
Adaptivemodel predictive control for linear timevarying

systems

Marko Tanaskovic a, Lorenzo Fagiano b, Vojislav Gligorovski c

aSingidunum University, Belgrade, Serbia.

bDipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy

cLaboratory of the physics of biological systems, Swiss Federal Institute of Technology Lausanne (EPFL)

Abstract

A robust, adaptive Model Predictive Control (MPC) approach for asymptotically stable, constrained linear time-varying (LTV)
systems with multiple inputs and outputs is proposed. The approach consists of two-steps, carried out on-line with a receding
horizon strategy. In the first one, a real-time Set Membership identification algorithm exploits the measured input-output data
and the available prior knowledge to build and refine a set of admissible models of the plant (Feasible Parameter Set, FPS).
This set is guaranteed to contain also the true system dynamics under the considered working assumptions. In the second
step, a robust finite-horizon optimal control problem is formulated and solved. The variation of system dynamics is taken into
account by inflating the FPS over the prediction horizon, according to worst-case bounds, assumed a-priori, on the parameters’
rate of change. The resulting optimal control sequence guarantees that the outputs of all possible plants inside the FPS satisfy
the operational constraints, also considering all possible future parameter changes. The main theoretical properties of the
proposed approach are demonstrated and the method is showcased in numerical simulations, highlighting the fundamental
improvement over previous approaches not designed for LTV systems.

Key words: Adaptive control, Learning control, LTV systems, Set membership identification, Model predictive control,
Constrained control

1 Introduction and motivation

MPC is a successful technique in industrial applica-
tions, thanks to the capability to explicitly account
for constraints on inputs and outputs and to incorpo-
rate information on future disturbance and reference
signals [16]. A research direction that is currently re-
ceiving growing interest is that of dual, adaptive and
learning-based MPC, i.e. approaches where the model
derivation/identification step is considered together
with the control computation, and possibly carried
out on-line. There are several contributions that dif-
fer in terms of system dynamics (linear or nonlinear),
uncertainty characterization (stochastic or unknown-
but-bounded), and model identification scheme (off-line
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or on-line/adaptive), see e.g. [1], [2], [3], [4], [8], [11],
[12], [13], [14], [18], [22], [23], [15],[10]. These works are
motivated by the difficulty to derive models based on
physical principles for complex processes, the increasing
real-time availability of measured data, and the want to
derive MPC approaches that can automatically adapt
to uncertain and time-varying dynamics.
Set Membership (SM) techniques are being adopted by
several researchers for the model identification phase,
since they provide, in addition to a nominal model of
the plant, a quantification of the associated uncertainty,
which can be exploited for MPC design. Examples of
contributions exploiting SM techniques are [4],[12], [13]
and [18]. In [18], we proposed the use of SM identifica-
tion to derive an adaptive MPC approach for uncertain
linear time-invariant systems, subject to both process
disturbance and measurement noise. This approach
guarantees robust constraint satisfaction on the outputs
also during model adaptation, which is a major chal-
lenge in adaptive control under constraints. However,
it does not provide the same guarantees in presence of
time-varying dynamics: indeed the method can easily
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fail in this case, as we show here through a motivat-
ing example. The main contribution of this paper is
to remove this deficiency, through a modified adaptive
technique that can cope with LTV systems. As in [18],
a two-step procedure is employed. In the first step, a
set of models consistent with measured data and prior
assumptions is built and refined (Feasible Parameter
Set, FPS). This set is guaranteed to contain also the
true system dynamics, under the considered working
assumptions. Differently from [18], we now take into
account the time-varying nature of the plant, both in
the future predictions and in how the past data is ex-
ploited to build the FPS. In the second step, a robust
finite-horizon optimal control problem is formulated
and solved, where we also predict all possible future
changes of the model set. The procedure is implemented
on-line with a receding horizon strategy. We prove that
the resulting feedback control law guarantees recur-
sive feasibility and robust constraint satisfaction, and
illustrate its performance in the motivating example,
showing that the new approach removes efficiently a
fundamental limitation of the previous one. To the best
of our knowledge, to date there are no other adaptive
techniques in the literature providing similar theoretical
guarantees in presence of output constraints, system un-
certainty, process disturbance, and measurement noise.

2 Motivating example

Consider an LTV, single-input, single-output mass-
spring-damper system with natural frequency equal to
1, gain equal to 4, and eigenvalues in the left half plane
with damping ratio ξ. The value of ξ can change over
time inside the interval [0.3, 1]. The amplitude of the
input u is constrained in the compact set [−1.5, 1.5]
and its rate of change ∆u in [−0.5, 0.5]. By discretizing
the dynamics with the trapezoid method and sampling
time Ts = 0.7 s and truncating the system’s infinite
impulse response (IIR) at m = 24 samples, one obtains
the Finite Impulse Response (FIR) coefficients reported
as an example in Fig. 1 for the values ξ = 0.3 and ξ = 1.

