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Abstract—This note deals with the problem of fast implemen- for a generic approximated NMPC lafwto satisfy properties
tation of nonlinear model predictive control using approximated i)iii), b) providing a method to compute the value @fand
control laws. At first, accuracy properties of a generic approxi- ¢) deriving a technique able to improve the accuracy of a

mated controller £ are introduced together with their influence . limi imating function. obtaining |
on closed loop stability and performance. Then, exploiting such given preliminary approximating tunction, obtaining lower

results, it is shown how Set Membership (SM) function approx- (€ventually minimal) values of and satisfying assumptions
imation theory can be systematically employed to improve the i)—iii) even if they are not met by; alone.
accuracy performance of 4. The resulting controller, given by
the sum off_% with a SM_approximating function, satisfies the I. APPROXIMATED NONLINEAR MODEL PREDICTIVE
above—mentioned properties even if they are not met by alone.
A nonlinear oscillator example shows the effectiveness of the CONTROL
proposed methodology. A. NMPC: nominal formulation
Index Terms—Nonlinear model predictive control, approxi- Consider the following nonlinear state space model:

mate predictive control, constrained control.

Ty = f(2e,ue) (1)

viable solution to the problem of fast implementation
A of a given Nonlinear Model Predictive Control (NMPC)wherex; € R™ andu; € R™ are the system state and control
law ~ (see e.g. [1]) is the use of an approximated control lawput respectively. It is assumed that functignin (1) is
& = K, with lower computational effort, derived using a finitecontinuous oveR™ x R™ and that the control objective is to
numbery of exact control moves computed off-line. A firstegulate the system state to the origin under some input and
contribution along this line was given in [2], using a neuradtate constraints represented by a compacUsetR™ and a
network approximation of. However, no means of evaluatingconvex seX C R™ respectively, both containing the origin in
the guaranteed approximation error were given, thus notheir interiors. In NMPC, the control move is computed on-—
priori or a posteriori stability analysis could be systematicalljne by solving the following nonlinear program (NLP) at each
performed. Another methodology to approximate a NMP@me step, according to the Receding Horizon (RH) principle
controller has been introduced in [3], using an off-line approksee e.g. [1]):
imate multi-parametric programming technique for the con- min  J(U, 24

. . . . b . L y Tt|t
struction of a piecewise affine (PWA) approximation. Similar
approaches have been applied also in the case of linear systems s. t.
(see e.g. [4], [5]) and extended to the robust min—max case | Tt+klt = F@ vt rgr—1ie), k=1, Np (2)
in [6], using a piecewise nonlinear (PWNL) approximation. Toprle € X, k=1,...,Np
A bound on the approximation error, in terms of difference Uitk € U, k= O_, o Np =1
between the exact and approximated optimal cost functions, { Stabilizing constraints
can be_ obtai_ned ?n these cases, as well as stability_ ANfere J(
constraint sat|sfact|qn propert|e§. Flnally, a further teChn'qla'g%t — 2, andU = [uat’ BT —m]T is the vector of
has been _recently |n.trod.uced in [7] using Set Mem_bersf’me control moves to be optimizeﬂ?p and N, < N, are the
(SM) functlo.n approximation thg_ory, obtam,ng approx'_matergéediction horizon and the control horizon respectively. The re-
MPC laws W|t_h guaranteed_stat_)lllty, constramt satisfaction al bining predicted control Movés, . 1, .. . , e+ n, 1] can
state regulation to an arbitrarily small neighborhood of thg, -5 nnuted according to different strategies, e.g. by setting
origin. In [7] it has been shown that such stabilizing properties

. . . . it = UN.—1j¢ OF Uppjly = K x4q ), Vi € [Ney Np — 1],
rely on the satisfaction of three assumptions by funcion \ nore - js a suitable matrix. The cost functiorls and ®

namely i) input constraint satisfaction, ii) the_pos;ibility have to be suitably chosen and tuned according to the desired
e_stlmatg a bound on the Worst—ce}se app_roxma‘up_n €rMoleontrol performance (see e.g. [1] for details). Indeed, possible
directly in terms of the difference —#, and iii) the ability 10 5 qqitiona ‘stabilizing constraints” (e.g. state contraction, ter-
reduceg to any desired guaranteed accuracy level. In this ngi&, o sef) have been included in (2) in order to ensure stability

we provide theoretical contributions and practical methods th@‘{ the controlled system. It is assumed that the optimization
deal with the problems of a) finding out sufficient conditionﬁromem (2) is feasible over a s& C R”. The application of

