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Efficient model predictive control for nonlinear 
systems via function approximation techniques
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Abstract—This note deals with the problem of fast implemen-
tation of nonlinear model predictive control using approximated
control laws. At first, accuracy properties of a generic approxi-
mated controller κ̂ are introduced together with their influence
on closed loop stability and performance. Then, exploiting such
results, it is shown how Set Membership (SM) function approx-
imation theory can be systematically employed to improve the
accuracy performance of κ̂. The resulting controller, given by
the sum of κ̂ with a SM approximating function, satisfies the
above–mentioned properties even if they are not met bŷκ alone.
A nonlinear oscillator example shows the effectiveness of the
proposed methodology.

Index Terms—Nonlinear model predictive control, approxi-
mate predictive control, constrained control.

A viable solution to the problem of fast implementation
of a given Nonlinear Model Predictive Control (NMPC)

law κ (see e.g. [1]) is the use of an approximated control law
κ̂ ≈ κ, with lower computational effort, derived using a finite
numberν of exact control moves computed off–line. A first
contribution along this line was given in [2], using a neural
network approximation ofκ. However, no means of evaluating
the guaranteed approximation error were given, thus no a
priori or a posteriori stability analysis could be systematically
performed. Another methodology to approximate a NMPC
controller has been introduced in [3], using an off–line approx-
imate multi–parametric programming technique for the con-
struction of a piecewise affine (PWA) approximation. Similar
approaches have been applied also in the case of linear systems
(see e.g. [4], [5]) and extended to the robust min–max case
in [6], using a piecewise nonlinear (PWNL) approximation.
A bound on the approximation error, in terms of difference
between the exact and approximated optimal cost functions,
can be obtained in these cases, as well as stability and
constraint satisfaction properties. Finally, a further technique
has been recently introduced in [7] using Set Membership
(SM) function approximation theory, obtaining approximated
MPC laws with guaranteed stability, constraint satisfaction and
state regulation to an arbitrarily small neighborhood of the
origin. In [7] it has been shown that such stabilizing properties
rely on the satisfaction of three assumptions by functionκ̂,
namely i) input constraint satisfaction, ii) the possibility to
estimate a boundζ on the worst–case approximation error,
directly in terms of the differenceκ− κ̂, and iii) the ability to
reduceζ to any desired guaranteed accuracy level. In this note
we provide theoretical contributions and practical methods that
deal with the problems of a) finding out sufficient conditions
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for a generic approximated NMPC laŵκ to satisfy properties
i)–iii), b) providing a method to compute the value ofζ and
c) deriving a technique able to improve the accuracy of a
given preliminary approximating function̂κ, obtaining lower
(eventually minimal) values ofζ and satisfying assumptions
i)–iii) even if they are not met bŷκ alone.

I. A PPROXIMATED NONLINEAR MODEL PREDICTIVE

CONTROL

A. NMPC: nominal formulation

Consider the following nonlinear state space model:

xt+1 = f(xt, ut) (1)

wherext ∈ R
n andut ∈ R

m are the system state and control
input respectively. It is assumed that functionf in (1) is
continuous overRn ×R

m and that the control objective is to
regulate the system state to the origin under some input and
state constraints represented by a compact setU ⊆ R

m and a
convex setX ⊆ R

n respectively, both containing the origin in
their interiors. In NMPC, the control move is computed on–
line by solving the following nonlinear program (NLP) at each
time step, according to the Receding Horizon (RH) principle
(see e.g. [1]):

min
U

J(U, xt|t)

s. t.














xt+k|t = f(xt+k−1|t, ut+k−1|t), k = 1, . . . , Np

xt+k|t ∈ X, k = 1, . . . , Np

ut+k|t ∈ U, k = 0, . . . , Np − 1
stabilizing constraints

(2)

where J(U, xt|t) = Φ(xt+Np|t) +
∑Np−1

j=0 L(xt+j|t, ut+j|t),
xt|t = xt and U = [uT

t|t, . . . , u
T
t+Nc−1|t]

T is the vector of
the control moves to be optimized.Np andNc ≤ Np are the
prediction horizon and the control horizon respectively. The re-
maining predicted control moves[ut+Nc|t, . . . , ut+Np−1|t] can
be computed according to different strategies, e.g. by setting
ut+j|t = uNc−1|t or ut+j|t = K xt+j|t, ∀j ∈ [Nc, Np − 1],
where K is a suitable matrix. The cost functionsL and Φ
have to be suitably chosen and tuned according to the desired
control performance (see e.g. [1] for details). Indeed, possible
additional “stabilizing constraints” (e.g. state contraction, ter-
minal set) have been included in (2) in order to ensure stability
of the controlled system. It is assumed that the optimization
problem (2) is feasible over a setF ⊆ R

n. The application of
such RH procedure implicitly defines the predictive controller
as a nonlinear static functionκ of the state, i.e.ut = κ(xt).
In the sequel, functionκ will be denoted as the “exact”
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or “nominal” control law. It is assumed that the nonlinear
autonomous system obtained by applying control lawκ to the
system (1) is asymptotically stable at the origin for any initial
state valuex0 ∈ F (see e.g. [8]).