The truncated part of the impulse response is embed-
ded into an additive disturbance signal d, acting on the
output y. Such a disturbance is bounded, because of the
bounded input and the fact that, for any fixed value of ξ,
the corresponding LTI system is asymptotically stable,
i.e. its impulse response decays exponentially to zero. In
the described settings, the exact bound on this additive
contribution is 0.1. We further assume that an exoge-
nous additive disturbance affects the output, with max-
imum amplitude 0.05. Thus, the total bound on the ad-
ditive output disturbance d is 0.15. The system dynam-
ics are not known exactly a priori, but noise-corrupted
measurements of the output are available, with bounded
noise v : |v| ≤ 0.1. As prior information, we assume that
the FIR coefficients belong to a polytopic set Ω, bounded
by the thick black lines in Fig. 1, and that the bounds
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Fig. 1. Impulse response of the LTV plant with ξ = 1 (stars)
and ξ = 0.3 (circles), and considered set Ω (thick black lines).

on the additive disturbance and measurement noise are
equal to 0.2 and 0.15, respectively. Note that this prior
information is not tight, i.e. the signal bounds and the
polytopic set are not known exactly. The control prob-
lem is to track a given reference output, while satisfying
the output constraints y ∈ [−6, 6]. The change of ξ over
time in our simulation test is shown in Fig. 2.
In [18], we proposed an adaptive MPC technique based
on SM identification for uncertain LTI plants, able to
robustly enforce output constraints also during adapta-
tion. One of the core steps in this approach is the real-
time refinement of the FPS, i.e. the set of all models
compatible with the collected measurements and prior
assumptions. When applied to the LTV case, the ap-
proach of [18] looses its theoretical guarantees and in
practice it can easily fail, as shown in Fig. 3, where at
time step k = 42 the FPS becomes empty due to the
inconsistency between the collected data, produced by
the change of system dynamics. This problem can occur
with rather small changes of the plant (3% reduction of ξ
in this example), and it does not depend on the parame-
ters’ rate of change: also with very slow variations there
is eventually an instant when an inconsistency among
the past data can arise. Finally, note again that the as-
sumed initial set Ω containing the unknown system pa-
rameters, i.e. the starting FPS, covers all possible FIR
coefficients of the true system (see Fig. 1). Thus, the
problem is neither due to the parameters being outside
the assumed initial bounds. Rather, it is caused by a
fundamental limitation of the adaptive MPC approach
of [18] when applied to LTV plants. On the one hand,
this effect could be used for condition monitoring and
fault detection schemes, since emptiness of the FPS in-
dicates a change in the plant dynamics. On the other
hand, we present here an approach that removes such
a limitation, restoring the recursive feasibility and con-
straint satisfaction guarantees achieved in [18].
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Fig. 2. Change of damping parameter ξ over time. At k = 42
the value of ξ is 0.97, 3% smaller than the starting value.
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Fig. 3. Plant output (thick black line), reference (dashed),
uncertainty bounds (dotted) and constraints (dash-dotted)
when the adaptive MPC algorithm from [18] is used. At
t = 42, the output exits the uncertainty range defined by
the FPS, which becomes empty at the next step causing the
control algorithm to fail.

3 Problem Statement

We consider a discrete-time LTV system with nu inputs
and ny outputs. The system at each time step t ∈ Z is
known to be asymptotically stable, but the exact dynam-
ics and the way they change over time are not known pre-
cisely. We denote the vector of control inputs by u(t) =
[u1(t), . . . , unu

(t)]T , where ui(t) ∈ R, i = 1, . . . , nu are
the individual plant inputs and T stands for the matrix
transpose operator. Similarly, we denote the vector of
plant outputs by y(t) = [y1(t), . . . , yny

(t)]T . We consider
a family of models for this system, whose equations read:

yj(t) = HT
j (t)ϕ(t) + dj(t), j = 1, . . . , ny. (1)

In (1), the vector d(t) = [d1(t), . . . , dny
(t)]T accounts for

exogenous additive disturbances and the effects of ne-
glected dynamics on the outputs (e.g. due to truncation
of the IIR of the system, see Remark 3.1). ϕ(t) ∈ Rm

is a regressor vector with m elements, that evolves over
time according to the following linear model:

ϕ(t+ 1) = Fϕ(t) +Gu(t), (2)

where matrices F ∈ Rm×m and G ∈ Rm×nu depend on
the chosen model parametrization. For example, when
nu = 1 and a Finite Impulse Response (FIR) plant model
is used, F and G have the following structure:

F =


0 0 . . . 0 0

1 0 . . . 0 0

...
...

. . .
...

...

0 0 . . . 1 0

 , G =


1

0

...

0

 . (3)

For the case nu > 1, F and G can be obtained by block
diagonalizing the matrices in (3). Moreover, suitable F
and G matrices can be derived for Laguerre [20], Kautz
[21] or generalized basis functions [6] parameterizations.
Each of the vectorsHj(t) ∈ Rm in (1) contains the model
parameters that describe the influence of ϕ to the plant
output j at time step t. Defining the matrix H(t) ∈
Rny×m as H(t)

.
=
[
H1(t), . . . ,Hny (t)

]T
, we have:

y(t) = H(t)ϕ(t) + d(t). (4)

The output measurement available for feedback con-
trol is corrupted by noise. In particular, the vector of
measured plant outputs ỹ(t) is given by ỹ(t) = y(t) +
v(t), where v(t) = [v1(t), . . . , vny (t)]T and vj(t), j =
1, . . . , ny are the individual measurement noise terms
that affect each of the plant outputs.

Assumption 1 (Prior assumption on disturbance and
noise) d and v are bounded as:

|dj(t)| ≤ εdj

|vj(t)| ≤ εvj

, ∀t ∈ Z, ∀j = 1, . . . , ny, (5)

where εdj
and εvj are positive scalars.