_ _ _ _ _ such RH procedure implicitly defines the predictive controller
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or “nominal” control law. It is assumed that the nonlineain Theorem 2 of [7], which can be straightforwardly extended
autonomous system obtained by applying control kate the to the case of nonlinear systems, it is shown that if the
system (1) is asymptotically stable at the origin for anyi@hi approximated controllek enjoys (5)—(7), then closed loop
state valuery € F (see e.g. [8]). trajectory boundedness, guaranteed bounded trajectooy, er
state constraint satisfaction (after a finite number of tateps)

and trajectory convergence to an arbitrarily small neighbo
hood of the origin can be achieved. Indeed, several studies
A limitation in the practical use of NMPC is the presence dh the literature (see e.g. [11] and the references therein)
fast plant dynamics, for which the required sampling time/mandicate that, ifs is stabilizing and continuous, the possibility
be too low for the real-time solution of (2). A viable solutio to achieve an arbitrarily small approximation error bound
to this problem is the use of an approximated control fumctiq’ is sufficient for closed loop trajectory boundedness and
k =~ r, derived off-line, whose on-line computational loadonvergence to a neighborhood of the origin. Thus, this pape
is lower (see [2]-[7]). A crucial point arising when thefocuses on giving methods that can be practically applied
approximated functiort is employed for feedback controlto evaluate and improve the guaranteed accuracy of a given
is about the stability properties of the resulting closedplo function #.

system. In this Section, the sufficient conditions for digbi

introduced in [7] will be briefly resumed. It is considere@th || A pprOXIMATED NMPC LAWS: ACCURACY RESULTS

# is defined over a compact sé&t C F, containing the origin

in its interior, i.e.k : X — R™, X C F. X is the compact .. "' iof ies (5)= (7). i be abl
set where the approximation is carried out and in the prfactiHOn % to satisfy properties (5)- (7), i.. to be able to guarantee

it is usually chosen as a set of state values of interest ffJPsed loop Stab'l't_y’ will b]? Elven.The same result_ alé.(_)ved;
the particular control problem, e.g. by considering thesetb to compute an estimate of the worst—case approximatiom,erro

loop trajectories obtained through numerical simulatiests. which can be practically employed to evaluate the accuracy o
Moreover, it is supposed that the following assumption &ol

B. NMPC approximation: stability results

In this Section, sufficient conditions for a generic appnexi

d and to compare different approximating functions. In the
remaining of the paper, it is implicitty meant that amyis
considered and notatiorw? : ¢ = 1,...,m” is omitted for
simplicity of reading. The results of this paper are deriired
the framework of SM theory. In this context, the availabliopr

AssumptionAl depends on the characteristics of the NLP (ngormanon on the functior; 1o be approximated has to be

results on this aspect can be found e.g. in [9] and [10] and t %nS|dered and it will be now resumed. Singes continuous

references therein. Functignis computed on the basis of the2Ve" the compac’ and its image sel is also compact;

knowledge of a finite number of exact control moves, i.e.: is Lipschitz co_ntinuo_us ove,?(_ with Lipsc_hitz constanILHzi.
Thus, the available information or; defines the following
ak = n(:ﬁ’“),k =1,...,v (3) Feasible Function SetF{F'S): x; € FFSL, , = {ki : X —
[yi,ﬂi] TR € ALN P Iil(i') =u;, VI € XU}, where:
where the state values® are suitably chosen and give rise to ’

Assumption 1 (Al} the nominal control law x is
continuous over X.

the setX, = {i*, k =1,...,v} C F. It is assumed that,, Ar,, = {ri: |ki(@") = 5i(2%)] < Lo’ — 2|2, ®)
is chosen such that the following property holds: val, 2% e X}
I/ILH;Q d(X,Xx,)=0 (4) EstimatesL, ; of L, ; can be derived as follows:
whered(X, X,) = sup inf (|lz — Z[2). For example, uni- Ly; = inf (L— Cal 4 Li||at — &%) > Ak, Ve R =1,..., u?
reX TEXY (9

form gridding overX’ satisfies condition (4). Moreovet, is

supposed to enjoy the followinkgy properties:

[) input constraint satisfaction. For the sake of simplicify
presentation, in this paper it will be assumed thiat {u €

Convergence of (9) td.,. ; has been showed in [7]. The same
derocedure as (9) can be employed to practically estimate als
the other Lipschitz constants involved in the followingdhet-

R™ : w, < u; < T,i=1,...,m}. Thus, the considered ical developments. Sufficient conditions are now given foy a
propeEy is the E)Ilowing: approximating functiork; to obtain a bound; on the point-
wise approximation error norf\; ;(x)| = |ki(x) — &i(x)]
u; < Ri(z) <y, Vie[l,m], Ve € X (5) and, consequently, to satisfy property (6). From the kndgte

o . ) A of the v exact control moves computed off-line (3), the exact
!I) the pointwise approximation errak; (z) = x(x) — A(x)  yalues 0fA 4 :(Z) are knownA ;(7) = @; — i (7), V7 € X,
is norm bounded: The following Theorem shows how to compute a bound on
Az ()| on the basis of the knowledge df; ; ().
An(z)| <C, Vo e X 6) Dk ,
[As(@)ll <<, ve © Theorem 1. Suppose thak; € FFSy, , and thatl) &;
1) the bound(v) converges to zero as the numbeof the satisfies property (5) anid) it is continuous overt’ (thus it

off-line computed solutions increases: is Lipschitz continuous ovek’ with constantZ; ;), then:
) i) the approximation error\;; is a Lipschitz continuous
VILH;O () =0 (") function overX, with constantZa, ,
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i) |Azqi(x)| is boundediA; ;(x)] < G, Ve e X Lipschitz constanfx, ,. The available information or; and
iii) a bound(; can be computed as: on k; can be summarized by the following SEF'Sa ;:
¢ = sup max (A (x), —As ;(2)) (10) FESA; =A{ri X = [w;, W), (ki —Fi) € ALag (14)
vex ki(@) = @i, V3 € X}
where where
Agi(w) = minft — fi(z), min (Ba(@) + Lagllz = Z]12)] Avs, = {8 X =R, |A(z") — Ay(2?)] <
Ay ;(z) = max(u; — &i(x), max (Aai(2) = Lag ,llz — 212)] La,, |lz* — 2?||s, Va', 2% € X}
D befine the following function:
v) if Lz ; < La, ,, the bound;; (10) is tight according to the efine the foflowing function:.
available information or;. LOC - » OPT OPT 1=
! ; = K AA-, whereA%", Z—A,%i éf-@z
In addition, if lll) % satisfies the data interpolation property:ﬁl it B i (2) 2[ (@) +4s, ((f%])
Ri(F) = ki (F) = @, V7 € X, (12) With Az ;i(z) andA; (=) defined in (11).

Theorem 2: For any given approximating functiod; of
the following results hold: ki € FFSp, , such thatl) #; satisfies property (5) and)) it
v) the bound(; on the approximation error can be computei$ continuous over¥, the corresponding function}°¢ (15)
as: enjoys the following properties:

. o R i) xtOC is Lipschitz continuous overt, satisfies property
Gi = i [max (@; — #i(), —u; + i), xa(@)] (5) and interpolates the off-line computed dath®C(z) =
wherey;(z) = min (La, ||z — Z||2) u;, VT € X,
rEXy (13) i) the quantity
vi) ¢;(v) converges to zeroyiingo ¢i(v)=0 € = up % (Brilz) - A&’i(x)) (16)
Proof: See the Appendix. [ ] reX
Theorem 1 can be used to compute an upper b@uid on s a bound on the worst-case approximation etter, x:°C).
the worst—case approximation eredk;, i;) = [|5i —Rillo = i) ¢-OC < ¢;, where(; is the error bound related to the

Slelg |ki(x) — &i(x)| obtained using the approximated controbreliminary approximating functior, computed according to
law #. The error bound (6) related to functioh can be (10).

m ) _ Additionally, if Il) Lz ; < La, , then:
computed as¢ = >~ ()" Then, if also (12) holds, jy) xL9C ¢ FFS, ;

i=1 LoC ; o imati Wi
it is possible to “tune”v (using an iterative procedure) iny)f”i tl's an opt;:m;gapprox!manon of; with respect to the
order to obtain a given desired guaranteed accuracy. Papct/Mormations; € Ay 1€

computation of¢; can be performed using the results of [12]. sup  e(k;, KEOC) =
ki €EFFSA i
__inf sup  e(Ki, i) = TA00,i
[1l. SET MEMBERSHIP LOCAL APPROXIMATION OFNMPC Ri€FFSni ki €FFSa:
LAWS wherera . ; is theoco-norm radius of information of F'Sa ;

[13)]).