B. NMPC approximation: stability results

A limitation in the practical use of NMPC is the presence of
fast plant dynamics, for which the required sampling time may
be too low for the real-time solution of (2). A viable solution
to this problem is the use of an approximated control function
κ̂ ≈ κ, derived off–line, whose on–line computational load
is lower (see [2]–[7]). A crucial point arising when the
approximated function̂κ is employed for feedback control
is about the stability properties of the resulting closed loop
system. In this Section, the sufficient conditions for stability
introduced in [7] will be briefly resumed. It is considered that
κ̂ is defined over a compact setX ⊆ F , containing the origin
in its interior, i.e.κ̂ : X → R

m, X ⊆ F . X is the compact
set where the approximation is carried out and in the practice
it is usually chosen as a set of state values of interest for
the particular control problem, e.g. by considering the closed
loop trajectories obtained through numerical simulation tests.
Moreover, it is supposed that the following assumption holds:

Assumption 1 (A1): the nominal control law κ is
continuous over X .

AssumptionA1 depends on the characteristics of the NLP (2):
results on this aspect can be found e.g. in [9] and [10] and the
references therein. Function̂κ is computed on the basis of the
knowledge of a finite numberν of exact control moves, i.e.:

ũk = κ(x̃k), k = 1, . . . , ν (3)

where the state values̃xk are suitably chosen and give rise to
the setXν = {x̃k, k = 1, . . . , ν} ⊆ F . It is assumed thatXν

is chosen such that the following property holds:

lim
ν→∞

d(X ,Xν ) = 0 (4)

where d(X ,Xν) = sup
x∈X

inf
x̃∈Xν

(‖x − x̃‖2). For example, uni-

form gridding overX satisfies condition (4). Moreover,̂κ is
supposed to enjoy the followingkey properties:
I) input constraint satisfaction. For the sake of simplicity of
presentation, in this paper it will be assumed thatU = {u ∈
R

m : ui ≤ ui ≤ ui, i = 1, . . . , m}. Thus, the considered
property is the following:

ui ≤ κ̂i(x) ≤ ui, ∀i ∈ [1, m], ∀x ∈ X (5)

II) the pointwise approximation error∆κ̂(x)
.
= κ(x) − κ̂(x)

is norm bounded:

‖∆κ̂(x)‖ ≤ ζ, ∀x ∈ X (6)

III) the boundζ(ν) converges to zero as the numberν of the
off–line computed solutions increases:

lim
ν→∞

ζ(ν) = 0 (7)

In Theorem 2 of [7], which can be straightforwardly extended
to the case of nonlinear systems, it is shown that if the
approximated controller̂κ enjoys (5)–(7), then closed loop
trajectory boundedness, guaranteed bounded trajectory error,
state constraint satisfaction (after a finite number of timesteps)
and trajectory convergence to an arbitrarily small neighbor-
hood of the origin can be achieved. Indeed, several studies
in the literature (see e.g. [11] and the references therein)
indicate that, ifκ is stabilizing and continuous, the possibility
to achieve an arbitrarily small approximation error bound
ζ is sufficient for closed loop trajectory boundedness and
convergence to a neighborhood of the origin. Thus, this paper
focuses on giving methods that can be practically applied
to evaluate and improve the guaranteed accuracy of a given
function κ̂.