We further assume that the rate of change of the plant
parameters, indicated as ∆H(t)doteqH(t)−H(t− 1), is
limited.

Assumption 2 (Bounds on parameter rate of change)

∆H(t) ∈
{
M ∈ Rny×m : Kj Mj ≤ lj , j = 1, . . . , ny

}
,∀t ∈ Z,
(6)

where Kj ∈ Rn∆j
×m and lj ∈ Rn∆j , j = 1, . . . , ny are

chosen matrices and vectors defining n∆j linear inequal-
ities, forming a bounded set.
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Assumption 3 (Bounds on parameter values) The
plant model parameters belong to the following set at all
times: H(t) ∈ Ω,∀t ∈ Z, with

Ω
.
=
{
H∈Rny×m :Aj0Hj ≤ bj0, j = 1, . . . , ny

}
, (7)

where the inequalities in (7) should be interpreted as
element-wise, and each matrix Aj0 ∈ Rrj0×m and vector
bj0 ∈ Rrj0 define a polytope with rj0 faces.

The control objective is to track a given output reference
and reject disturbances over a possibly very long time
horizon T (T � m), while enforcing affine input and
output constraints:

min
u(0),...,u(T )

T∑
t=0

(y(t)− ydes(t))
T
Q (y(t)− ydes(t))

+ u(t)TSu(t) + ∆u(t)TR∆u(t)

(8a)

Subject to, ∀t ∈ [0, T ]

Cuu(t) ≤ gu

C∆u∆u(t) ≤ g∆u

Cyy(t) ≤ gy

(8b)

where ydes(t) ∈ Rny is the desired output reference,Q, S
and R are positive semi-definite weighting matrices of
suitable dimensions selected by the control designer, and
∆u(t) = u(t)− u(t− 1) is the rate of change of the con-
trol input. The element-wise inequalities in (8b) define
a number nu, n∆u and ny of linear constraints on the in-
puts, input rates, and outputs, respectively. We assume
that the set defining the constraints on ∆u(t) contains
the origin, and that the constraint set on u(t) is compact.

Remark 3.1 The considered settings and assumptions
hold in a large variety of practical problems. In fact, un-
der the assumption of asymptotic stability, one can embed
the effects of truncating an IIR model in the additive dis-
turbance acting on the output of the resulting FIR model.
In this way, the considered model class can describe the
dynamic behavior of any asymptotically stable linear sys-
tem. Boundedness of the modeling error due to trunca-
tion is guaranteed by the bounds on the input and the de-
cay rate of the impulse response. Regarding Assumptions
2 and 3, these are reasonable in practice, when physical
insight and prior information on the plant are available.
For an example of how to construct the set Ω for a re-
alistic problem of building climate control, the interested
reader is referred to [19]. A typical approach in case of
FIR structure entails computing or assuming maximum
and minimum values of each FIR coefficient and of its
rate of change, in order to build the polytopes in (6)-(7).
Note that the set Ω needs not to be tight, and it can be
set to be very large, such that a large number of mod-
els is covered. In fact, this set is instrumental to guar-
antee recursive feasibility and does not affect much the

performance. The collected input-output data will pro-
vide much tighter parameter bounds, which are adapted
in real-time, than the fixed set Ω. Similarly, the bounds
on the parameters’ change between two time steps and
on the signals d(t) and v(t) need not to be known pre-
cisely: an over-approximation does not impair our theo-
retical guarantees. However, assuming too large bounds
can lead to excessively cautious control and performance
degradation. In principle these bounds can be estimated
on-line as well: this is a subject of future research.

4 Adaptive control algorithm and its properties

The optimization problem (8) is generally intractable.
As a feasible approximate solution, we propose the use of
a receding horizon control policy that relies on two steps:
1) a recursive set membership identification that tracks
the FPSs, and 2) a model predictive controller that ex-
ploits the model set to robustly enforce constraints while
optimizing the plant behavior.

We now describe in detail these two main steps.

4.1 Recursive set membership identification algorithm

Under the working assumptions, each new measurement
collected from the plant at time step t delimits a set
to which the parameter matrix H(t) is guaranteed to
belong:

St(t) =

{
H ∈ Rny×m :

∣∣HT
j ϕ(t)− ỹj(t)

∣∣ ≤ εdj + εvj ,

j = 1, . . . , ny

}
(9)

where Si(j) denotes the set that is defined by the re-
gressor and output measurement vectors at time step i,
i.e. ϕ(i) and ỹ(i), and that is guaranteed to contain the
model parameter matrix H(j) at time step j. Geomet-
rically, the set St(t) is formed by 2ny linear inequalities
defined by the regressor ϕ(t) and the output measure-
ments ỹj(t), j = 1, . . . , ny collected at time t. In addi-
tion, we note that the relation between the model pa-
rameter matrix at time step t, H(t), and the regressor
and plant output vectors at time step t− 1, i.e. ϕ(t− 1)
and y(t−1), can be expressed by the following equation:

y(t− 1) = H(t)ϕ(t− 1) + d(t− 1) + ϑ(t− 1), (10)

where ϑ(t− 1) ∈ Rny , ϑ(t− 1) = [ϑ1(t− 1), . . . , ϑny
(t−

1)]T , and ϑj(t − 1) ∈ R, j = 1, . . . , ny are the contribu-
tions of the unmodeled dynamics to the individual plant
outputs. These terms are present because the parameter
matrix H(t) is used in (10) instead of H(t− 1) in order
to relate the regressor ϕ(t− 1) to the output y(t− 1):

ϑ(t− 1)
.
= (H(t− 1)−H(t))ϕ(t− 1). (11)

4



From Assumption 2, it follows that the signal ϑ(t− 1) is
bounded by:

ϑj(t− 1) ≤ ϑj(t− 1) ≤ ϑj(t− 1), j = 1, . . . , ny, (12)

where the bounds ϑj(t − 1) ∈ R and ϑj(t − 1) ∈ R,
j = 1, . . . , ny are the solution to the following two linear
programs (LPs):

ϑj(t− 1)
.
= min

x∈Rm
ϕT (t− 1)x

ϑj(t− 1)
.
= max

x
ϕT (t− 1)x

Subject to:

Kjx ≤ lj .