Proof: See the Appendix. [ ]
Theorem 2 shows how SM theory can be employed to improve
f e performance of a given approximating functign In fact,

In this Section, the problem of improving the accuracy of gee
generic approximating functio®; fulfilling the hypotheses)—
II) of Theorem 1 is studied. Standard methods, e.g. based
expansions in term of suitable basis functions (polynasnia c
sigmoids, wavelets, etc.) can be used to computeowever :esultm) Of_ Thf%rilnltnggr}owfo?m '?he errt(r)]r botllflﬁ?) ﬁo_f
in general, as the number of basis functions is increased jfi 2PProXIMmae ,_O%Wi _ s Tower than that o,
order to achieve the interpolation condition (12), the appr or((ja.ct{ver, l;rgm result_)f,A Kld sat|stf|esche qtatlzillntﬁrpolagon
imation errore(k;, £;) may become very large. On the Otheiggurl‘r:ggo(rill)), s;/?rr;]ég;err?ezs [lgc Z?ssféi\llés LEZ ?lr;irl:irrlnaelr
hand, the approximatiof; may give useful information oR,;. i . .
PP ok may g '. _worst—case error bound according to the considered pifior-in

Such information, together with the prior information give )
by ki € FFS;,_ ., can be exploited in the SM framework tomatlon (resultv) of Theorem 2). The error bound (6) related
’ wi k-9CIT can be computed as

derive an approximated control law with better accuracthilIO function %€ = [x3°%, ...
respect tor; itself, giving lower (possibly minimal) worst— -Loc _ /i (CLOC)Q_ Without efficient implementations, the
case error bound; and satisfying condition (12) even K; =1

alone does not satisfies it. Following this idea, a new Skbmputational effort required to compute®© grows linearly
technique for approximate NMPC, denoted as the “local” SMith v. Such a growth can be made logarithmic by using
approximations:-°¢, is now presented. suitable techniques like those proposed e.g. by [14], viith t
Consider the residue functionn;; = k; — &; which, on only differences that [14] does not considers constraints a
the basis of Theorem 1, is Lipschitz continuous o%ewith employs the simplicial distance between two points z» in

)
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the Lipschitz assumption, while in this paper the Euclidearalues of the involved Lipschitz constants have been obthin

norm is considered (see (8)). using the procedure (NLiws = 3.022, Lawe = 4.118,
LA i, =3.944 and L, = 1.912. The obtained accuracy
IV. NUMERICAL EXAMPLE results are reported in Tables | and IlI, in terms of the

i ) . i . L worst—case error bounddN'1, (NN.2 of the neural networks
Consider the discrete—time, two-dimensional nonlineaillas a; : ¢

tor obtained by forward difference approximation of the Buf (?g}:alinegocafplying (10)), of the worst—case error bounds
ing equation (see e.g. [15]) using sampling tifAe= 0.05s: ¢~ ¢ of the corresponding local SM approximations
(obtained with (16)) and of the maximal approximation error

_ 1 Ts 0 0 0 3 MAX — ST (T H H
Tigr = { T, (1-06T) :|xt_|-|: T, } ut_|-|: T o } > AY rgfi_'_)_(@'ﬁ(x ) — k(Z")| computed by considering

_ ) for each of the approximated controllers the sameiset=
The input and state constraint sets &re= {u € R: [u| <5} (3 » = 1 ... 10%} C &, containing a numbe¢ = 10*
and X = {z € R? : [lz] < 3} respectively. In the points i € A chosen with uniformly random distribution.
NLP (2), hg“ZOHSNTp = 30, N. = 20 and functions The practical computation of the worst-case bounds has been
L(z,u) T 2" Qu + u’ Ru, ® = 0 have been chosen, withcarried out using the techniques of [12]. As expected, with
Q = 0 , and R = 2. The terminal state constraint