II. A PPROXIMATED NMPC LAWS: ACCURACY RESULTS

In this Section, sufficient conditions for a generic approxima-
tion κ̂ to satisfy properties (5)– (7), i.e. to be able to guarantee
closed loop stability, will be given. The same result also allows
to compute an estimate of the worst–case approximation error,
which can be practically employed to evaluate the accuracy of
κ̂ and to compare different approximating functions. In the
remaining of the paper, it is implicitly meant that anyi is
considered and notation “∀i : i = 1, . . . , m” is omitted for
simplicity of reading. The results of this paper are derivedin
the framework of SM theory. In this context, the available prior
information on the functionκi to be approximated has to be
considered and it will be now resumed. Sinceκi is continuous
over the compactX and its image setU is also compact,κi

is Lipschitz continuous overX with Lipschitz constantLκ,i.
Thus, the available information onκi defines the following
Feasible Function Set (FFS): κi ∈ FFSLκ,i

.
= {κi : X →

[ui, ui] : κi ∈ ALκ,i
; κi(x̃) = ũi, ∀x̃ ∈ Xν}, where:

ALκ,i
= {κi : |κi(x

1) − κi(x
2)| ≤ Lκ,i‖x

1 − x2‖2,

∀x1, x2 ∈ X}
(8)

EstimatesL̂κ,i of Lκ,i can be derived as follows:

L̂κ,i = inf
(

L̃i : ũh
i + L̃i‖x̃

h − x̃k‖2 ≥ ũk
i , ∀k, h = 1, . . . , ν

)

(9)
Convergence of (9) toLκ,i has been showed in [7]. The same
procedure as (9) can be employed to practically estimate also
the other Lipschitz constants involved in the following theoret-
ical developments. Sufficient conditions are now given for any
approximating function̂κi to obtain a boundζi on the point-
wise approximation error norm|∆κ̂,i(x)| = |κi(x) − κ̂i(x)|
and, consequently, to satisfy property (6). From the knowledge
of the ν exact control moves computed off–line (3), the exact
values of∆κ̂,i(x̃) are known:∆κ̂,i(x̃) = ũi−κ̂i(x̃), ∀x̃ ∈ Xν .
The following Theorem shows how to compute a bound on
|∆κ̂,i(x)| on the basis of the knowledge of∆κ̂,i(x̃).

Theorem 1: Suppose thatκi ∈ FFSLκ,i
and thatI) κ̂i

satisfies property (5) andII) it is continuous overX (thus it
is Lipschitz continuous overX with constantLκ̂,i), then:
i) the approximation error∆κ̂,i is a Lipschitz continuous
function overX , with constantL∆κ̂,i
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ii) |∆κ̂,i(x)| is bounded:|∆κ̂,i(x)| ≤ ζi, ∀x ∈ X
iii) a boundζi can be computed as:

ζi = sup
x∈X

max
(

∆κ̂,i(x),−∆κ̂,i(x)
)

(10)

where

∆κ̂,i(x)
.
= min[ui − κ̂i(x), min

x̃∈Xν

(

∆κ̂,i(x̃) + L∆κ̂,i
‖x − x̃‖2

)

]

∆κ̂,i(x)
.
= max[ui − κ̂i(x), max

x̃∈Xν

(

∆κ̂,i(x̃) − L∆κ̂,i
‖x − x̃‖2

)

]

(11)
iv) if Lκ̂,i ≤ L∆κ̂,i

, the boundζi (10) is tight according to the
available information onκi.
In addition, if III) κ̂ satisfies the data interpolation property:

κ̂i(x̃) = κi(x̃) = ũi, ∀x̃ ∈ Xν (12)

the following results hold:
v) the boundζi on the approximation error can be computed
as:

ζi = sup
x∈X

min [max (ui − κ̂i(x),−ui + κ̂i(x)) , χi(x)] ,

whereχi(x) = min
x̃∈Xν

(L∆κ̂,i
‖x − x̃‖2)

(13)
vi) ζi(ν) converges to zero:lim

ν→∞
ζi(ν) = 0

Proof: See the Appendix.
Theorem 1 can be used to compute an upper boundζi(ν) on
the worst–case approximation errore(κi, κ̂i) = ‖κi− κ̂i‖∞ =
sup
x∈X

|κi(x) − κ̂i(x)| obtained using the approximated control

law κ̂. The error bound (6) related to function̂κ can be

computed asζ =

√

m
∑

i=1

(ζi)
2. Then, if also (12) holds,

it is possible to “tune”ν (using an iterative procedure) in
order to obtain a given desired guaranteed accuracy. Practical
computation ofζi can be performed using the results of [12].

