The Cartesian product between n sets T1, . . . ,Tn is

n
∏
i=1

Ti. For a generic vector x, ‖x‖2 .
= xT x and ‖x‖2

Q
.
= xT Qx

with Q being a given square matrix of suitable dimension.
For a matrix A, ‖A‖= supx 6=0

‖Ax‖
‖x‖ is its induced 2-norm and

ρ(M) its spectral radius, i.e. the maximum absolute value of
its eigenvalues. Given sets A, B ⊂ Rn, A⊕B = {a+b : a ∈
A, b ∈ B} and A	B = {a ∈ A : ∀b ∈ B, a+b ∈ A}.

II. PROBLEM STATEMENT, IDENTIFICATION ALGORITHM,
AND ERROR BOUNDS

Consider a linear and time-invariant (LTI) discrete-time
system of order n with input u(k) ∈ R, output z(k) ∈ R,
measured output y(k) ∈ R, process disturbance v(k) ∈ R,
and measurement disturbance d(k) ∈ R, where k ∈ N is the
discrete time variable. We define ϕ

(p)
z (k) ∈ R2n+p−1 as:

ϕ
(p)
z (k) =[z(k), . . . ,z(k−n+1), (1)

u(k−1), . . . ,u(k−n+1),u(k), . . . ,u(k+ p−1)]T ,

with p ∈ N. The system can be expressed in ARX
(autoregressive-exogenous) form as{

z(k+1) = θ̄ (1)T
ϕ
(1)
z (k)+ v(k)

y(k) = z(k)+d(k),
(2)

where θ̄ (1) ∈ R2n is the vector of unknown parameters.
Assumption 1: (Disturbance boundedness). |v(k)| ≤

v̄, |d(k)| ≤ d̄, ∀k ∈ N with d̄ known. �
The value of d̄ is assumed to be available from prior
knowledge, and/or it can also be estimated from data, see
e.g. [1], whereas v̄ is not necessarily known.
Using the SM method presented in [6], the following pre-
dictors of order o can be obtained for all p values up to a
finite horizon p:

ẑ(k+ p) = θ̂
(p)∗T

ϕ
(p)
y (k), (3)

where θ̂ (p)∗ = [θ̂
(p)∗T
AR θ̂

(p)∗T
U θ̂

(p)∗T
Ū ]T and θ̂

(p)∗T
AR ∈ Ro,

θ̂
(p)∗T
U ∈Ro−1, θ̂

(p)∗T
Ū ∈Rp are vectors of known parameters
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resulting from the identification phase. We refer to these
predictors as multi-step in the remainder. The derivation of
θ̂ (p)∗ for a given value of p is recalled later on in this section.
Moreover, in (3)

ϕ
(p)
y (k) = [y(k), . . . ,y(k−o+1),

u(k−1), . . . ,u(k−o+1),u(k), . . .u(k+ p−1)]T

Assumption 2: (Model order) The order of the models (3)
is o≥ n �

An algorithm to estimate o is described in [1]. The SM
learning phase also returns an estimate of the bound on the
worst-case prediction error:

|z(k+ p)− ẑ(k+ p)| ≤ τ̂p(θ̂
(p)∗) (4)

In fact, for each step p≤ p̄ one can derive a guaranteed upper
bound τ̂p of the difference between the nominal output and
its prediction obtained with a generic predictor

ẑ(k+ p) = θ̂
(p)T

ϕ
(p)
y (k) (5)

For the identification of θ̂ (p)∗ and τ̂p a finite number N of
measured data is available, composed of pairs (ϕ(p)

y (k), y(k+
p)), k = 1, . . . ,N. We first estimate an error bound ˆ̄εp =
αλ p, ∀p = 1, . . . , p̄, through