0 3 TABLE |

rn,: = 0 has been also included to guarantee nominal PERFORMANCE RESULTS OF THE TWO NEURAL NETWORK
closed loop stability (see [1]). The state prediction hasrbe APPROXIMATIONS
performed by setting, | jj; = w4 n.—1jt, J = Ney ooy Np— 1. ZNNT
Fig. 1 shows the seft considered for the approximation, (NN AWK NI () AN (o6 aWT
together with the constraint s&t and the level curves of the 1.7 15 3005 88100 56102
optimal cost function/*(z) = min J(U, z). It can be noted A2
h * ; h [{-] hni din I3 (N2 AMNAri(Z iNN2 (s) diy 2 (%) d\N-2
that J*(z) is not convex, thus the technique proposed in [3] 50T T 60T 30105 ‘=5 T3

can be applied only with modifications like heuristic sjplige—
rules (see e.g. [6] and the references therein). On the other

hand, continuity ofx was checked by numerical inspection, TABLE Il

thus the techniques proposed in this paper can be employedreRFORMANCE RESULTS OF THE TWO LOCAISM APPROXIMATIONS
Two neural approximations of have been computed, denoted

RLOC,l
- v CLOC,l A&Aén gLOC,l (S) dﬂ;OOC,l (%) CzLOC,l
4r 1.0103 5.410°Y 41107t 1.110°% 5.8 3103
8.010®> 1.510°! 7.11072 2.01073 1.6 1.210-3

3.010* 9.11072 5.01072 6.010°3 3.110~t 3.510~4

7.510%* 4.91072 3.01072 1.910"2 2.010~t 1.610~%
HLOC,Z

FLOC2 (S) dL%OC,Z (%) qLroc.2

v AMAX
,LOC.2
1.010° 1.510-T 3.010~%2 1.110°% 1.2 0.810—2
8.010% 8.210-2 841032 2.010°3 3.21071 2.010—%
3.010* 3.010°2 3.410~3% 6.010°3 7.010—2 1.010~4
7.510* 2.010-2 1.11073 1.910"2 3.0102 7.510—5

CLOC,Z

e i

all the considered approximations the maximal computeat err
is lower than the corresponding worst—case bound. Moreover
it can be noted that, according to the presented results, the
guaranteed error bounds related to functiéh¥! and -9
Fig. 1. Set¥ (solid), state constraint s& (dashed) and level curves of the &'€ much tighter since the conditiobzw: < La , IS
optimal cost functionJ* (). satisfied. As regards the improvements obtained with thal loc
SM approach, notice that with any of the considered values
as ANN'1 and #N\N2, Both neural networks are composed o0bf v, the proposed technique achieves better accuracy than
two layers with! nodes in the first layer (with sigmoidaleither sNN1 or &<NN2, in terms both of theoretical worst—case
activating function) and a single linear node in the secormunds and “actual” maximal approximation errors. Moregpve
layer. Values ofl = 3 andl = 10 have been used fotNN1 it can be remarked that, as expected, the worst-case bounds
and iNN'2 respectively. In order to satisfy condition (5), the-9%! and¢-°¢2 decrease as increases. Thus, this numerical
outputs of s:NV1 and #NN2 have been saturated fe-5,5]. example shows that, according to the theoretical resultseof
The neural networks have been trained usifg off-line papera)a bound on the worst—case error of a given continuous
computed control moves, chosen with uniform gridding overeliminary approximating function can be computejl the
X. Then, the local SM approximations-°©! and x-°%2,  local SM technique can be employed to systematically im@rov
derived using as preliminary approximatioi®\'! and sNN2  the performance of any continuous preliminary approxingati
respectively, have been computed using different values offunction,c) an arbitrary small guaranteed worst—case error can
considering uniform gridding ovet. The following estimated be obtained with the local SM approach adyl a tradeoff

-3
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between accuracy and complexity can be achieved by tuningime and memory usage. A numerical example evidenced the
and by choosing different preliminary approximating fuans effectiveness of the results.
(e.g. neural networks with different numbers of nodes).
All of the approximated controllers always satisfy the ihpu APPENDIX A
constraints and satisfy the state constraints after thiestiep. PROOFS
In order to evaluate, |n_relat|v_e terms, the closed loop P8fhe following Lemma is instrumental for the proofs of Theose
formance and computational times of the considered contraly
laws, Monte Carlo simulations have been performed starting Lemma 1: Let h : X — R be an unknown function defined
from different initial conditions chosen insid&. All the over a compact domaif’ € R". Let the prior information available
computations have been performed using Maf abwith an  ©" vf{ bee )c(iesc(nb)ed< k})ly(h) < f_?(Fthvz e{};(}ewﬁeLrhe,;t h(il’s) o