(13)

Based on these definitions, the set Sk(t) is formed on the
basis of the regressor and output measured at time step
k ≤ t, i.e. ϕ(k) and ỹ(k), as:

Sk(t)=


H ∈ Rny×m :

−εdj
−εvj +(t−k)ϑj(k) ≤ HT

j ϕ(k)−ỹj(k),

HT
j ϕ(k)−ỹj(k) ≤ εdj +εvj +(t−k)ϑj(k),

j = 1, . . . ny


.

(14)
This set is guaranteed to contain the matrix of true sys-
tem parameters at time step t, H(t). Based on (14) and
Assumptions 1-3, we can now define the FPS at time step
t, denoted by F(t), as the one containing all parameter
matricesH(t) consistent with the prior assumptions and
the output measurements collected up to time step t:

F(t)
.
= Ω ∩

 ⋂
k=1,...,t

Sk(t)

 . (15)

F(t) is defined by polytopic constraints on the rows
of the model parameter matrix H(t). Thus, it can be
uniquely described by a set of matrices and vectors:

F(t) =
{
H ∈ Rny×m : Aj(t)Hj ≤ bj(t)

}
, (16)

where each of the matrices and vectorsAj(t) ∈ Rrj(t)×m,

bj(t) ∈ Rrj(t), j = 1, . . . , ny define rj(t) linear inequal-
ities. Tools to compute automatically Aj(t) and bj(t)
are available, see e.g. [9]. Note that, as time progresses,
the bounds contributed by older data (i.e. the sets Sk(t)
with k � t) grow larger and larger, i.e. they naturally
become loose.
To use the defined FPS F(t) for on-line control compu-
tation, a recursive update approach is needed. To this
end, we note that the matrix Aj(t) can be derived from
Aj(t − 1), j = 1, . . . , ny by appending two rows formed
by the regressor vector at time step t, ϕ(t) and that the

vector bj(t) can be formed from bj(t− 1), j = 1, . . . , ny,
by first adding the terms that should account for the
possible change of the plant model with respect to the
previous time step, and then by appending two new el-
ements that define the constraints related to the newly
collected output measurement ỹj(t), j = 1, . . . , ny:

Aj(t)=


Aj(t−1)

−ϕT (t)

ϕT (t)

 , bj(t)=


bj(t−1)+∆bj(t−1)

−ỹj(t)+εdj +εvj

ỹj(t)+εdj
+εvj

.
(17)

In (17) the vectors ∆bj(t − 1) ∈ Rrj(t−1), j = 1, . . . , ny

contain the bounds on the output perturbation induced
by all the possible changes of the model dynamics from
one time step to the next:

∆bj(t−1)=
[
0rjo ,−ϑj(0), ϑj(0), . . . ,−ϑj(t−1), ϑj(t−1)

]T
(18)

with 0rjo ∈ Rrj0 denoting a vector of rjo zeros.

Using the recursive equation (17) would result, in gen-
eral, in a growth of the dimensions rj(t), j = 1, . . . , ny

by two with each new output measurement. In this way,
storing the matrices Aj(t) and vectors bj(t) over time
would become intractable. Therefore, in order to have
a tractable recursive identification algorithm, we keep
track of the constraints generated by the most recent M
measurements, where M is an even number and a design
parameter. In this way the dimensions of the matrices
Aj(t) and the vectors bj(t) remain bounded over time,
such that rj(t) ≤ r0j + M,∀j = 1, . . . , ny,∀t. The pa-
rameter M should be selected such that a good trade-off
between conservativeness and computational complex-
ity is reached.
Based on the elements introduced so far, Algorithm 1
summarizes the proposed recursive SM identification al-
gorithm.

Algorithm 1 Recursive update the Feasible Parameter
Set

1) At t = 0, for j = 1, . . . , ny, set Aj(0) = Aj0, bj(0) =
bj0;

2) At t > 0, calculate the regressor vector ϕ(t) according
to (2) and take the measurement vector ỹ(t);

3) For j = 1, . . . , ny, calculate ϑj(t) and ϑj(t) as in (13);
4) For j = 1, . . . , ny update Aj(t), bj(t) as in (17);
5) For j = 1, . . . , ny, if rj(t) > rj0 +M , remove rows n.

rj0 + 1 (and if needed rj0 + 2) from Aj(t) and bj(t),
such that after removal it holds rj(t) ≤ rj0 +M ;

6) Set t = t+ 1, go to 2).

