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Abstract

In this paper, the use of Set Membership (SM) methodologies is investigated in the approximation of Model Predictive Control (MPC)
laws for linear systems. Such approximated MPC laws are derived from a finite number ν of exact control moves computed off-line.
Properties in terms of guaranteed approximation error, closed-loop stability and performance are derived assuming only the continuity
of the exact predictive control law. These results are achieved by means of two main contributions. At first, it will be shown that if
the approximating function enjoys two key properties (i.e. fulfillment of input constraints and explicit evaluation of a bound on the
approximation error, which converges to zero as ν increases), then it is possible to guarantee the boundedness of the controlled state
trajectories inside a compact set, their convergency to an arbitrary small neighborhood of the origin, and satisfaction of state constraints.
Moreover, the guaranteed performance degradation, in terms of maximum state trajectory distance, can be explicitly computed and reduced
to an arbitrary small value, by increasing ν. Then, two SM approximations are investigated, both enjoying the above key properties. The
first one minimizes the guaranteed approximation error, but its on-line computational time increases with ν. The second one has higher
approximation error, but lower on-line computational time which is constant with ν when the off-line computed moves are suitably chosen.
The presented approximation techniques can be systematically employed to obtain an efficient MPC implementation for “fast” processes.
The effectiveness of the proposed techniques is tested on two numerical examples.
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1 Introduction

Model Predictive Control (MPC) (see e.g. the survey of
Mayne et al., 2000) is a model based control technique where
the control action is computed by means of a receding hori-
zon strategy, which requires at each sampling time the solu-
tion of an optimization problem. For time invariant systems,
it results that the input u is a nonlinear static function of the
system state x, i.e. ut = f0(xt). The receding horizon strat-
egy leads to strong limitations in using MPC techniques in
the presence of fast plant dynamics which require small sam-
pling periods that do not allow to perform the optimization
problem on-line. In order to use MPC in a larger range of
applications, a significant research effort has been devoted
in recent years to the problem of efficient implementation
of MPC laws. One line of research is the development of
more efficient techniques to solve the optimization problem
on-line (see e.g. Diehl and Björnberg, 2004; Alamir, 2006).
A second line of research is to investigate the derivation of
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explicit expression of f0 to be used for the on-line imple-
mentation. This is the case of MPC for (piecewise) linear
systems with linear constraints and quadratic cost function,
where it has been shown (see Bemporad et al., 2002; Seron
et al., 2003; Borrelli et al., 2005) that f0 is a piecewise
affine (PWA) function defined on a polyhedral partition of
the state space, which can be computed off-line and stored.
However, since the number of such polyhedral regions in-
creases significantly with the state dimension and the con-
trol horizon length, severe limitations may occur in the on-
line computation of the control move, due to the computa-
tional time needed to find the partition the actual state lies
in. Thus, other methodologies for exact explicit MPC have
been introduced: the construction of a binary search tree to
evaluate the PWA control law has been described by Ton-
del et al. (2002), achieving logarithmic computational time
in the number of regions, while Johansen et al. (2002) and
Bemporad and Filippi (2003) developed explicit suboptimal
solutions, with lower numbers of regions.
A third line of research on fast MPC implementation relies
on the on-line evaluation of an approximated control law
f̂ ≈ f0, computed on the basis of a finite number ν of ex-
act control moves, evaluated off-line. Such an approach can
be used also in cases where an explicit expression of f0 is

Preprint submitted to Automatica 5 June 2008

©2008 Elsevier. DOI: 10.1016/j.automatica.2008.06.015 Personal use is permitted, but republication/
redistribution requires Elsevier permission.



not available, as it happens e.g. if nonlinear constraints or
non-quadratic cost functions are considered.
A first contribution along this line was given by Parisini and
Zoppoli (1995), using a neural network approximation of
f0. However, no guaranteed approximation error and con-
straint satisfaction properties were obtained. Moreover, the
non convexity of the functional used in the “learning phase”
of the neural network gives rise to possible deteriorations in
the approximation, due to trapping in local minima.
In Canale and Milanese (2005), a Set Membership (SM) ap-
proximation technique has been proposed in order to over-
come such drawbacks. However, in both Parisini and Zop-
poli (1995) and Canale and Milanese (2005) no analysis has
been carried out on the effects of the approximated control
law on the performance of the closed loop system. Some
results in this direction can be found in Johansen and Gran-
charova (2003) and Bemporad and Filippi (2006), where the
use of PWA approximations of f0 is investigated, using a
state space partition in polyhedral regions whose vertices
are given by ν exact control moves computed off-line. Fea-
sibility of the approximated control law is shown and per-
formance degradation can be estimated in terms of a con-
servative bound on the difference between the optimal cost
function and the one obtained with f̂ . Guaranteed stabil-
ity and regulation properties depend on this bound, which
can be reduced to a desired level of accuracy by increasing
the number of partitions. However, all the obtained proper-
ties rely on the assumption of convexity of the optimal cost
function with respect to the state variables, which may limit
the applicability of such approaches. In fact, as discussed in
Johansen (2004), when such assumption is not met no sys-
tematic procedures can be effectively used to guarantee the
same properties of the convex case. Finally, the number of
partitions may grow significantly with the desired level of
accuracy and with the system dimension, preventing the on-
line implementation with small sampling periods.
In this paper, it is shown how SM methodologies (see e.g.
Milanese and Novara, 2004) allow to systematically approxi-
mate MPC controllers for linear systems. Properties in terms
of guaranteed approximation error, closed-loop stability and
performance will be derived without any convexity assump-
tion on the optimal cost function, but requiring the conti-
nuity of f0 only. In particular, two SM approximations are
proposed. The first one, indicated as fOPT, minimizes the
guaranteed approximation error for a given ν, but its on-line
computational time increases with ν. The second one, indi-
cated as fNP, has higher guaranteed approximation error, but
lower on-line computational time which may be rendered
constant with ν.
The effectiveness of the proposed techniques is tested on
two examples. The first one is related to a double integra-
tor, where the computational time savings with respect to
the explicit MPC solution are shown. The second is a mul-
tivariable system with a nonlinear constraint, for which no
explicit solution is known and the convexity assumption of
the PWA approximation techniques is not met.
The paper is organized as follows. In Section 2 the con-
sidered MPC problem is introduced together with prior as-

sumptions on the nominal control law. Section 3 contains the
main results regarding stability properties and performance
of the approximated controller. Functions fOPT and fNP are
introduced in Section 4, together with their approximation
properties. Section 5 introduces the numerical examples. Fi-
nally, conclusions and further lines of development are re-
ported in Section 6.