H H g, v v, J\T) = r) >~ gx), Vx Ly,
AMD Athlon(tm) 64 32(_)0"' W'_th 1 GB RAM. _The maximal set of Lipschitz continuous functions with Lipschitz cémitLh,
and average computational times, over all time steps of all — {(zF € x : h(@*) = §F,g"isknown k = ...,v} and
simulations, of the nominal controller wefe7s and0.1s, g,5: X — R are Lipschitz continuous functions with Lipschitz
while the maximal computational timésobtained with each constantL,. Define the functions:
of the approximated controllers are reported in Taple 11.aAs 7 (z) = min[g(z), min (A(&) + La |z — &[|2)],
measure of control system performance, at each time step the b TEXy
n{x

. N ~ (17)
(z) = max[g(z), max (h(Z) — Lnllz — &[|2)]
ratio doy, = 100 —— has been considered, whepe is the T e " ’

tl2 .
state trajectory obtained with the nominal controller aipds Th.en. B (z) > h(z), h(z) < inf h(z)
the Euclidean distance betwegpand the trajectory obtained ) ¥ = ,—L:;lfsh vl = ﬁe?psh v
with any of the approximated controllers. WHen||> < 0.05, iy  if L, < Ly, then the bound&, 1 € FFS;, and they are
the value ofd has been considered to measure the performance tightt h(z) = _max h(z),h(z)=_ min h(z)
. . . = = hEFFS), hEFFS),
instead Ofdﬂ" Then, the_ maximal valuaﬂ% andd of dy; and Proof. i) By contradiction. Suppose that a functibf € F'F'S), exists
d respectively over all time steps of all simulations haverbe

. : Quch that, for a certain® € X,
computed. The obtained results are reported in Table Il too.

Note that the neural network approximaticif¥':* and zNN-2 h*(z') > ming(a'), min (h(#) + Lallz" = Z[2)] = h(z")
achieve the lowest value df(about 14000 times lower than . ) (18)
on-line optimization), however, as expected, their pentamce D:&T)‘Z Lby”;i - ;})HQV:a“ﬁm (()ifl(g) . LGHxl ifujHSUCh thaft-
in terms ofdy, andd are worse than those obtained with the h FEX, " '

related local SM approximating functions with any valueof hgfb) + Lplzt = &2 > §($1)v~ilf means thah® (jﬂbl) > g(a') =
By increasing the value of, better performance are obtained” # £'FSn Otherwise, it h(z') + Lallz” — 2ll2 < g(z7),
; . . It means that hA%(z') > h(2°) + Lu|lz” — &°|]2 . Since it
with the SM approach at the cost of higher computational o oy b
. . Was assumed that® € FFS,, h%(z°) = h(z°). Thus,
times and memory usage. In practice, the tradeoff betwe;?rtxl) “R@E) = h@Y) — @) > Lalzt — @
accuracy, computational time and memory requirementsthasdoreover, since h%(z') > h(z*) + Ln|z' — &2, then
be chosen on the basis of the particular control problem ant(z') > h(z%) = h*(z') — k(&) > 0. Then,h®(z') — h*(3%) =
on the available hardware. Finally, as regards the scitabfl  |h* (") —h" ()| > Ly||lz' =2"|]» = h* ¢ FFS). Therefore, there
the approach, a state dimension of 7-8 may be still tractai2 functionh® € F£S;, with the characteristics specified in (18),
ith the proposed technique and a suitable choice of the §&t/(¥) = h(@), Yo € X, Vh € F'['Sy. A similar proof holds
Wi , . , the lower boundh. ii) It will be now shown thath belongs to
X, depending also on t_he considered problem, on t_he availalg-g,  conditionsh(z) < g(z), Va € X, andh(i) = §, Vi € X,
hardware and on the influence of each state variable on @ satisfied by definition. Conditioh(z) > g(z) is also satisfied,