λ p = min
θ (p),λ

λ , subject to

|y(k+ p)−θ (p)T
ϕ
(p)
y (k)| ≤ λ +d, k = 1, . . . ,N,

The latter value is inflated by a scalar α > 1 to account
for the fact that the available dataset is finite. The Feasible
Parameter Sets (FPSs) are then defined as

Θ(p) =
{

θ̂ (p) : |y(k+ p)− θ̂ (p)T
ϕ
(p)
y (k)| ≤ ˆ̄εp +d,

k = 1, . . . ,N}
(6)

For each p, Θ(p) is a convex set and, if the data are informa-
tive enough, it is also compact. This property can be checked
easily by linear programming; if the set Θ(p) is not bounded
then this is a sign that more informative data should be
collected. In the remainder, we consider that Θ(p) is compact
for any p. Let us further denote with Φ(p) ⊆ R2o−1+p a
compact set containing all possible values of ϕ

(p)
y (k). In

practice, this means that we restrict our analysis and results
to a set of system trajectories of interest, which contains
the available data points. This is a reasonable assumption in
practice. Since θ̄ (p) in (2) belongs to Θ(p), the smallest bound
on the error |z(k+ p)− ẑ(k+ p)| (see (4)) ∀p = 1, . . . , p̄ is:

|z(k+ p)− ẑ(k+ p)|
≤ max

ϕ
(p)
y ∈Φ(p)

max
θ (p)∈Θ(p)

|(θ (p)− θ̂ (p))T ϕ
(p)
y |+ ˆ̄εp = τp(θ̂

(p))

(7)
The bound (7) is global, since it holds for any regressor value
inside Φ(p) and for any model compatible with the data, i.e.
contained in the set Θ(p). However it cannot be computed
in practice since the set Φ(p) is not available. On the other

hand, an approximation τ̂p(θ̂
(p)) ≈ τp(θ̂

(p)) can be easily
computed as τ̂p(θ̂

(p)) = γτ p(θ̂
(p)) with

τ p(θ̂
(p)) = max

k=1,...,N
max

θ (p)∈Θ(p)
|(θ (p)− θ̂

(p))T
ϕ
(p)
y (k)|+ ˆ̄εp (8)

i.e. by computing the worst-case prediction error with respect
to the available data. This approximation includes a second
scaling factor γ ≥ 1, again to account for the finite available
dataset. The nominal predictor (3), for each step p, is chosen
as the minimizer of this worst case error τ p(θ̂

(p)), i.e.

θ̂
(p)∗ = arg min

θ̂ (p)∈Θ(p)
τ p(θ̂

(p)) (9)

The following theorem is concerned with the optimality (in
terms of size of the uncertainty bound) of the multistep
prediction models.

Theorem 1: Consider any 1-step-ahead LTI system model
(i.e. of the form (5) with p = 1) with coefficient vector
θ̂ (1) ∈R2o. Let θ̂ (p),1 ∈R2o−1+p be the corresponding vector
of multi-step predictor coefficients, obtained by iterating p
times such a 1-step-ahead model. Then, for all p = 1, . . . , p̄
it holds:

τp(θ̂
(p)∗)≤ τp(θ̂

(p),1). (10)

Proof: See the Appendix.
Theorem 1 justifies the use of multi-step models for robust
MPC design, since in general they yield smaller error bounds.