III. SET MEMBERSHIP LOCAL APPROXIMATION OFNMPC
LAWS

In this Section, the problem of improving the accuracy of a
generic approximating function̂κi fulfilling the hypothesesI )–
II ) of Theorem 1 is studied. Standard methods, e.g. based on
expansions in term of suitable basis functions (polynomials,
sigmoids, wavelets, etc.) can be used to computeκ̂. However
in general, as the number of basis functions is increased in
order to achieve the interpolation condition (12), the approx-
imation errore(κi, κ̂i) may become very large. On the other
hand, the approximation̂κi may give useful information onκi.
Such information, together with the prior information given
by κi ∈ FFSLκ,i

, can be exploited in the SM framework to
derive an approximated control law with better accuracy with
respect toκ̂i itself, giving lower (possibly minimal) worst–
case error boundζi and satisfying condition (12) even if̂κi

alone does not satisfies it. Following this idea, a new SM
technique for approximate NMPC, denoted as the “local” SM
approximationκLOC

i , is now presented.
Consider the residue function∆κ̂,i = κi − κ̂i which, on
the basis of Theorem 1, is Lipschitz continuous overX with

Lipschitz constantL∆κ̂,i
. The available information onκi and

on κ̂i can be summarized by the following setFFS∆,i:

FFS∆,i = {κi : X → [ui, ui], (κi − κ̂i) ∈ AL∆κ̂,i
,

κi(x̃) = ũi, ∀x̃ ∈ Xν}
(14)

where

AL∆κ̂,i
=

{

∆i : X → R, |∆i(x
1) − ∆i(x

2)| ≤

L∆κ̂,i
‖x1 − x2‖2, ∀x1, x2 ∈ X

}.

Define the following function:

κLOC
i

.
= κ̂i +∆OPT

κ̂,i , where∆OPT
κ̂,i (x)

.
=

1

2
[∆κ̂,i (x)+∆κ̂,i (x)]

(15)
with ∆κ̂,i(x) and∆κ̂,i(x) defined in (11).

Theorem 2: For any given approximating function̂κi of
κi ∈ FFSLκ,i

such thatI) κ̂i satisfies property (5) andII) it
is continuous overX , the corresponding functionκLOC

i (15)
enjoys the following properties:
i) κLOC

i is Lipschitz continuous overX , satisfies property
(5) and interpolates the off–line computed data:κLOC

i (x̃) =
ũi, ∀x̃ ∈ Xν

ii) the quantity

ζLOC
i

.
= sup

x∈X

1

2

(

∆κ̂,i(x) − ∆κ̂,i(x)
)

(16)

is a bound on the worst–case approximation errore(κi, κ
LOC
i ).

iii) ζLOC
i ≤ ζi, where ζi is the error bound related to the

preliminary approximating function̂κ, computed according to
(10).
Additionally, if III) Lκ̂,i ≤ L∆κ̂,i

then:
iv) κLOC

i ∈ FFS∆,i

v) κLOC
i is an optimal approximation ofκi with respect to the

informationκi ∈ FFS∆,i, i.e.:

sup
κi∈FFS∆,i

e(κi, κ
LOC
i ) =

inf
κ̃i∈FFS∆,i

sup
κi∈FFS∆,i

e(κi, κ̃i) = r∆,∞,i

wherer∆,∞,i is the∞-norm radius of information ofFFS∆,i

(see [13]).
Proof: See the Appendix.

Theorem 2 shows how SM theory can be employed to improve
the performance of a given approximating functionκ̂i. In fact,
result iii) of Theorem 2 shows that the error boundζLOC

i of
the approximated NMPC lawκLOC

i is lower than that of̂κi.
Moreover, from resulti), κLOC

i satisfies the data interpolation
condition (12), even if̂κi does not satisfy it. Finally, under
assumptionIII) of Theorem 2,κLOC

i also gives the minimal
worst–case error bound according to the considered prior infor-
mation (resultv) of Theorem 2). The error bound (6) related
to function κLOC = [κLOC

1 , . . . , κLOC
m ]T can be computed as

ζLOC =

√

m
∑

i=1

(

ζLOC
i

)2
. Without efficient implementations, the

computational effort required to computeκLOC grows linearly
with ν. Such a growth can be made logarithmic by using
suitable techniques like those proposed e.g. by [14], with the
only differences that [14] does not considers constraints and
employs the simplicial distance between two pointsx1, x2 in
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the Lipschitz assumption, while in this paper the Euclidean
norm is considered (see (8)).