From the derived FPS, we compute a nominal model of
the plant at each time step. This is given by a matrix
Hc(t) ∈ Rny×m, Hc = [Hc,1, . . . Hc,ny ]T , where the vec-
tors Hc,j(t) ∈ Rm, j = 1, . . . , ny are calculated by solv-
ing an LP that aims to find the point inside the FPS
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closest to the nominal model in the previous time step
(i.e. Hc(t− 1)):

min
Hc,j(t),j=1,...,ny

ny∑
j=1

‖Hc,j(t− 1)−Hc,j(t)‖1

Subject to:

Aj(t)Hcj(t) ≤ bj(t), ∀j = 1, . . . , ny.

(19)

The matrix Hc(0) can be initialized as an arbitrary
nonzero element inside the set Ω.

4.2 Finite horizon optimal control problem

Let u(k|t), k ∈ [t, t + N − 1], N ≥ m, be candidate
future control moves, where the notation k|t indicates
the prediction at step k ≥ t given the information at
the current step t. For brevity, we collect these decision
variables in vector U

.
= [u(t|t)T . . . u(t + N − 1|t)T ]T .

We also define the vectors of future input increments
∆u(k|t), k ∈ [t, t+N − 1] as:

∆u(k|t)=

{
u(t|t)−u(t− 1) if k = t

u(k|t)−u(k−1|t) if t+1 ≤ k ≤ t+N−1.

Moreover, we define the future regressor vectors ϕ(k|t) ∈
Rm, k ∈ [t+ 1, t+N ] as:

ϕ(k|t)=

{
Fϕ(t)+Gu(t|t) if k = t+ 1

Fϕ(k−1|t)+Gu(k−1|t) if t+2≤k≤ t+N.
(20)

Finally, we define the current prediction error d̂(t) ∈ Rny

as:
d̂(t)

.
= ỹ(t)−Hc(t)ϕ(t). (21)

Then, we consider the following cost function:

J(U, ỹ(t), ϕ(t))
.
=

t+N−1∑
k=t

(ŷ(k+1|t)−ydes(k+1|t))T Q(ŷ(k+1|t)

−ydes(k+1|t))+u(k|t)TSu(k|t) + ∆u(k|t)TR∆u(k|t),
(22)

where ŷ(k + 1|t) = Hc(t)ϕ(k + 1|t) + d̂(t). In (22),
ỹ(t) and ϕ(t) are known parameters and ydes(k|t), k ∈
[t+1, t+N ], are the predicted values of the desired out-
put. Note that, if the nominal model of the plant Hc(t)
were equal to the real plant, which would not change
in the considered time horizon, the measurement noise
v(t) were zero, and the output disturbance d(t) were
constant, for N = T , minimizing the cost function (22)
would be equivalent to minimizing the cost function of
the control objective (8).
Satisfaction of input constraints can be enforced by the

following set of inequalities:

Cuu(k|t) ≤ gu
C∆u∆u(k|t) ≤ g∆u

∀k ∈ [t, t+N − 1]. (23)

To define the output constraints considered in our MPC
design, we first introduce the notion of predicted FPSs,
denoted by F(k|t), k ∈ [t+1, t+N ]. These sets are com-
puted by propagating the FPS F(t) in the future, con-
sidering the bounds on the rate of change of the param-
eters. This is done by using the recursive identification
Algorithm 1 at each predicted time step, but without
considering any future output measurements, which are
unknown at the current time:

F(k|t) =
{
H ∈ Rny×m : Aj(k|t)Hj ≤ bj(k|t)

}
. (24)

The predicted matrices Aj(k|t) and the vectors bj(k|t),
for k ∈ [t+ 1, t+N − 1] and j = 1, . . . , ny are initialized
as Aj(t|t) = Aj(t), bj(t|t) = bj(t) and computed by the
recursion:

A(k+1|t)=



A(k|t) if rj(k|t)≤M ′



aj1(k|t)
...

ajrj0(k|t)
ajrj0+3(k|t)

...

ajrj(t)(k|t)


otherwise,

(25)

b(k+1|t)=



b(k|t)+



0rjo

−ϑj

(
t− rj(t)−rj0

2

)
ϑj

(
t− rj(t)−rj0

2

)
...

−ϑj(t)

ϑj(t)


if rj(k|t)≤M ′



bj1(k|t)
...

bjrj0(k|t)
bjrj0+3(k|t)− ϑj

(
k− rj(t)−rj0

2

)
bjrj0+4(k|t) + ϑj

(
k− rj(t)−rj0

2

)
...

bjrj(t)−1(k|t)− ϑj(t)

bjrj(t)(k|t) + ϑj(t)


otherwise,

(26)
where aji(k|t) and bji(k|t) denote the ith row of the ma-
trixAj(k|t) and the vector bj(k|t) respectively, rj(k|t) =
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rj(t)+2(k−t) represents the predicted dimension of the
matrices Aj(k) and the vectors bj(k) that would be ob-
tained by using Algorithm 1 if no rows would be removed
(i.e. if the dimension of the matrices and vectors would
be allowed to grow without limit in the future). Finally,
the terminal predicted FPS, F(t+N |t), is equal to the
set Ω, to which the model parameters are guaranteed to
belong at all times.

Remark 4.1 The choice F(t + N |t) = Ω in princi-
ple introduces additional conservativeness, since the set
F(t+N |t) could be calculated from the set F(t+N−1|t)
in the same way as for the setsF(k|t), k ∈ [t+1, t+N−1],
and in general such a set would be tighter than the set Ω.
However, this approach enables recursive feasibility and
robust constraint satisfaction (see Theorem 4.1 later on).
Moreover, the impact on the performance is rather small
if a long enough prediction horizon is used, as we show
in the numerical example of Section 5.