III. MPC DESIGN AND PROPERTIES

The multi-step models previously introduced can not be
directly used in existing robust MPC schemes. Therefore
we propose a new multirate MPC approach where the
predicted behavior of the system is optimized by considering
a prediction/control horizon of Np “long” steps, with index
j ∈N, each one consisting of p̄ “short” sampling times with
index k. Note that the “short” sampling interval is the one
assumed for the true system (2). The optimal control problem
is thus solved at every long step j (i.e. every p̄ short steps)
and the solution provides the values of the control input to be
applied at each step k in the interval { j p̄, . . . , ( j+1)p̄−1}
according to a standard receding horizon formulation. For
clarity, we represent the long and short sampling times on a
common time-scale in Figure 1. Also, in the remainder we
will use the upper-case letters to denote variables defined at
a long sampling time. Assume p̄ > o for simplicity, although
it is not necessary, and define the system state, the input,
and the disturbance at time j as X( j) = [y( j p̄), . . .y( j p̄−o+
1),u( j p̄−1), . . . ,u( j p̄−o+1)]T , U( j) = [u( j p̄), . . . ,u( j p̄+
p̄−1)]T , W ( j) = [w1( j p̄), . . . ,w p̄( j p̄)]T , respectively. Denote
with w̄p a value such that |wp( j p̄)| ≤ w̄p, for all p = 1, . . . , p̄,
which accounts for the error stemming from the identification
procedure, the process noise, and the measurement distur-
bance. Given the bound (8), since the state X( j) comprises
samples of the measured output y affected by measurement
noise d, it is possible to obtain w̄p as

w̄p = τ̂p(θ̂
(p)∗)+ d̄ (11)



Fig. 1. Sketch of the time-scales involved in the simulation, with “long”
and “short” sampling times.

thus directly exploiting the multi-step error bounds previ-
ously obtained. The state transition equation, that maps the
current state X( j) into the p̄ steps ahead state X( j+1), is:

X( j+1) = ĀX( j)+ B̄U( j)+ M̄W ( j) (12)

where:

Ā =


θ̂
(p̄)∗T
AR θ̂

(p̄)∗T
U

...
...

θ̂
(p̄−o+1)∗T
AR θ̂

(p̄−o+1)∗T
U

0o−1,o 0o−1,o−1

 , B̄ =


θ̂
(p̄)∗T
Ū

...[
θ̂
(p̄−o+1)∗T
Ū 01,o−1

][
0o−1,p̄−o+1 Īo−1

]


M̄ =

[
0o,p̄−o Īo

0o−1,p̄−o 0o−1,o

]
(13)

The following assumption is introduced.
Assumption 3: The pair (Ā, B̄) is stabilizable. �

Since the model is obtained from input-output data, As-
sumption 3 is usually satisfied in practice and is thus not
restrictive. We rewrite models (4) as system output equations:

ẑ( j p̄+ p) =CpX( j)+DpU( j) (14)

where Cp =
[
θ̂
(p)∗T
AR θ̂

(p)∗T
U

]
, Dp =

[
θ̂
(p)∗T
Ū 01,p−p

]
.

Consistently with (4), we can write

z( j p̄+ p) =CpX( j)+DpU( j)+wp( j p̄) (15)

For notational convenience let us stack matrices Cp and Dp,
for all p = 1, . . . p̄, as

C̄ =
[
CT

1 . . . CT
p̄
]T

, D̄ =
[
DT

1 . . . DT
p̄
]T (16)

so that we can define the predictions of outputs in the long
sampling time, but at a short sampling period basis, as Ẑ( j)=[
ẑ( j p̄+1) . . . ẑ( j p̄+ p̄)

]T . Thanks to the predictors in
(14), we write

Ẑ( j) =

ẑ( j p̄+1)
...

ẑ( j p̄+ p̄)

= C̄X( j)+ D̄U( j) (17)

In the control design phase a tube-based robust control
approach is used [2] and the input U( j) is defined as

U( j) = Ū( j)+K(X( j)− X̄( j)) (18)

The input Ū( j) will be computed by MPC, while the term
K(X( j)− X̄( j)) aims to reduce the error between the state
X̄( j) of a suitably defined nominal dynamic system and the
actual value of X( j), available at time k = j p̄. The gain K
is chosen such that F̄ = Ā+ B̄K is Schur stable, which is
possible thanks to Assumption 3.
The nominal dynamic system is defined based on (12):

X̄( j+1) = ĀX̄( j)+ B̄Ū( j) (19)

The p steps ahead nominal output predictor corresponding
to (14) is computed as:

ˆ̄Z( j) = C̄X̄( j)+ D̄Ū( j) (20)

The difference between the real available data vector X( j)
and the state of the nominal system is defined as E( j) =
X( j)− X̄( j). From (12) and (19), it evolves according to:

E( j+1) = (Ā+ B̄K)E( j)+ M̄W ( j) (21)

Let E be a robust positively invariant (RPI) [3] set for
the system (21). Similarly to [2], the constraints and the
optimization problem will be defined with reference to the
nominal model (19). This will require to define suitable
tightened state and input constraints, that allow one to
account for the difference between X̄( j) and X( j).

Remark 1: In (21) only the last o components of W ( j)
are involved in the computation of E, and they depend on
the estimates τ̂p(θ̂

(p)∗) of the bounds proved to be optimal in
Theorem 1, see (11). Moreover, since Ā+ B̄K is Schur stable
and evolves over a (possibly long) p̄-steps-ahead period, it is
prone to have a smaller spectral radius and norm with respect
to the one corresponding to a 1-step state space model, e.g.
the one considered in [6]. Thus, this results in a smaller set E
and less conservative constraint tightening, as also illustrated
in the example of Section IV. �
The MPC controller must guarantee the fulfillment of input
and output constraints for all k ≥ 0:

u(k) ∈ U , z(k) ∈ Z (22)

where U and Z are suitable convex sets containing the
origin in their interior. For ease of notation, let us introduce
the higher-dimensional convex sets U = U p̄ and Z = Zp̄.
Similarly to [2], it is first necessary to constrain X̄( j) at
time j p̄ to lie in the neighborhood of X( j), i.e

X( j)− X̄( j) ∈ E (23a)

Regarding the input variable, to guarantee that (22) holds
from time j p̄ to ( j+Np− 1)p̄, it is enough to enforce the
following tightened constraints, for all i = 0, . . . ,Np−1.

Ū( j+ i) ∈ U	KE (23b)

As for the output, to guarantee that (22) holds at time j p̄+
1, . . . ,( j+Np)p̄, we define ∀p = 1, . . . , p̄

Tp = {t ∈ R : |t| ≤ τ̂p(θ̂
(p)∗)}



and the tightened set Ẑ as

Ẑ = Z	
p̄

∏
p=1

Tp (23c)

This set is such that, by construction, if Ẑ( j + i) ∈ Ẑ,
then Z( j + i) ∈ Z, i = 0, . . . ,Np− 1. We thus enforce the
following tightened constraint, again related to the nominal
system (19), for all i = 0, . . . ,Np−1.

ˆ̄Z( j+ i) ∈ Ẑ	 (C̄+ D̄K)E (23d)

Finally, to guarantee recursive feasibility, we also need to
enforce a terminal constraint of the type

X̄( j+Np) ∈ XF (23e)

where XF is defined as a positively invariant set for the
system X̂( j+1) = (Ā+ B̄K)X̂( j) that verifies
• (C̄+ D̄K)XF ⊆ Ẑ	 (C̄+ D̄K)E
• KXF ⊆ U	KE

For consistency, the following assumption is required.
Assumption 4: There exists a ball B in space R p̄, centered

at the origin and with radius ε , such that

(C̄+ D̄K)E⊕B ⊆ Ẑ (24a)
KE⊕B ⊆ U (24b)

�
The cost function to be minimized at time step k is

J( j) =
Np−1

∑
i=0
‖ ˆ̄Z( j+ i)‖2

Q +‖Ū( j+ i)‖2
R +‖X̄( j+Np)‖2

P

where Q = diag(q1, . . . ,q p̄) > 0, R = diag(r0, . . . ,rp̄−1) > 0,
Np is the prediction horizon, and P is the unique positive
definite solution to the Riccati equation (see Assumption 3)