2 Model Predictive Control

Consider the following linear state space model:

xt+1 = Axt + But (1)

where xt ∈ Rn and ut ∈ Rm are the system state and
input respectively. Assume that the problem is to regulate
the system state to the origin under some input and state
constraints. By defining the prediction horizon Np and the
control horizon Nc ≤ Np (for simplicity the assumption
Nc = Np = N will be adopted), it is possible to define a
cost function J(U, xt|t, N) of the form

J(U, xt|t, N) =
N−1∑
k=0

L(xt+k|t, ut+k|t) + F (xk+N |k)

which is evaluated on the basis of the predicted state val-
ues xt+k|t, k = 1, . . . , N , obtained using the model (1),
an input sequence U =

[
ut|t, . . . , ut+N−1|t

]
and the “ini-

tial” state xt|t = xt. The per-stage cost function L(·) and
the terminal state cost F (·) are chosen according to the de-
sired performances and are continuous in their arguments
(see Goodwin et al., 2005). The MPC control law is then
obtained according to the receding horizon principle (see
e.g. Mayne et al., 2000; Goodwin et al., 2005) based on the
following optimization problem:

min
U

J(U, xt|t, N) (2a)

subject to

xt+k|t ∈ X, k = 1, . . . , N

ut+k|t ∈ U, k = 0, . . . , N
(2b)

Where the input and state constraints are represented by a
set X ⊆ Rn and a compact set U ⊆ Rm, both containing
the origin in their interiors. As a matter of fact, additional
constraints (e.g. state contraction, terminal set, etc.. . . ) may
be employed in order to ensure stability of the controlled
system. It is assumed that the optimization problem (2) is
feasible over a set F ⊆ Rn which will be referred to as
the “feasibility set”. The application of the receding horizon
procedure gives rise to a nonlinear state feedback control
law:

ut = [ut,1 . . . ut,m]T = [f0
1 (xt) . . . f0

m(xt)]T = f0(xt)

f0 : Rn → Rm, f0
i : Rn → R, i = 1, . . . ,m

2



It is supposed that the control law ut = f0(xt) is such that
the resulting autonomous system

xt+1 = F 0(xt) = Axt + Bf0(xt) (3)

is uniformly asymptotically stable at the origin for any initial
condition x0 ∈ F , i.e. it is stable and

∀ε > 0, ∀δ > 0 ∃T ∈ N s.t.

‖φ0(t + T, x0)‖2 < ε, ∀t ≥ 0, ∀x0 ∈ F : ‖x0‖2 ≤ δ

(4)
where φ0(t, x0) = F 0(F 0(. . . F 0︸ ︷︷ ︸

t times

(x0) . . .)) is the solution

of (3) at time instant t with initial condition x0. Note that,
according to (2b), for any x ∈ F the state and input con-
straints are always satisfied after the first time step. Thus, the
set F ∩ X is positively invariant with respect to system (3):

φ0(t, x0) ∈ F ∩ X, ∀x0 ∈ F ∩ X, ∀t ≥ 0 (5)

Moreover, it is supposed that the function f0 is continuous
over the feasibility set F . Such property depends on the
characteristics of the optimization problem (2), see at this
regard e.g. the recent work of Spjøtvold et al. (2007) and
the references therein.

3 Stability and performance analysis

As already pointed out, an approximating function fSM ≈
f0, derived using SM methodologies, will be used instead
of f0 to reduce the on-line computational effort.

3.1 Problem settings

The approximating function fSM is derived using a finite
number ν of exact solutions of the optimization problem (2):

ũk = [ũk
1 , . . . , ũk

m]T = f0(x̃k), k = 1, . . . , ν

computed off-line by considering initial conditions x̃k ∈
Xν = {x̃k, k = 1, . . . , ν} ⊆ X , being X a compact subset
of F where the approximation of f0 is carried out. The set
Xν is supposed to be chosen such that the Hausdorff distance
dH(X ,Xν) between X and Xν (see e.g. Blagovest (1990))
satisfies

lim
ν→∞

dH(X ,Xν) = 0 (6)

Note that uniform gridding over X fulfills condition (6).
Moreover, it is assumed that the derived approximating func-
tion fSM satisfies the following key properties:

i) the input constraints are always satisfied:

fSM(x) ∈ U, ∀x ∈ X (7)

ii) for a given ν, a bound ζ(ν) on the pointwise approxima-
tion error can be computed:

‖f0(x) − fSM(x)‖2 ≤ ζ(ν) ∈ R+, ∀x ∈ X (8)

such that:
lim

ν→∞
ζ(ν) = 0 (9)

Since X and the image set U of f0 are compact sets, con-
tinuity of f0 implies that its components f0

i , i = 1, . . . ,m
are Lipschitz continuous functions over X , i.e. there exist
finite constants γi, i = 1, . . . ,m such that:

∀x1, x2 ∈ X , ∀i ∈ [1, m], |f0
i (x1) − f0

i (x2)| ≤ γi‖x1 − x2‖2

(10)
Thus, f0 is Lipschitz continuous over X , i.e.:

∀x1, x2 ∈ X , ‖f0(x1) − f0(x2)‖2 ≤ ‖γ‖2 ‖x1 − x2‖2

(11)
where γ = [γ1, . . . , γm]T . Estimates γ̂i, i = 1, . . . ,m of γi

can be derived as follows:

γ̂i = inf
(
γ̃i : ũh

i + γ̃i‖x̃h − x̃k‖2 ≥ ũk
i , ∀k, h = 1, . . . , ν

)
(12)

The next result proves convergence of γ̂i to γi, i = 1, . . . ,m.

Theorem 1

lim
ν→∞

γ̂i = γi, ∀i = 1, . . . ,m

Proof. See the Appendix. 2

Due to the Lipschitz property (11) of control law f0(x),
function F 0(x) defined in (3) is Lipschitz continuous too
over X with Lipschitz constant:

LF = ‖A‖ + ‖γ‖2 ‖B‖ (13)

The use of fSM(x) in place of f0(x) gives rise to the au-
tonomous system:

xSM
t+1 = F SM(xSM

t ) = AxSM
t + BfSM(xSM

t ) (14)

whose state trajectory at time instant t with initial condition
x0 is indicated as φSM(t, x0) = F SM(F SM(. . . F SM︸ ︷︷ ︸

t times

(x0) . . .)).

It is possible to compute an upper bound on the Euclidean
norm of the one-step state trajectory perturbation induced by
the use of control function fSM instead of f0. Considering
any initial state xt ∈ X , such perturbation is computed as:

xSM
t+1 − xt+1 = A(xt − xt) + B(fSM(xt) − f0(xt))

= B(fSM(xt) − f0(xt)) = e(xt)
(15)
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Therefore, the following state equation is obtained:

xSM
t+1 = F 0(xSM

t ) + e(xSM
t ) (16)

Since f0(x) is not known in general, e(x) cannot be explic-
itly computed, but a bound on its Euclidean norm ∀x ∈ X
can be derived from (8) and (15):

‖e(x)‖2 = ‖B(fSM(x) − f0(x))‖2

≤ ‖B‖ ‖fSM(x) − f0(x)‖2 ≤ ‖B‖ ζ(ν) = µ(ν)
(17)

The value of µ(ν) depends on the number ν of exact solu-
tions of (2) considered for the approximation fSM of f0. If
fSM has the property (9), from (17) it follows that:

lim
ν→∞

µ(ν) = 0 (18)

Thus it is always possible to choose a suitable value of ν
which guarantees a given one-step perturbation upper bound
µ(ν).