Robust satisfaction of the output constraints is guaran-
teed by enforcing them for all the parameters inside the
predicted FPSs F(k|t), k ∈ [t+ 1, t+N ] and for all dis-
turbance realizations:

CyHϕ(k|t)+d ≤ gy, ∀H∈F(k|t), ∀k ∈ [t+1, t+N ], (27)

where d = [d1, . . . , dno ]T , and dl ∈ R, l = 1, . . . , no are
given as:

dl =

ny∑
j=1

|clj |εdj ,

where clj stands for the element of the lth row and jth

column of the matrix Cy. Constraints (27) can be refor-
mulated into a set of linear equality and inequality con-
straints by using Lemma 3.2 from [18].
To guarantee recursive feasibility, we finally introduce
an additional generalized terminal equality constraint,
as done e.g. in [7]:

ϕ(t+N |t) = Fϕ(t+N |t) +Gu(t+N − 1|t). (28)

This means that we require the terminal regressor to
correspond to a steady state for the considered model
structure. Combined with (27), this guarantees robust
output constraint satisfaction on an infinite horizon.
For fixed values of N , Q, S and R, we can now define
the finite horizon optimal control problem (FHOCP) to
be solved at each time step t:

min
U,Λ

J(U, ỹ(t), ϕ(t))

Subject to: (23), (27), (28),
(29)

which (by using Lemma 3.2 from [18]) can be converted
into a quadratic program (QP). The number of decision
variables and constrains of this QP depends on the cho-
sen prediction horizon N and the dimension of matri-

ces and vectors that define the FPS F(t). Its computa-
tional complexity can be decreased by reducing the tun-
ing parameter M , which bounds the dimension of ma-
trices Aj(t) and the vectors bj(t), j = 1, . . . , ny, at the
cost of higher conservativeness.

4.3 Properties of the proposed adaptive control algo-
rithm

The described approach guarantees recursive feasibility
and robust satisfaction of both input and output con-
straints. We first state two results that are instrumental
to prove the main one. All the proofs are included in the
Appendix.

Lemma 4.1 Let Assumptions 1-3 hold. Then, the fea-
sible parameter set F(t) obtained by using the recursive
Algorithm 1 is guaranteed to contain the true model pa-
rameter matrix at each time step, i.e. F(t) 6= ∅ and
H(t) ∈ F(t),∀t ≥ 0.

Lemma 4.2 Let Assumptions 1-3 hold. Then, when Al-
gorithm 1 is used, at each time step t, it holds thatF(k|t+
1) ⊆ F(k|t), k ∈ [t+ 2, t+N ].

We now state the main result related to recursive feasi-
bility of the finite horizon optimal control problem and
robust constraint satisfaction.

Theorem 4.1 Let Assumptions 1-3 hold, and assume
that the problem (29) is feasible at time t = 0. Then
the problem (29) is recursively feasible and the closed-
loop system obtained by applying the proposed adaptive
algorithm is guaranteed to satisfy input and output con-
straints ∀t ≥ 0.

Remark 4.2 With respect to our previous contribution
[18], the key technical additions that allow us to guar-
antee recursive feasibility (hence robust constraint satis-
faction) also in the LTV case are: 1) the inflation of the
FPS both with respect to past data (see (14)) and future
time (see (25)-(26); and 2) the use of robust output con-
straints at the end of the prediction horizon with respect
to the whole set Ω. Both these measures generally increase
the conservativeness of the adaptive MPC algorithm, this
is the price to pay to obtain guaranteed properties. As
mentioned (see Remark 4.1), such conservativeness can
be mitigated by increasing the prediction horizon N . In
this way, the presence of the terminal constraint does not
have a large impact on the performance at the beginning
of the prediction horizon, which is the part that impacts
the close-loop behavior. Finally, one can show that if the
nominal model parameters do not change over a given
time period, then during such an interval the approach
exhibits integral action. The result is omitted since it is
a minor modification of Lemma 4.1 in [18].

Remark 4.3 It is interesting to compare our approach
with MPC techniques for Linear Parameter-Varying
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(LPV) systems. In LPV-MPC, the system is known a
priori, meaning that for a given value of the schedul-
ing parameter the dynamics are known. The scheduling
parameter might be measured or not. In the first (most
frequent) case (see e.g. [5]), the past and current sys-
tem dynamics are known, and the predictions need to
account for changes in the scheduling parameter, which
results in a change of the system dynamics. In the sec-
ond case, the past and current dynamics are not exactly
known and one would need to estimate the scheduling
parameter. Differently from either setup, in our work we
assume that the time-varying dynamics are not known.
Our setup is equivalent to an LPV one with unmeasured
scheduling parameters, where all the coefficients of the
system matrices are time-varying parameters that need
to be estimated from data. Moreover, we employ a robust
approach, meaning that we estimate on-line not only a
nominal value of the parameters, but also all possible
system parameters consistent with the measured data,
and we robustify the design against such uncertainty.