F̄T PF̄−P =−
(
ḠT QḠ+KT RK

)
(25)

where Ḡ= (C̄+D̄K). Note that Q and R can be chosen freely
while in [6] they were selected according to the solution to
an LMI problem, so limiting the possible trade-offs between
bandwidth and control activity of the closed-loop system.
Now, denoting the vector of decision variables with

Ū( j) =
[
Ū( j)T . . . Ū( j+Np−1)T ]T ,

the optimization problem to be solved at each “long” sam-
pling time j ≥ 0, reads

J∗( j) = min
X̄( j),Ū( j)

J( j) s.t. constraints (23) (26)

If problem (26) is feasible, its solution is denoted with
X̄∗( j), Ū∗( j) = [Ū∗( j)T , . . . ,Ū∗( j+Np−1)T ]T , and the input
sequence U∗( j)= Ū∗( j)+K(X( j)−X̄∗( j)) in (18) is applied
to the system according to the Receding Horizon principle.
Also, we denote with X̄∗( j + i) the future nominal state
predictions generated using (19) with input Ū∗( j), as well
as all the other derived quantities, such as ˆ̄Z∗( j) (see (20)).

Theorem 2: If (26) is feasible at time step j = 0 then
it is feasible at all time steps j > 0 and, for all j ≥ 0, the

constraints (22) are satisfied. Moreover, ˆ̄Z∗( j)→ 0 as j→∞.
Finally, δ (Z( j),(C̄+ D̄K)E)→ 0 as j→ ∞, where δ (α,β )
denotes the distance between point α and set β �.

Proof: See the Appendix.

IV. SIMULATION EXAMPLE

Consider the system employed in [6], obtained by dis-
cretizing, with sampling time Ts = 0.1, the continuous-time
transfer function

G(s) =
160

(s+10)(s2 +1.6s+16)

A dataset of 1000 pairs (u,y) has been collected by exciting
the system with a signal u taking value in {−1,0,1} ran-
domly each 5 units of time, and adding the disturbance v(k)
and d(k), with v̄ = 0.01 and d̄ = 0.1, respectively, consis-
tently with (2). The multi-step bounds estimates τ̂p(θ̂

(p)∗)
have been computed according to the algorithm described in
[6], with p̄= 10 (resulting in a “long” sampling time equal to
Ts p̄= 1s) and model order o= 4. In Figure 2 they are plotted
and compared with the bounds computed by simply iterating
the simulation model (i.e., the 1-step ahead predictor) and
propagating its uncertainty bound accordingly.

In the control design phase, the matrix K has been
computed with Linear Quadratic (LQ) control, while the
prediction horizon for the MPC controller is Np = 3. The
weighting matrices are defined as Q = 100Ip̄ and R = 1Ip̄,
while matrix P is obtained thanks to (25). Both the input
u and the output z have been enforced to belong to the set
[−10,10] for each time instant.

The input and output trajectories, comparing the closed-
loop with the open-loop response of the system, are plotted
in Figures 3 and 4 together with the relevant bounds. The
controller, based on the identified model, is able to regulate
the real system (2) to zero with a much faster time constant
and sensibly damping the oscillations. In Table I we also
report, for the same tuning of the LQ problem, the spectral
radius and norm of the state transition matrix of the nominal
system (19) subject to the auxiliary law K, see also Remark
1. Note that the norm of such matrix directly affects the
computation of the invariant set E. Moreover, by comparing
the effect on the constraint tightening, we note that, while in
[6] the tightened output constraints correspond to the interval
[−7.7,7.7] for each prediction step and the input constraints
to the interval [−9.05,9.05], with the new algorithm pro-
posed. here we obtain the following box-inequalities, to be
intended entry-wise, i = 0, . . . ,Np−1: Specifically, define