3.2 Main results

Define the following candidate Lyapunov function V : X → R+

for system (3):

V (x) =
T̂−1∑
j=0

‖φ0(j, x)‖2 ∀x ∈ X (19)

where T̂ ≥ T and T = inf
x∈X

(T ∈ N : ‖φ0(t + T, x)‖2 <

‖x‖2, ∀t ≥ 0). The following inequalities hold:

‖x‖2 ≤ V (x) ≤ sup
x∈X

V (x)
‖x‖2

‖x‖2 = b ‖x‖2, ∀x ∈ X (20)

and

V (F 0(x)) − V (x) = ∆V (x) =

= −‖x‖2 − ‖φ0(T̂ , x)‖2

‖x‖2
‖x‖2 ≤ −K‖x‖2, ∀x ∈ X

(21)

with K = inf
x∈X

‖x‖2 − ‖φ0(T̂ , x)‖2

‖x‖2
, 0 < K < 1. Thus

V (x) is a Lyapunov function for system (3) over X . More-
over, V (x) is Lipschitz continuous with constant

L̃V =
T̂−1∑
j=0

(LF )j (22)

thus the following inequality holds:

∀x ∈ X , ∀e : (F 0(x) + e) ∈ X
V (F 0(x) + e) ≤ V (F 0(x)) + L̃V µ

(23)

Note that the constant L̃V as defined in (22) is not in general
the lowest Lipschitz constant for V (x). A less conservative
estimate L̂V of the actual constant LV can be computed as:

L̂V = inf(L̃V : V (x̃h) + L̃V ‖x̃h − xk‖ ≥ V (xk),

∀xk, xh ∈ Xν)
(24)

Similarly to Theorem 1, it can be shown that lim
ν→∞

L̂V = LV .
In the sequel, the following notations will be used:

B(x, r) = {x̂ ∈ Rn : ‖x̂ − x‖2 ≤ r, }
B(A, r) =

⋃
x∈A

B(x, r), A ⊆ Rn

Theorem 2 Let f SM be an approximation of the exact non-
linear MPC controller f0, defined over the compact set X ,
satisfying properties (7), (8) and (9), computed using a num-
ber ν of exact off-line solutions. Let G ⊂ X be a positively
invariant set with respect to (3), i.e.:

G ⊂ X : φ0(t, x0) ∈ G, ∀x0 ∈ G, ∀t ≥ 0 (25)

Then, it is always possible to explicitly compute a suitable
finite value of ν such that there exist a finite value ∆ ∈ R+

with the following properties:

i) the distance d(t, x0) = ‖φSM(t, x0) − φ0(t, x0)‖ is
bounded by ∆:

d(t, x0) ≤ ∆, ∀x0 ∈ G, ∀t ≥ 0 (26)

ii) ∆ can be explicitly computed as:

∆ = sup
t≥0

min(∆1(t, µ), ∆2(t, µ)) (27)

where:

∆1(t, µ) =
t−1∑
k=0

(LF )kµ (28)

∆2(t, µ) = 2 ηt sup
x0∈G

V (x0) +
b

K
LV µ (29)

with η =
(

1 − K

b

)
, 0 < η < 1.

iii) ∆(ν) converges to 0:

lim
ν→∞

∆(ν) = 0 (30)

iv) the state trajectory of system (14) is kept inside the set
B(G, ∆) for any x0 ∈ G:

φSM(t, x0) ∈ B(G, ∆), ∀x0 ∈ G, ∀t ≥ 0 (31)
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v) the set B(G, ∆) is contained in X

B(G,∆) ⊆ X

vi) the state trajectories of system (14) asymptotically con-
verge to the set B(0, q), i.e.:

lim
t→∞

‖φSM(t, x0)‖2 ≤ q, ∀x0 ∈ G

with
q =

b

K
LV µ ≤ ∆ (32)

Proof. See the Appendix. 2

Remark 1 Note that the set X has to be chosen such that
it contains in its interior a set G satisfying (25). Due to
property (5), if the state constraint set X is bounded and
the feasibility set F is such that X ⊂ F , any set G such
that X ⊆ G ⊂ F is positively invariant with respect to
system (3). Moreover, note that {0} ∈ G, since the origin is
a stable fixed point for the nominal system (3).

Remark 2 If LF < 1 (i.e. F 0 is a contraction operator),
a simplified formulation for bound ∆ is obtained. In fact,
Lyapunov function (19) can be chosen as V (x) = ‖x‖2,
with b = 1 in (20) and K = (1 − LF ) in (21), leading to
LV = 1. Thus the bound ∆2(t, µ) in (29) is computed as:

∆2(t, µ) = 2(LF )t sup
x0∈G

‖x0‖2 +
1

1 − LF
µ

and q in (32) is q =
1

1 − LF
µ. On the other hand the bound

∆1(t, µ) in (28) is such that:

∆1(t, µ) ≤ 1
1 − LF

µ, ∀t ≥ 0

therefore a simpler formulation for ∆ is obtained:

∆ = sup
t≥0

min(∆1(t, µ), ∆2(t, µ)) =
1

1 − LF
µ

Remark 3 A simplified formulation for bound ∆2(t, µ) is
obtained if the MPC problem (2) includes a state contraction
constraint (see e.g. Polak and Yang (1993)):

‖φ0(t, x0)‖2 ≤ σ ‖φ0(t − 1, x0)‖2, 0 < σ < 1

In this case, Lyapunov function (19) can be chosen as
V (x) = ‖x‖2, with b = 1 in (20) and K = (1 − σ) in
(21), leading to LV = 1. Thus the bound ∆2(t, µ) in (29)
is computed as:

∆2(t, µ) = 2σt sup
x0∈G

‖x0‖2 +
1

1 − σ
µ

and q in (32) is q =
1

1 − σ
µ.

The main consequence of Theorem 2 is that, with the proper
value of ν, for any initial condition x0 ∈ G it is guaranteed
that the state trajectory is kept inside the set X and converges
to the set B(0, q), which can be arbitrarily small since q lin-

early depends on µ, i.e. : lim
ν→∞

q =
(

b

K
LV lim

ν→∞
µ(ν)

)
= 0.