5 Simulation results - motivating example re-
visited

To illustrate its effectiveness, we apply the new approach
to the example of Section 2. We take the set Ω as in
Fig. 1. We use a FIR model structure with m = 24 and
assume the bounds on ∆H(t) shown in Fig. 4. The ac-
tual values of ∆H(t) during the simulation are presented
in Fig. 4 as well, showing that it is not required that
the assumed bounds are tight or known exactly. We set
the MPC prediction horizon to 30. Fig. 5 shows the ob-
tained results when the proposed algorithm is used. As
it can be seen, the new approach copes with the change
of the actual plant parameters, satisfying robustly the
constraints, and the actual plant output is always in-
side the estimated uncertainty bounds, meaning that the
true plant parameters are inside the FPS despite their
time varying nature. Very good tracking performance
are achieved, too. Regarding this aspect, we also evalu-
ated the effect of the robust terminal constraint on the
conservativeness of the control algorithm (see Remark
4.2), by repeating the simulation without such a con-
straint. In cases when the optimal control problem was
not feasible, we applied the last calculated control in-
put. During the simulation there were actually 4 time
steps in which infeasibility occurred. On the other hand,
the obtained control performance was extremely similar,
with just a 3% reduction of the mean square tracking
error with respect to the one obtained in presence of the
terminal constraint. Another simulation study, consid-
ering a multivariable three-tank system, is available in
[17], showing the advantages with respect to an adap-
tive MPC approach that relies on a certainty equivalence
model identification strategy.

Fig. 4. Bounds on the rate of change of the impulse response
coefficients (solid line) and actual values of ∆H(t) during
the simulation (circles).
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Fig. 5. Plant output (thick black line), reference (dashed
line), uncertainty bounds (dotted lines) and constraints
(dash-dotted lines) with the proposed adaptive MPC algo-
rithm.

6 Conclusion

We described an adaptive MPC algorithm for asymp-
totically stable, constrained LTV systems with multiple
inputs and outputs. The technique relies on a novel re-
cursive SM identification approach to keep track of the
set of all possible model parameters that are consistent
with data and with the prior assumptions. The recursive
update of such a set accounts for the time-varying nature
of the system through assumed (not necessarily tight)
bounds on the parameters’ rate of change. The MPC
design guarantees recursive feasibility and robust satis-
faction of output constraints. A simulation study shows
that the new algorithm removes a fundamental limita-
tion of a previously proposed adaptive MPC approach.
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A Main proofs

Proof of Lemma 4.1. We use induction to prove the claim
of the Lemma. At time step t = 0, from the step 1)
of Algorithm 1, it holds that F(0) = Ω and from As-
sumption 3, it then follows that F(0) 6= ∅ and that
H(0) ∈ F(0). Let us now, for the sake of the inductive
argument, assume that at some time step t ≥ 0, it holds
that H(t) ∈ F(t). We shall show, that it than follows
that H(t+ 1) ∈ F(t+ 1). To this end, we define matri-
ces A′j(t) ∈ Rrj0×m, A′′j (t) ∈ R(rj(t)−rj0)×m and vectors

b′j(t) ∈ Rrj0 , b′′j (t) ∈ Rrj(t)−rj0 , j = 1, . . . , ny, as:

b′(t) =


bj1

...

bjrj0

 , b′′(t) =


bjrj0+1

...

bjrj(t)

 , A′j(t)=


aj1

...

ajrj0

 ,

A′′j (t)=


ajrj0+1

...

ajrj(t)

=



−ϕT
(
t− rj(t)−rj0

2

)
ϕT
(
t− rj(t)−rj0

2

)
...

−ϕT (t)

ϕT (t)


.

Note that Aj(t) =

[
A′j(t)

A′′j (t)

]
and bj(t) =

[
b′j(t)

b′′j (t)

]
. From

Assumption 3, it holds that:

A′j(t)Hj(t+ 1) ≤ b′j(t), j = 1, . . . , ny. (A.1)

In addition, we note that from the inductive assump-
tions, it holds that A′′j (t)Hj(t) ≤ b′′j (t), j = 1, . . . , ny.
Therefore, it than also holds that:

A′′j (t)Hj(t+ 1) ≤ b′′j (t) + ej(t)

where ej(t) ∈ Rrj(t)−rj0 , ej(t)=A′′j (t) (Hj(t+1)−Hj(t)),
j = 1, . . . , ny. From the definition of A′′j (t) (note that
this matrix is exclusively formed from the past regressor
vectors), and the definition of ϑ(t) and ϑ(t) in (13), we
note that the vectors ej(t), j = 1, . . . , ny are bounded
such that it holds ej(t) ≤ ej , where:

ej=

[
−ϑ
(
t− rj(t)−rj0

2

)
,ϑ

(
t− rj(t)−rj0

2

)
,. . .,−ϑ(t), ϑ(t)

]T
Therefore, it holds that:

A′′j (t)Hj(t+ 1) ≤ b′′j (t+ 1) + ej , j = 1, . . . , ny. (A.2)

Moreover, from Assumption 1, it holds that the following
two inequalities have to be satisfied:

−ϕ(t+1)Hj(t+1)≤−ỹj(t+1)+εdj
+εvj

−ϕ(t+1)Hj(t+1)≤ ỹj(t+1)+εdj
+εvj

, j=1, . . . , ny.