Zm =
[
8.3 7.4 7.8 8.2 8.8 9.0 9.0 9.3 9.1 8.9

]
Um =

[
9.77 9.68 9.72 9.60 9.53 9.60 9.67 9.88 9.87 9.92

]
and the constraints

−ZT
m ≤ ˆ̄Z( j+ i)≤ ZT

m and −UT
m ≤ Ū( j+ i)≤UT

m

which confirm a conservativeness reduction.
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Fig. 2. Computed bounds. Dashed line: bound obtained by iterating w̄1
with the one-step model, solid line: bounds w̄p, p = 1, . . . , p̄
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Fig. 3. Input variable. Dash-dotted line: Ū(k), solid line: U(k), dashed
lines: tightened constraints (23b), dotted lines: absolute constraints.
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Fig. 4. Output variable. Solid line: z(k), dashed line: ˆ̄Z( j), line with circles:
open loop response.

TABLE I
TABLE OF COMPARISON OF RADIUS AND SPECTRAL NORM OF STATE

TRANSITION MATRIX

Algorithm in [6] Proposed algorithm

ρ(A+B1K) = 0.78 ρ(Ā+ B̄K) = 0.2974
‖A+B1K‖= 1.77 ‖Ā+ B̄K‖= 0.455

APPENDIX

Proof of Theorem 1.

We derive a multi-step predictor by iterating a generic
(simulation, i.e. 1-step ahead) model with coefficient vector
θ̂ (1) and focusing on the function linking prediction steps
p = 1 and p = 2. The extension up to p̄ is straightforward.
In the following we will use ′ on the variables predicted
with the (possibly iterated) simulation model.
First recall the definition of the one-
step predictor regressor vector ϕ

(1)
y (k) =[

y(k) . . . y(k−o+1) u(k−1) . . . u(k−o+1) u(k)
]T

and note that ϕ
(2)
y (k) =

[
ϕ
(1)
y (k)

u(k+1)

]
.

Assuming to be at time k+1, to proceed 1-step ahead we
would need y(k+1) to compute

ẑ′(k+2) = θ̂
(1)T

ϕ
(1)
y (k+1) (27)

If we are at time k, the measured value of y(k + 1) is
not available, hence its nominal prediction computed with
the simulation model is used in its place, i.e. ẑ′(k + 1) =
θ̂ (1)T

ϕ
(1)
y (k). This results in

ẑ′(k+2) = θ̂
(1)T

ϕ
(1)′
y (k+1) (28)

where ϕ
(1)′
y (k + 1) = [ẑ′(k + 1) . . . y(k − o + 2)u(k −

1) . . . u(k− o+ 2),u(k),u(k+ 1)]T , which can be expressed
as a function of ϕ

(1)
y (k) as ϕ

(1)′
y (k+1) =

=


0
...
0

u(k+1)

+


θ̂ (1)∗T

Io−1 0o−1,1 0o−1,o
01,o−1 0

[
01,o−1 1

]
0o−2,o−1 0o−2,1

[
Io−2 0o−2,2

]
01,o−1 0 01,o

ϕ
(1)
y (k)

(29)
or, in shorter notation ϕ

(1)′
y (k + 1) = U1 + S(θ̂ (1))ϕ

(1)
y (k),

where U1 and S(θ̂ (1)) are are implicitly defined in (29).
By replacing (29) in (28) we get

ẑ′(k+2) = θ̂ (1)T
(
U1 +S(θ̂ (1))ϕ

(1)
y (k)

)
=
[
θ̂ (1)T

S(θ̂ (1)) θ̂
(1)
last

]
︸ ︷︷ ︸

θ̂ (2),1

[
ϕ
(1)
y (k)

u(k+1)

]

= θ̂ (2),1ϕ
(2)
y (k)

(30)

where θ̂
(1)
last is the last element of θ̂ (1), and θ̂ (2),1 is in-

troduced. Note that the entries of θ̂ (2),1 are polynomial
combinations of the ones of θ̂ (1), see (30). With similar



manipulations, for any step p the predictor obtained by
iterating the simulation model with parameters θ̂ (1) reads

ẑ′(k+ p) = θ̂
(p),1T

ϕ
(p)
y (k) (31)

where θ̂ (p),1(θ̂ (1)) : R2o → R2o+p−1 is a vector function of
polynomials of degree up to p of the elements of θ̂ (1).