Moreover, on the basis of (26) and (30) it can be noted that
for any ε > 0 it is always possible to find a suitable value
of ν such that d(t, x0) < ε, ∀x0 ∈ G, ∀t ≥ 0. Therefore,
for any given required regulation precision q, using (32) it is
possible to compute a priori a sufficient one step perturba-
tion bound µ to guarantee the desired accuracy. Similarly, on
the basis of (26)-(29) a bound µ can be computed a priori,
such that the trajectory distance is lower than any required
maximum value ∆. Then, the approximating function fSM

can be computed with increasing values of ν, until the cor-
responding obtained value of µ is such that µ ≤ µ, thus
guaranteeing the desired performances (i.e. q ≤ q and/or
∆ ≤ ∆). Indeed, as ν → ∞ (i.e. the performances of control
system F SM match with those of F 0), the computation time
of fSM(x) increases in general, as well as memory usage.
Thus, the value of ν can be chosen in order to set a compro-
mise between system performances, computation times and
memory requirements.

Theorem 2 does not address explicitly the problem of state
constraint satisfaction for the controlled system (14), i.e.:

φSM(t, x) ∈ X, ∀x ∈ G, ∀t ≥ 1

However, in consequence of Theorem 2, it is possible to
choose ν such that there exists a finite number T of time
steps after which the state trajectory φSM is kept inside the
constraint set X, for any initial condition x0 ∈ G. Moreover
the value of T decreases as ν increases. In fact, using (26)
it follows that

∀x0 ∈ G, ∀t ≥ 0

‖φSM(t, x0)‖2 ≤ ‖φ0(t, x0)‖2 + ∆(ν)
(33)

Then, considering a value of ν such that:

B(0, ε + ∆(ν)) ⊂ X (34)

with ε > 0 “small” enough, on the basis of the uniform
asymptotic stability assumption (4), it is always possible to
find T < ∞ such that:

‖φ0(t + T , x0)‖2 < ε, ∀x0 ∈ G, ∀t ≥ 0

Using (33) it can be noted that:

‖φSM(t + T , x0)‖2 ≤ ‖φ0(t + T , x0)‖2 + ∆(ν) <

< ε + ∆(ν), ∀x0 ∈ G, ∀t ≥ 0

⇒ φSM(t + T , x0) ∈ B(0, ε + ∆(ν)), ∀x0 ∈ G, ∀t ≥ 0
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and, on the basis of (34):

φSM(t + T , x0) ∈ X, ∀x0 ∈ G, ∀t ≥ 0

thus after a finite number T of time steps there is the guar-
antee that state constraints are satisfied. Note that in general
the higher is ε in (34), the lower is T . Since the maximum
value of ε such that (34) holds is higher as ∆(ν) decreases,
T in general decreases as ∆(ν) does, i.e. as ν increases.

4 SM approximation of predictive controllers

Two different SM approximation techniques are now pro-
posed, both leading to the computation of approximating
functions enjoying the key properties (7), (8) and (9), needed
for Theorem 2 to hold. For the sake of simplicity, the case
of input saturation constraints is considered, i.e.:
U = {u ∈ Rm : ui ≤ ui ≤ ui, i = 1, . . . ,m}.

4.1 “Optimal” approximation

Set Membership approximation methodologies can be em-
ployed to obtain an “optimal” (OPT) approximation fOPT =
[fOPT

1 , . . . , fOPT
m ]T of function f0 with the desired properties

(7), (8) and (9). For each function f0
i , i ∈ [1, m], the aim is

to derive, from the off-line computed values of ũk and x̃k and
from known properties of f0

i , an approximation f̂i of f0
i and

a measure of the approximation error, in term of the Lp(X )

norm, p ∈ [1,∞], defined as ‖fi‖p
.=

[∫
X |fi (x) |pdx

] 1
p ,

p ∈ [1,∞) and ‖fi‖∞
.= ess-sup

x∈X
|fi (x) |. In the following,

it is implicitly meant that any i is considered and notation
“∀i : i = 1, . . . ,m” is omitted for simplicity of reading.
Function f0

i (x) is Lipschitz continuous over X , therefore
f0

i ∈ Aγi , where Aγi is the set of all continuous Lipschitz
functions fi on X , with constants γi, such that ui ≤ fi(x) ≤
ui, ∀x ∈ X . This prior information on function f0

i , com-
bined with the knowledge of the values of the function at
the points x̃k ∈ X , k = 1, . . . , ν, lead to:

f0
i ∈ FFSi = {fi ∈ Aγi : fi(x̃k) = ũk

i , k = 1, . . . , ν}
(35)

where FFSi is named Feasible Functions Set. The aim is to
derive an approximation of f0

i using the information (35).
For given f̂i ≈ f0

i , the related Lp approximation error is
‖f0

i − f̂i‖p. This error cannot be exactly computed, but its
tightest bound is given by:

‖f0
i − f̂i‖p ≤ sup

f̃i∈FSS

‖f̃i − f̂i‖p
.= E(f̂i) (36)

where E(f̂i) is called (guaranteed) approximation error.
A function fOPT

i is called an optimal approximation if:

E(fOPT
i ) = inf

f̂i

E(f̂i)
.= rp,i (37)

The quantity rp,i, called radius of information, gives the
minimal Lp approximation error that can be guaranteed.
It is also of interest to evaluate, for given x ∈ X , the tightest
lower and upper bounds on f0

i (x). They are given as:

f
i
(x) ≤ f0

i (x) ≤ f i (x) ,∀x ∈ X

where: f i (x) = sup
f̃i∈FFSi

f̃i (x)

f
i
(x) = inf

f̃i∈FFSi

f̃i (x)

are called optimal bounds.
The next result gives the solution to the problem of optimal
bounds evaluation.
Theorem 3 The optimal bounds can be computed as:

f i
.= min

[
ui, min

k=1,...,ν

(
ũk

i + γi‖x − x̃k‖2

)]
∈ FFSi

f
i

.= max
[
ui, max

k=1,...,ν

(
ũk

i − γi‖x − x̃k‖2

)]
∈ FFSi

(38)

Proof. Trivial extension of Theorem 2 in Milanese and No-
vara (2004), for the case of Lipschitz continuous functions
in presence of saturation. 2

Finding optimal bounds is also instrumental to solve the
optimal approximation problem, as given in the next result.
Theorem 4 i) The function:

fOPT
i (x) = 1

2 [f i (x) + f
i
(x)] ∈ FFSi (39)

is an optimal approximation for any Lp(X ) norm, with
p ∈ [1,∞]

ii) The radius of information is given by:

rp,i =
1
2
‖f i − f

i
‖p, ∀p ∈ [1,∞] (40)

iii) For given ν, it results:

‖f0
i − fOPT

i ‖p ≤ rp,i, ∀p ∈ [1,∞] (41)

iv) The radius of information r∞,i is bounded:

r∞,i ≤ γidH(X ,Xν) (42)

v) The radius of information rp,i is convergent to zero:

lim
ν→∞

rp,i = 0, ∀p ∈ [1,∞] (43)

vi) The approximation error of fOPT
i is pointwise convergent

to zero:

lim
ν→∞

|f0
i (x) − fOPT

i (x)| = 0, ∀x ∈ X
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Proof. Trivial extension of Theorem 7 in Milanese and No-
vara (2004), for the case of Lipschitz continuous in presence
of saturation. 2