(A.3)
Based on (A.1), (A.2) and (A.3), it holds that:

A†j(t+ 1)Hj(t+ 1) ≤ b†j(t+ 1), j = 1, . . . , ny,

where

A†j(t+1)=


A′j(t)

A′′j (t)

−ϕ(t+1)

ϕ(t+1)

 , b†j(t+1)=


b′j(t)

b′′j (t+1) + ej

−ỹj(t+1) + εdj
+εvj

ỹj(t+1)+εdj +εvj


are the matrices that would be obtained after running
the step 4) of Algorithm 1 at time t + 1 (i.e. before re-
moving any rows from the matrices and vectors in order
to keep their dimensions bounded). Therefore, the set

F†(t+ 1) =
{
H ∈ Rny×m : A†j(t+ 1)Hj ≤ b†j(t+ 1)

}
is

a nonempty set that is guaranteed to contain H(t+ 1),
i.e. H(t + 1) ∈ F†(t + 1). Set F†(t + 1) represents
the updated feasible parameter set before possible re-
moval of any inequalities in order to bound the com-
plexity of its description. The set F(t + 1) is obtained
by either taking the set F†(t + 1) as it is (i.e. when
rj(t) ≤M + rj0,∀j = 1, . . . , ny), or by removing several
inequalities that constitute it (see step 5) of Algorithm
1). Therefore it holds that F†(t + 1) ⊆ F(t + 1), and
hence it holds thatH(t+1) ∈ F(t+1), which means that
F(t + 1) 6= ∅. By invoking the argument of mathemat-
ical induction, it then holds that H(t) ∈ F(t),∀t ≥ 0,
which completes the proof. �

Proof of Lemma 4.2. We first note that, from the defini-
tion of F(t + 1|t) (see (24),(25) and (26)), and the way
Algorithm 1 works, it holds that:

Aj(t+1)=


Aj(t+1|t)
−ϕ(t+ 1)

ϕ(t+ 1)

 , bj(t+1)=


bj(t+1|t)

−ỹj(t+1) + εdj
+εvj

ỹj(t+1)+εdj +εvj

.

MatricesAj(k|t+1) and vectors bj(k|t+1), j = 1, . . . , ny

are then, by construction, formed from the matrices
Aj(t + 1) and bj(t + 1). Therefore we have that, for
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j = 1, . . . , ny and k ∈ [t+ 2, t+N ], it holds that:

Aj(k|t+1) =


Aj(k|t)
−ϕ(t+1)

ϕ(t+1)

 ,

bj(k|t+1) =


bj(k|t)

−ỹj(t+1)+εdj
+εvj

ỹj(t+1)+εdj +εvj .


As it holds that

F(k|t) =
{
H ∈ Rny×m : Aj(k|t)Hj ≤ bj(k|t)

}
,

and

F(k|t+1) =
{
H ∈ Rny×m : Aj(k|t+1)Hj ≤ bj(k|t+1)

}
,

∀k ∈ [t+ 2, t+N − 1],

it holds that each of the sets F(k|t+1), k ∈ [t+1, t+N−
1] is formed by the same inequalities as the set F(k|t)
and that it has two additional inequalities defined by the
regressor vector and output measurement at time step
t + 1. Therefore, it holds that F(k|t + 1) ⊆ F(k|t), k ∈
[t+2, t+N−1]. In addition, we note thatF(t+N |t) = Ω
and that for j = 1, . . . , ny, it holds that:

Aj(t+N |t+ 1) =

[
Aj0

A′j

]
, bj(t+N |t+ 1) =

[
bj0

b′j

]
,

where the matrices A′j and the vectors b′j , j = 1, . . . , ny

are obtained by using the rules for generating the pre-
dicted matrices Aj(k|t) and vectors bj(k|t) in (25) and
(26). Therefore, from the definition of F(t + N |t + 1)
(see e.g. (24)) and the definition of the set Ω in (7),
it holds that F(t + N |t + 1) ⊆ F(t + N |t). Hence, it
holds that F(k|t+ 1) ⊆ F(k|t), k ∈ [t+ 2, t+N ], which
completes the proof. �

Proof of Theorem 4.1. We first show that the FHOCP
(29) is recursively feasible. To this end, we use induc-
tion. The problem (29) is feasible for t = 0 by assump-
tion. Let us assume that the problem (29) is feasible
at a generic time step t and let the optimal control se-
quence be U∗(t) = [u∗(t|t), . . . , u∗(t + N − 1|t)], and
its corresponding sequence of predicted regressor vec-
tors be ϕ∗(k|t), k = t + 1, . . . , t + N . Then, a possi-
ble feasible control sequence at t + 1 is U(t + 1) =
[u∗(t+1|t), . . . , u∗(t+N−1|t), u∗(t+N−1|t)]. This se-
quence satisfies constraints (23) and (28). In addition, we
note that the predicted regressor vectors ϕ(k|t+1), k =
t + 2, . . . , t + N + 1 that correspond to the input se-
quence U(t + 1), by construction satisfy the equalities
ϕ(k|t+ 1) = ϕ∗(k|t), for k ∈ [t+ 2, t+N ] and that from

(28) it follows that ϕ(t + N + 1|t + 1) = ϕ∗(t + N |t).
Moreover, we note that from Lemma 4.2, it holds that
F(k|t+ 1) ⊆ F(k|t),∀k ∈ [t+ 1, t+N ]. In addition, we
note that F(t+N+1|t+1) = F(t+N |t) = Ω. Based on
this, the sequence of inputs U(t+ 1) satisfies the output
constraints (27), and hence the FHOCP (29) has a feasi-
ble solution. Repeating this argumentation for all t > 0,
it can be concluded that the FHOCP (29) remains fea-
sible ∀t > 0. From this and Lemma 4.1, the other claim
of the Theorem follows directly. �
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