Let us now focus on the worst case prediction error, with
arguments similar to (7):

|z(k+ p)− ẑ′(k+ p)| ≤
≤ |ϕ(p)T

y (θ̄ (p)− θ̂ (p),1)|+ ε̄p

≤ max
θ∈Θ(p)

max
ϕ
(p)
y ∈Φ(p)

|ϕ(p)T

y (θ − θ̂ (p),1)|+ ε̄p = τp(θ̂
(p),1)

(32)
where the last inequality holds thanks to the fact that

θ̄ (p)⊆Θ(p). We now aim to show that τp(θ̂
(p),1)≥ τp(θ̂

(p)∗).
For a given vector θ̂ (p),1, one of these two cases occur:
• If θ̂ (p),1 ∈Θ(p), then from (32), it follows

τp(θ̂
(p)∗) = min

θ̄ (p)∈Θ(p)
max

θ∈Θ(p)
max

ϕ
(p)
y ∈Φ(p)

|ϕ(p)T

y (θ − θ̄
(p))|+ ε̄p

≤ τp(θ̂
(p),1)

hence proving the claim.
• If θ̂ (p),1 /∈ Θ(p) , let us consider a generic element θ ∈

Θ(p) and the convex combination

(1− ᾱ)θ + ᾱθ̂
(p),1 = θ

(p)′′ (33)

where
ᾱ = max

α
α

s.t. α ∈ [0,1]
(1−α)θ +αθ̂ (p),1 ∈Θ(p)

The point θ (p)′′ , belongs to the boundary of Θ(p) along
the direction connecting the chosen θ ∈Θ(p) to θ̂ (p),1 /∈
Θ(p). Consider (32), omitting the dependence on time k
for brevity we compute

|ϕ(p)T

y (θ − θ̂ (p),1)|=
= |ϕ(p)T

y (1− ᾱ)(θ − θ̂ (p),1)|+ |ϕ(p)T

y ᾱ(θ − θ̂ (p),1)|
= |ϕ(p)T

y (θ (p)′′ − θ̂ (p),1)|+ |ϕ(p)T

y (θ −θ (p)′′)|
(34)

where in the last equality the term θ (p)′′ as defined in
(33) has been substituted. The latter expression allows
us to split the value

|ϕ(p)T

y (θ − θ̂
(p),1)|

in a contribution given by a predictor θ

inside Θ(p), namely |ϕ(p)T

y (θ − θ (p)′′)|, plus a
contribution outside Θ(p), that is |ϕ(p)T

y (θ (p)′′ −
θ̂ (p),1)|. Therefore we can write τp(θ̂

(p),1) =

= max
θ∈Θ(p)

max
ϕ
(p)
y ∈Φ(p)

|ϕ(p)T

y (θ − θ̂
(p),1)|+ ε̄p

≥ min
θ (p)′′∈Θ(p)

max
θ∈Θ(p)

max
ϕ
(p)
y ∈Φ(p)

|ϕ(p)T

y (θ −θ
(p)′′)|+ ε̄p = τp(θ̂

(p)∗)

(35)

that completes the proof. Note that in (35), for a given
θ̂ (p),1, θ (p)′′ depends only on θ . �

We first prove recursive feasibility by induction. Assume
that, at k = j p̄, a solution to the optimization problem (26)
exists and denote it with X̄∗( j| j), Ū∗( j| j). All constraints
(23) are therefore verified by the nominal state trajectories
associated with the optimal solution X̄∗( j+ i| j) and Ū∗( j| j):