Let us define the function fOPT = [fOPT
1 , . . . , fOPT

m ]T . On
the basis of (41) it can be noted that:

‖f0(x) − fOPT(x)‖2 ≤ ‖r∞‖2, ∀x ∈ X (44)

with r∞ = [r∞,1, . . . , r∞,m]. Note that, as a consequence
of (42), the Euclidean norm of the vector r∞ is bounded:

‖r∞‖2 ≤ ‖γ‖2 dH(X ,Xν) (45)

and, due to (6), it converges to zero as ν increases:

lim
ν→∞

‖r∞‖2 = 0 (46)

Thus, according to (44) and (46), function fOPT satisfies con-
ditions (8) and (9) with ζOPT = ‖r∞‖2. The corresponding
value of µ in (17) is

µOPT = ‖B‖ ζOPT = ‖B‖ ‖r∞‖2 (47)

Moreover, since fOPT
i ∈ FFSi (see (39)), input constraints

are satisfied and fOPT fullfills condition (7), thus meeting all
the properties needed for the stability results of Section 3.

Remark 4 The closed loop system F OPT(x) = A(x) +
BfOPT(x) results to be Lipschitz continuous with Lipschitz
constant LF . Then if LF < 1, system F OPT results to be a
contraction operator and its stability analysis is straightfor-
ward, since it is known that exponential asymptotic stability
in the origin is guaranteed for such systems (see e.g. Wang
et al. (2001)).

4.2 “Nearest Point” approximation

On-line computation times of the function fOPT may re-
sult too high for the considered application. In this section,
other kinds of approximating functions which satisfy con-
ditions (7)–(9) are sought-after, whose approximation error
is not the optimal one, but whose computation is simpler.
In particular, a very simple example of such approximating
techniques is investigated, denoted as “Nearest Point” (NP)
approximation. For a given value of ν, the NP approxima-
tion leads in general to an higher approximation error bound
ζNP than OPT approximation, but to lower on-line computa-
tion times, whose growth as a function of ν is much slower
than that of OPT approximation (see Example 1 in Section
5). Thus, the NP approximation required to guarantee given
stability and performance properties may need much lower
on-line computation times with respect to OPT approxima-
tion, at the expenses of longer off-line computation time.
For any x ∈ X , denote with x̃NP a state value such that:

x̃NP ∈ Xν , ‖x̃NP − x‖2 = min
x̃∈Xν

‖x̃ − x‖2 (48)

Then, the NP approximation fNP(x) is computed as:

fNP(x) = f0(x̃NP) = ũNP (49)

Such approximation trivially satisfies condition (7). The next
Theorem 5 shows that NP approximation (49) satisfies also
properties (8) and (9).

Theorem 5 i) The NP approximation error ‖f0(x) −
fNP(x)‖2 is bounded:

‖f0(x) − fNP(x)‖2 ≤ ζNP = ‖γ‖2 dH(X ,Xν), ∀x ∈ X

ii) The bound ζNP converges to zero:

lim
ν→∞

ζNP = 0

Proof. Trivial application of the Lipschitz continuity prop-
erty of f0, of the definition of Hausdorff distance dH(X ,Xν)
and of property (6). 2

Remark 5 The NP approximation (49) satisfies the prop-
erties (7), (8) and (9) considered in Section 3, with ζNP =
‖γ‖2 dH(X ,Xν). The corresponding value of µ in (17) is

µNP = ‖B‖ ζNP = ‖B‖ ‖γ‖2 dH(X ,Xν) (50)

Since ‖r∞‖2 ≤ ‖γ‖2 dH(X ,Xν) (see (45)), it can be noted
that:

µOPT(ν) = ‖B‖‖r∞‖2 ≤ ‖B‖ ‖γ‖2 dH(X ,Xν) = µNP

Thus in general the one step perturbation bound obtained us-
ing OPT approximation is lower than the one obtained with
NP approximation. However, with NP approximation it is
possible to obtain the same value of the one step perturba-
tion bound µOPT(ν) using a higher number of off-line eval-
uations of the MPC control law, i.e. there exist a finite value
ν′ > ν such that: µNP(ν′) ≤ µOPT(ν). Due to the simplicity
of fNP, the on-line computational times needed to evaluate
the NP approximation based on ν′ off-line computed val-
ues may be much lower than the one needed to evaluate the
OPT approximation based on ν off-line computations.

5 Simulation examples

5.1 Example 1: double integrator

Consider the double integrator system:

xt+1 =

[
1 1

0 1

]
xt +

[
0.5

1

]
ut

7



A predictive controller is designed using a quadratic cost
function J :

J(U, xt|t, N) = xT
t+N |tPxt+N |t+∑N−1

k=0 {xT
t+k|tQxt+k|t + uT

t+k|tRut+k|t}
(51)

where P Â 0, Q = QT Â 0 and R = RT Â 0 are positive
definite matrices. The following choice has been made in
the considered example:

Q =

[
4 0

0 1

]
, R = 1, P =

[
0 0

0 0

]
, N = 5

Input and output constraints are defined by:

X = {x ∈ R2 : ‖x‖∞ ≤ 1}, U = {u ∈ R : |u| ≤ 1}

The MATLABr Multi-Parametric Toolbox (Kvasnica et al.,
2006) has been used to compute the explicit MPC solution.
The obtained feasibility set F is reported in Fig. 1. The num-
ber of regions (after the merging of regions with the same
control law) over which the nominal control law f0 is affine
is equal to 5. The computed values of the Lipschitz con-

-3 -2 -1 0 1 2 3

-2

-1

0

1

2

     x x x x1111

     
x x  x x

22 22

B(  ,∆)G

F

X

G

Fig. 1. Example 1: sets F = X (solid line), G (dashed line),
B(G, ∆) (dash-dotted line) and X (dotted line). Sets G and B(G, ∆)
obtained using OPT approximation with ν ' 1.6 106.

stants (12) and (13) are γ = 1.4 and LF = 3.19 respectively.
The set X = F has been considered for the approximation
of f0 and Lyapunov function (19) has been computed with
T̂ = 7: the resulting values of b and K in (20) and (21) are
b = 3.15, K = 0.99, while L̂V of (24) is L̂V = 8.1.
Assume that the required regulation precision is ‖xt‖2 ≤
q = 510−2 for t → ∞. According to (32), the correspond-
ing sufficient value of µ is equal to µ = (q K)/(bLV ) =
1.9 10−3. By performing OPT approximation fOPT of f0

with ν ' 1.6 106, a value of µ = 1.4 10−3 < µ is obtained,
which leads to q = 3.7 10−2 < q. The corresponding up-
per bound ∆ (26) on distance trajectories can be computed
using (27), via the computation of the bounds ∆1(t) (28)
and ∆2(t) (29): the obtained value is ∆ = 0.849. The ob-
tained set G and the corresponding set B(G, ∆) ⊆ F (31)
are reported in Fig. 1. As a matter of fact, the obtained prop-
erties of the system regulated using the approximated con-

troller are quite good despite the computed theoretical val-
ues of ∆ and q. This fact highlights that the stability and
performance conditions claimed in Theorem 2 may prove to
be conservative, being only sufficient. Indeed, with a much
lower number ν of off-line solutions, stability and perfor-
mance are kept for any x0 ∈ X . Clearly, a lower number of
off-line solutions leads to lower computational efforts and
memory usage: to evaluate the on-line computational times
as well as performance degradation obtained with the ap-
proximated control law, a number NSIM of simulations have
been performed, considering any initial condition xSIM