control inputs. Similar limitations affect the other exi®f sincelL, < L; andh(z) = min[g(z), min (h(Z)+ Ly||z —Z|2)] >
approximation techniques and probably represent the "rﬁiﬂin[y(x), min (¢(%) +Lg||x—£|\2)]w§)(gu(x), Ve € X. About the
beyond which explicit/approximate NMPC does not give ane/i schitz éfé%ﬂn off. for any ! ¢ X_consider avalug® c &
advantage with respect to on-line optimization. su'%h thath(3") + %hHw’l _ :Eb”ix: min (h(@) + Lalz — i||2)u-
V. CoNcLusIoNs s T fmyal e %, Sncoen) £ T the foowing holds:
The theoretical results presented in this paper rely on SM&)_E(;{) < g% —g(z") < L_||£2_$'1||2 < Lh||m2gml|\2..
theory and provide sufficient conditions for a generic agpro Otherwise, if h(z°) + Ly|jz' — gzg||2 < g(z'), it means that
mated NMPC law to achieve arbitrary good accuracy. The prb&z') = h(z") + Ln|jz' — 2> and, for anyz® € X, it can be
posed techniques allow to @) compute a bound on the worgted thath(z*) = min[g(a®), min (h(%) + Lallz* — #ll2)] <
case approximation error of a given continuous approxithatg(z®) + Ly ||lz* — 2°||2 < k(&%) + Lu||z® —a*||l2 + La||z* — 3°|2 =
NMPC law and b) reduce such a worst-case error boundi@') + Ln|lz® — z'|l2 = h(z®) — h(z') < Lulla® — z'|2
an arbitrarily small value, using a local SM approximatiof? @ similar way, it can be shown _thagl(l’Q) - h(livl) >
approach. The results are based on the knowledge of a fimtk»llz”~ — @'ll2  Therefore, _since h(z”) — h(z7) <
number » of exact control moves, computed off—line an?’%‘xz — &l and (g - h@) 2 “Lallz’ — @,

) g ) (%) = h(z")| < Lp||lz* — |2, V2',2° € X = h € AL,
stored. Since the guaranteed error bound (_)btalned with s, if L, < Ly function  belongs toF F'S;, and, considering
local SM approach decreases with increasinga tradeoff result (i) of this Lemma, it is a tight upper bound for
can be achieved between accuracy, on-line computationét), vx € X, Vh € FFS,. A similar proof holds for the
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tight lower boundh. |

A; = &; — k. From (14) it can be noted thak; € FFSA; =

Proof of Theorem 1. i) Trivial application of Lipschitz continuity A; € Arn. 3 Ri € FFSA: = Ai(i) = u; — Ri(Z), VT; € X,
properties ofi; and &:. andf, € FFSa = u, — fi(z) < Aulw) < — i), Vo € X,
ii)—vi) Note <that the< pointwise  value °<fA'“ IS bounde_d: Thus, the following necessary conditon is obtained:
Ve € X, u; < Ri(e) < U > oy — ki) < ki(z) - Rie) = g0 FFSa; = A, € D;. On the other hand, ifA; € D;

A i(x) <1 —ki(z) and that the bounds —Ri,wi—hRi X =R
are Lipschitz continuous functions with Lipschitz constah ;.
Thus, the prior information om\; ; is summarized byA; ; € D;,
where D; {AZ S -ALA Ab(f) Ui — RL(ZE)
Agi(Z), VT € X, u, — ()<A()<m—f%z()VxeX}.
Thus, Lemma 1 can be used to compute the boufds;, A,
of D;, given by (11). On the basis of these bounds,

- = R

sinceAq; € Di, ki —hi = A; € ALa,

sufficient condition is also obtained:; € FFSAL < A; € D;
|t canherefore,z; € FFSa

thenwy, — #i(z) < Ai(z) < — ki(z) = u; < Ai(2) + ki(z) <
u; = w; < Ri(z) < ;.

Moreover, A; € D; = ki(Z) =
) 4+ Ai(E) = f%z(~) + 4; — Ri(Z) = W, VT € A, and,
. Thus the following

< A; € D;.Moreover, note that

be noted that|Ax.(z)] < max(Ax(z),—A;,(z)). Thus, €(f€z7f€~z)—||m—m Ailloo :~||Al%,i_Ai”oo:e(Ak,i7~Ai):>
Vz € X, |Ani(z)] < sugmax(A;”-(x) —A (@) = G). E(ki, ki) = meilg)SA)ie(m,m) = A:tlgDie(A&mAi) =