X( j)− X̄∗( j| j) ∈ E (36a)
Ū∗( j+ i| j) ∈ U	KE (36b)
ˆ̄Z∗( j+ i| j) = C̄X̄∗( j+ i| j)+ D̄Ū∗( j+ i| j)

∈ Ẑ	 (C̄+ D̄K)E (36c)
X̄∗( j+Np| j) ∈ XF (36d)

with i = 0, . . . ,Np − 1. Finally, the input U( j) is defined
according to (18) with Ū( j) = Ū∗( j| j) and X̄( j) = X̄∗( j| j).
Let us call this quantity U∗( j| j). At yime k = ( j+1)p̄,

X( j+1) = ĀX( j)+ B̄U∗( j| j)+ M̄W ( j)

We can show that a feasible, although possibly suboptimal,
solution to (26) can be defined, i.e., as X̄∗( j+ 1| j), ˜̄U

∗
( j+

1| j) = (Ū∗( j+1| j), . . . ,Ū∗( j+Np−1| j),KX̄∗( j+Np| j)).
First of all, we have

X( j+1)− X̄∗( j+1| j) =
(Ā+ B̄K)(X( j)− X̄∗( j| j))+ M̄W ( j) ∈ E

in view of (36a) and of the fact that E is RPI.
Moreover, Ū∗( j + i| j) ∈ U	KE in view of (36b), for all
i = 1, . . . ,Np− 1, and KX̄∗( j +Np| j) ∈ KXF ⊆ U	KE in
view of (36d) and of (23b). In addition,

(C̄+ D̄K)X̄∗( j+ i| j) ∈ Ẑ	 (C̄+ D̄K)E

for all i = 1, . . . ,Np−1 in view of (36c) and

(C̄+ D̄K)X̄∗( j+Np| j) ∈ (C̄+ D̄K)XF ⊆ Ẑ	 (C̄+ D̄K)E

in view of (36d) and of (23b).
Finally, it holds that

X̄∗( j+Np +1| j) = (Ā+ B̄K)X̄∗( j+Np| j) ∈ XF

in view of (36d) and of the positive invariance of XF . Since
feasibility holds by assumption at time j p̄, j = 0 then, by
induction, it is guaranteed also for all j > 0.

Constraint satisfaction.
Constraint satisfaction is now proven. In view of the feasibil-
ity of the problem (26) at any time instant j p̄, j≥ 0, it results
that constraints (36) are verified. Therefore, from (18), (36a),
and (36b),

U∗( j| j)= Ū∗( j| j)+K(X( j)−X̄∗( j| j))∈ (U	KE)⊕KE⊆U.

Then, by definition of U( j) and the set U, input constraints
satisfaction in (22) follows. Also, from (36a) and (36c),

Ẑ( j| j) = C̄X̄∗( j| j)+ D̄U∗( j| j)+(C̄+ D̄K)(X( j)− X̄∗( j| j))
∈ (Ẑ	 (C̄+ D̄K)E)⊕ (C̄+ D̄K)E⊆ Ẑ.



Indeed, if Ẑ( j| j)∈ Ẑ, then Z( j| j)∈Z follows, and eventually
by definition of the latter ones, (22) is satisfied.

Convergence is proven with standard arguments (see [4]) by
showing that the optimal cost function is decreasing in time,
i.e.

J∗( j+1| j+1)− J∗( j| j)≤−
(
‖ ˆ̄Z∗( j| j)‖2

Q +‖ ˆ̄U∗( j| j)‖2
R

)
(37)

Since J( j) is positive by definition, and decreasing in view
of (37), then ˆ̄Z∗( j| j) and Ū∗( j| j) → 0 as j → +∞. Also,
recalling (36a), it holds

C̄(X( j)− X̄∗( j| j))+ D̄(U∗( j| j)−Ū∗( j| j)) = Ẑ( j| j)− ˆ̄Z∗( j| j)
∈ (C̄+ D̄K)E,

for all j which concludes the proof. �
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