0 com-
puted via uniform gridding over X with a resolution equal
to 0.01 for both state variables. Each simulation lasted 500
time steps. Then, the mean computational time t over all the
initial conditions and all the time steps of each simulation
has been computed, together with the maximum trajectory
distance obtained over all the simulations:

∆SIM = max
xSIM
0

(
max

t∈[1,500]

(
‖φSM(t, xSIM

0 ) − φ0(t, xSIM
0 )‖2

))
The following estimate of regulation precision has been also
considered:

qSIM = max
xSIM
0

(
max

t∈[301,500]

(
‖φSM(t, xSIM

0 )‖2

))

Finally, also the mean value ∆u and the maximum value
∆MAX

u of the approximation error ‖f0(x) − fSM(x)‖2 over
all time instants of all simulations have been considered.
These values have been computed employing different val-
ues of ν: the obtained results in the case of OPT approxi-
mation are reported in Table 1, together with the theoreti-
cal values ∆(ν), q(ν) and ζ(ν) obtained using the results
of Theorems 2 and 4. As it was expected, the obtained es-
timates of the maximum trajectory distance ∆SIM, regula-
tion precision qSIM and mean and maximum approximation
errors ∆u and ∆MAX

u are bounded by their respective the-
oretical values, ∆, q and ζ. However, these bounds are not
strict, being obtained on the basis of sufficient conditions
only. Moreover, note that with any considered value of ν
the state trajectory has been always kept inside the set X
for any considered initial condition and inside the constraint
set X for any t ≥ 1. Finally, variable u always satisfied the
input constraints, as it was expected. The obtained compu-
tational times depend on the employed calculator and on the
algorithm implementation: in this case MATLABr 7 and
an AMD Athlon(tm) 64 3200+ with 1 GB RAM have been
used and no particular effort was made to optimize the nu-
merical computation of fOPT(x). On the same platform, the
mean computational time obtained with on-line optimiza-
tion (using the MATLABr quadprog function) is about
2.5 10−2 s, while the mean computational time obtained with
the toolbox developed by Kvasnica et al. (2006) for the cal-
culation of the explicit solution is about 2.2 10−3 s. In this
example, NP approximation has been tested too, using the
same off-line computed values of f0(x̃k) employed for the
OPT approximation. Table 2 contains the estimates of mean
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Table 1
Example 1: properties of approximated MPC using OPT approx-
imation.

ν ' 1.6 106 ν ' 105 ν ' 5 103 ν ' 103

t 5.4 10−1 s 2.2 10−2 s 7.8 10−4 s 3.8 10−4 s

∆SIM 1.6 10−9 1 10−2 3 10−2 9 10−2

∆ 8.5 10−1 1.35 2.5 3.2

qSIM 1.7 10−16 4 10−9 4 10−6 1.5 10−4

q 3.7 10−2 1.6 10−1 7.8 10−1 1.5

∆u 2.4 10−12 5.9 10−11 4.3 10−7 2.5 10−3

∆MAX
u 4.5 10−11 7.4 10−10 8.8 10−6 1 10−2

ζ 1.3 10−3 5.5 10−3 2.7 10−2 5.2 10−2

computational time, maximum trajectory distance, regula-
tion precision and approximation errors obtained with NP
approximation and different values of ν, together with the
theoretical values ∆(ν), q(ν) and ζ(ν). Note that the eval-

Table 2
Example 1: properties of approximated MPC using NP approxi-
mation.

ν ' 1.6 106 ν ' 105 ν ' 5 103 ν ' 103

t 3.5 10−5 s 4 10−5 s 4.5 10−5 s 2.6 10−5 s

∆SIM 3.4 10−3 1.5 10−2 6.5 10−2 1.3 10−1

∆ 1.3 2 3.9 5.4

qSIM 3.2 10−3 1.3 10−2 4.7 10−2 1.3 10−1

q 7.1 10−2 2.8 10−1 1.4 2.9

∆u 4.7 10−4 1.7 10−3 2 10−2 5 10−2

∆MAX
u 1.3 10−3 3 10−3 3 10−2 7 10−2

ζ 2.6 10−3 5 10−3 5 10−2 1 10−1

uation times of OPT approximation grow linearly with ν,
while those obtained with NP approximation are practically
constant: this can be obtained with a suitable storage crite-
rion for the off-line computed data, which leads to compu-
tational times that depend on the number of state variables
but not on the value of ν. In all the performed simulations,
uniform gridding over X has been used to obtain the set
Xν and to compute the corresponding exact control moves
ũk, k = 1, . . . , ν. In order to improve the regulation pre-
cision of both OPT and NP approximated control laws, it
is also possible to employ a more dense gridding of exact
MPC solutions near the origin.

5.2 Example 2: two inputs system with state contraction
constraint

In this example, the following two inputs system, originally
introduced in Zheng et al. (1994), is considered:

xt+1 =

[
0.98 0

0 0.98

]
xt +

[
0.8 −1

−0.6 0.8

]
ut

State and input constraints are also taken into account:

X = {x ∈ R2 : ‖x‖∞ ≤ 2}, U = {u ∈ R2 : ‖u‖∞ ≤ 1}

An MPC control law has been designed using a quadratic
cost function (51) with the following parameters

Q =

[
0.1 0

0 0.1

]
, R =

[
1 0

0 1

]
, P =

[
0 0

0 0

]
, N = 5

Moreover, a state contraction constraint has been added:

‖xt+1|t‖2 ≤ σ‖xt|t‖2

with σ = 0.96. The MOSEK c© optimization toolbox for
MATLABr (MOSEK ApS (2006)) has been employed to
evaluate the Feasibility set F and to compute off-line the
needed values of f0(x). The set X = F considered for the
approximation of f0 is reported in Fig. 2 the level curves of
the optimal cost function J(U∗(x)). Note that the optimal
cost function is not convex, due to the presence of the con-
traction constraint. Therefore, in this case stability and con-
straint satisfaction properties cannot be guaranteed with the
procedure proposed by Johansen and Grancharova (2003).
Moreover, f0(x) results to be continuous but it is not piece-

xxxx
1111

xx xx
22 22

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

====F   XF   XF   XF   X

  X

Fig. 2. Example 2: set F = X (solid), constraint set X (dotted)
and level curves of the optimal cost function J(U∗(x)).