Moreover, if L;; < La,,, due to Lemma 1 the boundz( )
(10) is the tightest on the baS|s of the available prior infation
on k;, since it is computed on the basis of fUnCtIOAS‘; i An
which tightly bound the setD;. Furthermore, if property (1
holds it can be noted that\; ;(%) ki(Z) — Ri(T)
i —u; = 0, V& € A,. Then, by substitutingA; ;(z) = 0
and y:(z) neun (Lag,llz — &|2)] in the computation of

¢ given in (10), by straightforward manipulations it can b
shown that(; = sup min[max(u; — &i(z),Ri(z) — u;), xi(z)].
TEX

lz = 22)

i K

Additionally, note that x;(z) nenn (La,,
Lag., _mm (|l = Z|l2) < La,,dua(X,X,) and that, due to its
TE ’

formulatlon,xz-(:c) > 0. Then, due to property (4) it is obtained that
0 < lim xi(z) < lim La, , da(X, &) =0 = lim x,(z) = 0.
Note also thatw; — Ai(z) > 0 and Ai(x) — u, > 0,
because 4; satisfies the input saturation constraints
assumption. Thus, the value of{; (13) is such that
Ci sup min [max (7; — Ri(z), —u; + Ri(z)), xi(z)] > 0
reX
and it can be noted thdt < lim ¢; = lim sup min(max(@; —

v— 00 V=00 pe X

Ri(x), —u; + Ri(2)), xi(2)) = Sup min(max(#; — &i(z), —u; +
ex

Ri(x)), hm xi(z))=0= hm Qf() |

Proof of Theorem 2. i— iiil) Property (5) and Lipschitz continuity [5]

(1]

by
[2]

(3]
(4

of k:°C are trivially satsified by construction. For amf € X,
note that min(Az,i(%) + La, . ll#" — #2) = Az:(@") and
max(Azi(Z) — La, ,|#" — &||l2) = Ax:(2"). Moreover, since [6]

by assumption (5); satisfies the input constraints it can be noted
that Az ; (2") = k(") — k(& h) < T — k(") and Az (")
k(") — Ri(@") > u; — #&:i(2"). Thus, the following result is
obtained: Az :(") = A, ,(z") = Az:(z"). As a consequence,
AFTE) = S (Brald) + Ags@) = Aral@"), V&' € X,
Therefore, it can be noted that:°%(z) = &:(Z) + AOPT( ) =
Ri(Z) + As,i(Z) = ki () — 7i(Z) + Ri(Z) = ki(Z) = 4, VI € Xy
As it has been shown in the proof of Theorem 1, the prior inftiam
on the approximation errad; ; is summarized byA; ; € D;. Thus,

according to Lemma 1A, ;(z) < Az.(z) < Az qi(x), Vo € X.
Therefore, by stralghtforward manipulations it can be dote

that [ (@) — M@ < L(Beila) - Apy(a)) Vo € X =
Ira(2) = R19°(@)] < sup 5 (Bi(w) — Ay, (0) = 1, V€ .

)| < sup
zEX

Moreover, due to Theorem 1, the approximation errar ;

is bounded by (10) ¢; supmax(A i(x), =4 ,(z))

(7]

(8]
El

[10]

[12]

o [13]
TEX
and it can be noted that%(Ag,i(LE) - A(@) < g
max(zg,i(x),—ékyi(x)), Vx € X, thus (¢ [15]
1 — _
sup 2(Am(:c) —é,“( ) < sup max(Az (), A, (7)) = G-

|v)—v) The considered prior |nformat|on on; is given by (14). For
any generic functiors;, consider the corresponding error function

E(Ag,i, A;). Therefore, sincet; € FFSa

and E(m, m)
LOC

— A, €D
E(Az,:,A;), finding an optimal approximation
ki such thatk;°¢ € FFSa ;, considering

APT

~
~

2) the mformatlonnz € FFSn,, is equwalent to finding an optimal
approximationALY" &~ A ; such thatARY" € D;, considering the
information AK i € Dy, i.e. E(ki,

show thatAOPT =1/2 Qs +
optimal apprOX|mat|on of\; ;. This result can be straightforwardly
derived from the proof of Theorem 4 of [7].

KEOC) inf

r;€FFS
E(Awyi, AT =74 00,0 Thus, the aim is to

E(l{i, l%l) =

A, ;) (15) belongs taD; and is an
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