wise affine. In fact, no explicit solution can be easily ob-
tained in this case. The Lipschitz constants γ1 and γ2 have
been estimated according to (12) as γ1 = 5.33, γ2 = 4.48.
The resulting value of LF in (13) is LF = 12.29. The Lya-
punov function parameters are b = 1, LV = 1, K = 0.04
(see Remark 2 in Section 3). NP approximation has been
carried out employing ν ' 4.3 105 exact MPC solutions,
obtaining ∆ = 15.04 and q = 1.99. A comparison of the
state courses is shown in Fig. 3, starting from the initial
state x0 = [−3, 0.4]T . The approximated control law has
the same properties of the nominal one, i.e. state and in-
put constraints are satisfied and the obtained maximum tra-
jectory distance is lower than 7 10−3, while the regulation
precision is lower than 1 10−3. Fig. 4 shows the behaviour
of the contraction ratio ‖xt+1‖2/‖xt‖2: note that the two
curves match, thus also the contraction constraint is satisfied
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Fig. 3. Example 2: nominal state course (dashed line) and the
one obtained with the approximated control law (solid line). Ini-
tial state: x0 = [−3, 0.4]T . Approximation carried out with NP
approach and ν ' 4.3 105.
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Fig. 4. Example 2: contraction ratio ‖xt+1‖2/‖xt‖2 of the nom-
inal state trajectory (dashed line with triangles) and of the one
obtained with the approximated control law (solid line with aster-
isks). Initial state: x0 = [−3, 0.4]T . Approximation carried out
with NP approach and ν ' 4.3 105.

with the NP approximated control law. As regards the eval-
uation times, the mean computational time obtained with
MOSEK c© is equal to 0.016 s, while the NP approximation
mean computational time is about 3 10−5 s, thus showing
the good computational speed improvement obtained with
the approximated controller.

6 Conclusions

The use of SM function approximation methodologies for
fast implementation of Model Predictive Control laws for
linear systems has been investigated. Conditions on the ap-
proximating function have been provided in order to guar-
antee stability, performance and state constraint satisfaction
properties. The only needed assumption is the continuity of
the nominal stabilizing MPC solution on the compact set
over which the approximation is performed.
Two different SM approximation techniques have been pre-
sented, which lead to approximating functions with a de-
sired level of accuracy, fulfilling input constraints and whose
computational time is independent on the MPC control hori-
zon. Both methods are based on the off-line computation of
a finite number ν of exact MPC control moves. The first
method derives an “optimal” approximating function which
minimizes, for a given ν, the guaranteed accuracy level. The
second one gives lower guaranteed accuracy, but its compu-
tational time is lower and it is approximately constant with ν.
The choice between the two approximations can be then per-

formed by suitably trading between on-line computational
times from one side and off-line computational times and
memory requirements from the other. The effectiveness of
the proposed methodology has been shown by the applica-
tion to a double integrator example and to a MIMO plant
with a contraction constraint. Note that such approach has
also been successfully applied to practical control problems
such as semi-active suspension control and energy gener-
ation using tethered airfoils (see Canale et al. (2006) and
Canale et al. (2007)).
In conclusion, the SM techniques proposed in this paper ap-
pear to be able to cope with the limitations of the other ex-
isting approaches for MPC approximation, since they can
be systematically applied giving guaranteed performances
also to the case of nonlinear constraints and for non-convex
optimal cost function. In such cases, an exact explicit piece-
wise affine MPC solution (or approximation) with guaran-
teed stability is critical or not possible to compute. More-
over, the SM methodology appears to overcome the prob-
lems related to guaranteed approximation error, stability and
state constraints satisfaction properties in neural networks
approaches.
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Borrelli, F., M. Baotić, A. Bemporad and M. Morari (2005). Dynamic
programming for constrained optimal control of discrete-time linear
hybrid systems. Automatica 41, 1709–1721.

Canale, M. and M. Milanese (2005). Fmpc: A fast implementation of
model predictive control. In: 16th IFAC World Congress.

Canale, M., L. Fagiano and M. Milanese (2007). Power kites for wind
energy generation. IEEE Control Systems Magazine 27(6), 25–38.

Canale, M., M. Milanese and C. Novara (2006). Semi-active suspension
control using “fast” model-predictive techniques. IEEE Transactions
on Control System Technology 14(6), 1034–1046.

Diehl, M. and J. Björnberg (2004). Robust dynamic programming for
min-max model predictive control of constrained uncertain systems.
IEEE Transactions on Automatic Control 49(12), 2253–2257.

Goodwin, G. C., M. Seron and J. De Dona (2005). Constrained Control
and Estimation: An Optimisation Approach. Springer.

Johansen, T.A. (2004). Approximate explicit receding horizon control of
constrained nonlinear systems. Automatica 40, 293–300.

Johansen, T.A. and A. Grancharova (2003). Approximate explicit
constrained linear model predictive control via orthogonal search
tree. IEEE Transactions on Automatic Control 48(5), 810–815.

10



Johansen, T.A., I. Petersen and O. Slupphaug (2002). Explicit suboptimal
linear quadratic regulation with state and input constraints.
Automatica 38, 1099–1111.

Kvasnica, M., P. Grieder and F.J. Christophersen (2006). Multi-parametric
toolbox - ver. 2.6.2. http://control.ee.ethz.ch/∼mpt.

Mayne, D. Q., J. B. Rawlings, C. V. Rao and P.O.M. Scokaert (2000).
Constrained model predictive control: Stability and optimality.
Automatica 36, 789–814.

Milanese, M. and C. Novara (2004). Set membership identification of
nonlinear systems. Automatica 40, 957–975.

MOSEK ApS (2006). Mosek optimization toolbox - ver. 4.0.
http://www.mosek.com.

Parisini, T. and R. Zoppoli (1995). A receding-horizon regulator
for nonlinear systems and a neural approximation. Automatica
31(10), 1443–1451.

Polak, E. and T.H. Yang (1993). Moving horizon control of linear
systems with input saturation and plant uncertainty-part 1: robustness.
International Journal of Control 58(3), 613–638.

Seron, M.M., G.C. Goodwin and J.A. De Doná (2003). Characterization
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A Proofs

Proof of Theorem 1. For any x1, x2 ∈ X , consider two values
x̃1, x̃2 ∈ Xν such that:

‖x1 − x̃1‖2 ≤ dH(X ,Xν), ‖x2 − x̃2‖2 ≤ dH(X ,Xν)

Property (6) leads to:

0 ≤ lim
ν→∞

‖x1 − x̃1‖2 ≤ lim
ν→∞

dH(X ,Xν) = 0;

0 ≤ lim
ν→∞

‖x2 − x̃2‖2 ≤ lim
ν→∞

dH(X ,Xν) = 0;

which implies that

lim
ν→∞

x̃1 = x1, ∀x1 ∈ X , lim
ν→∞

x̃2 = x2, ∀x2 ∈ X (.1)

For any i ∈ [1, m], the estimate γ̂i (12) of γi is such that:

ũh
i + γ̂i‖x̃h − x̃k‖2 ≥ ũk

i , ∀x̃h, x̃k ∈ Xν

which implies that:

∀x̃h, x̃k ∈ Xν ,

f0
i (x̃k) − f0

i (x̃h) = ũk
i − ũh

i ≤ γ̂i‖x̃h − x̃k‖2

f0
i (x̃h) − f0

i (x̃k) = ũh
i − ũk

i ≤ γ̂i‖x̃h − x̃k‖2

⇒ |f0
i (x̃h) − f0

i (x̃k)| ≤ γ̂i‖x̃h − x̃k‖2, ∀x̃h, x̃k ∈ Xν (.2)

According to (.1), as ν → ∞ inequality (.2) holds for any x1, x2 ∈
X , therefore γ̂i tends to satisfy definition (10) and to approximate
the Lipschitz constant γi of f0

i on X for any i = 1, . . . , m. 2

Proof of Theorem 2.

i)–iii) Choose any x0 ∈ G as initial condition for system (14).
On the basis of (13), (16) and (17) it can be noted that:

d(1, x0) = ‖φSM(1, x0) − φ0(1, x0)‖2 =

= ‖F 0(x0) + e(x0) − F 0(x0)‖2 = ‖e(x0)‖2 ≤ µ

d(2, x0) = ‖φSM(2, x0) − φ0(2, x0)‖2 =

= ‖F 0(φSM(1, x0)) + e(φSM(1, x0)) − F 0(φ0(1, x0))‖2 ≤
≤ ‖e(φSM(1, x0))‖2 + ‖F 0(φSM(1, x0)) − F 0(φ0(1, x0))‖2 ≤
≤ µ + LF ‖φSM(1, x0) − φ0(1, x0)‖2 ≤ µ + LF µ

. . .

d(t, x0) = ‖φSM(t, x0) − φ0(t, x0)‖2 ≤
t−1∑
k=0

(LF )kµ

Thus, the following upper bound of the distance between tra-
jectories φSM(t, x0) and φ0(t, x0) is obtained:

d(t, x0) ≤
t−1∑
k=0

(LF )kµ = ∆1(t, µ) , ∀x0 ∈ G , ∀t ≥ 1 (.3)

As t → ∞ the bound ∆1 may converge, if LF < 1, or diverge,
if LF ≥ 1. Assuming that LF ≥ 1 (see Remark 2 for the
other case), it cannot be proved, on the basis of inequality
(.3) alone, that the trajectory distance d(t, x0) is bounded. On
the other hand, by using the properties of Lyapunov function
(19) it is possible to compute another upper bound ∆2(t, µ)
of d(t, x0). First of all, through equations (21) and (23) the
following inequality is obtained:

∀x ∈ X , ∀e : (F 0(x) + e) ∈ X
V (F 0(x) + e) ≤ V (x) − K‖x‖2 + LV µ

(.4)

On the basis of (20) and (.4), the state trajectory φSM(t, x0) is
such that:

‖φSM(t, x0)‖2 ≤ V (φSM(t, x0)) ≤
V (φSM(t − 1, x0)) − K‖φSM(t − 1, x0)‖2 + LV µ ≤

≤ V (φSM(t − 1, x0)) −
K

b
V (φSM(t − 1, x0)) + LV µ ≤

≤ ηV (φSM(t − 1, x0)) + LV µ ≤

. . . ≤ ηtV (x0) +
t−1∑
j=0

ηj LV µ ≤ ηtV (x0) +
1

1 − η
LV µ

with η =

(
1 − K

b

)
< 1. Thus, the following result is ob-

tained:
‖φSM(t, x0)‖2 ≤ ηtV (x0) +

b

K
LV µ

‖φ0(t, x0)‖2 ≤ ηtV (x0)
(.5)

11



Inequalities (.5) can be used to obtain the upper bound ∆2(t, µ)
of the distance between nominal and perturbed state trajectories:

d(t, x0) = ‖φSM(t, x0) − φ0(t, x0)‖2 ≤

≤ ‖φSM(t, x0)‖2 + ‖φ0(t, x0)‖2 ≤ 2 ηtV (x0) +
b

K
LV µ ≤

≤ 2 ηt sup
x0∈G

V (x0) +
b

K
LV µ = ∆2(t, µ) , ∀x0 ∈ X , ∀t ≥ 0

Note that, since µ < ∞ and X is compact:

∆2(t, µ) < ∞, ∀t ≥ 0

lim
t→∞

∆2(t, µ) =
b

K
LV µ = q

q < ∆2(t, µ) < ∞, ∀t ≥ 0

Thus, as t increases towards ∞, the bound ∆2(t, µ) (29) de-
creases monotonically from a finite positive value equal to

2 sup
x0∈G

V (x0)+
b

K
LV µ towards a finite positive value q, while

the bound ∆1(t, µ) (28) increases monotonically from 0 to ∞.
Therefore, for a fixed value of µ there exists a finite discrete
time instant t̂ > 0 such that ∆1(t̂, µ) > ∆2(t̂, µ). As a conse-
quence, by considering the lowest bound between ∆1(t, µ) and
∆2(t, µ) for any t ≥ 0, the following bound ∆(µ) of d(t, x),
which depends only on µ, is obtained:

∆(µ) = sup
t≥0

min(∆1(t, µ), ∆2(t, µ))

q ≤ ∆(µ) < ∞

‖φSM(t, x0) − φ0(t, x0)‖2 ≤ ∆(µ), ∀x0 ∈ G,∀t ≥ 0

Since for any fixed positive value t̃ of t both ∆1(t̃, µ) and
∆2(t̃, µ) increase linearly with µ(ν), on the basis of (18) ∆(ν)
is such that

lim
ν→∞

∆(ν) = 0 (.6)

iv)–v) On the basis of (.6), it is possible to tune ν such that, for
any initial condition x0 ∈ G ⊂ X , ∆(µ) is as small as needed.
Indeed, it is needed that φSM(t, x0) ∈ X for all t ≥ 0 for all
the considered assumptions to hold. Since by hypothesis the set
G (25) is positively invariant for the nominal state trajectories,
for a given value of ∆(µ) the perturbed state trajectories are
such that φSM(t, x0) ∈ B(G, ∆(µ)), ∀x0 ∈ G, ∀t ≥ 0. Thus,
it is sufficient to choose ν such that B(G, ∆(µ)) ⊆ X . Such
choice is always possible in the considered context.

vi) On the basis of (.5) and (20) it can be noted that:

lim
t→∞

‖φSM(t, x0)‖2 ≤ lim
t→∞

ηtb‖x0‖2 +
b

K
LV µ

=
b

K
LV µ = q, ∀x0 ∈ G

2
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