IV. N UMERICAL EXAMPLE

Consider the discrete–time, two-dimensional nonlinear oscilla-
tor obtained by forward difference approximation of the Duff-
ing equation (see e.g. [15]) using sampling timeTs = 0.05 s:

xt+1 =

[

1 Ts

−Ts (1 − 0.6 Ts)

]

xt+

[

0
Ts

]

ut+

[

0 0
−Ts 0

]

x3
t

The input and state constraint sets areU = {u ∈ R : |u| ≤ 5}
and X = {x ∈ R

2 : ‖x‖∞ ≤ 3} respectively. In the
NLP (2), horizonsNp = 30, Nc = 20 and functions
L(x, u) = xT Qx + uT Ru, Φ = 0 have been chosen, with

Q =

[

1 0
0 3

]

, andR = 2. The terminal state constraint

xt+Np|t = 0 has been also included to guarantee nominal
closed loop stability (see [1]). The state prediction has been
performed by settingut+j|t = ut+Nc−1|t, j = Nc, ..., Np−1.
Fig. 1 shows the setX considered for the approximation,
together with the constraint setX and the level curves of the
optimal cost functionJ∗(x) = min

U
J(U, x). It can be noted

that J∗(x) is not convex, thus the technique proposed in [3]
can be applied only with modifications like heuristic splitting–
rules (see e.g. [6] and the references therein). On the other
hand, continuity ofκ was checked by numerical inspection,
thus the techniques proposed in this paper can be employed.
Two neural approximations ofκ have been computed, denoted

−3 −2 −1 0 1 2 3
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Fig. 1. SetX (solid), state constraint setX (dashed) and level curves of the
optimal cost functionJ∗(x).

as κ̂NN,1 and κ̂NN,2. Both neural networks are composed of
two layers with l nodes in the first layer (with sigmoidal
activating function) and a single linear node in the second
layer. Values ofl = 3 and l = 10 have been used for̂κNN,1

and κ̂NN,2 respectively. In order to satisfy condition (5), the
outputs of κ̂NN,1 and κ̂NN,2 have been saturated to[−5, 5].
The neural networks have been trained using104 off–line
computed control moves, chosen with uniform gridding over
X . Then, the local SM approximationsκLOC,1 and κLOC,2,
derived using as preliminary approximationsκ̂NN,1 and κ̂NN,2

respectively, have been computed using different values ofν,
considering uniform gridding overX . The following estimated

values of the involved Lipschitz constants have been obtained
using the procedure (9):̂Lκ̂NN,1 = 3.022, L̂κ̂NN,2 = 4.118,
L̂∆

κ̂NN,1 = 3.944 and L̂∆
κ̂NN,2 = 1.912. The obtained accuracy

results are reported in Tables I and II, in terms of the
worst–case error boundsζNN,1, ζNN,2 of the neural networks
(obtained applying (10)), of the worst–case error bounds
ζLOC,1, ζLOC,2 of the corresponding local SM approximations
(obtained with (16)) and of the maximal approximation error
∆MAX

κ̂ = max
r=1,...,ξ

|κ(x̌r) − κ̂(x̌r)| computed by considering

for each of the approximated controllers the same setXξ =
{x̌r, r = 1, . . . , 104} ⊆ X , containing a numberξ = 104

points x̌r ∈ X chosen with uniformly random distribution.
The practical computation of the worst–case bounds has been
carried out using the techniques of [12]. As expected, with

TABLE I
PERFORMANCE RESULTS OF THE TWO NEURAL NETWORK

APPROXIMATIONS

κ̂NN,1

ζNN,1 ∆MAX
κ̂NN,1 t̄NN,1 (s) d̄

NN,1
%

(%) d̄NN,1

1.7 1.5 3.010−5 8.8101 5.610−2

κ̂NN,2

ζNN,2 ∆MAX
κ̂NN,2 t̄NN,2 (s) d̄

NN,2
%

(%) d̄NN,2

2.010−1 4.610−2 3.010−5 5.0 3.410−3

TABLE II
PERFORMANCE RESULTS OF THE TWO LOCALSM APPROXIMATIONS

κLOC,1

ν ζLOC,1 ∆MAX
κLOC,1 t̄LOC,1 (s) d̄

LOC,1
%

(%) d̄LOC,1

1.0 103 5.410−1 4.110−1 1.110−4 5.8 310−3

8.0 103 1.510−1 7.110−2 2.010−3 1.6 1.210−3

3.0 104 9.110−2 5.010−2 6.010−3 3.110−1 3.510−4

7.5 104 4.910−2 3.010−2 1.910−2 2.010−1 1.610−4

κLOC,2

ν ζLOC,2 ∆MAX
κLOC,2 t̄LOC,2 (s) d̄

LOC,2
%

(%) d̄LOC,2

1.0 103 1.510−1 3.010−2 1.110−4 1.2 0.810−3

8.0 103 8.210−2 8.410−3 2.010−3 3.210−1 2.010−4

3.0 104 3.010−2 3.410−3 6.010−3 7.010−2 1.010−4

7.5 104 2.010−2 1.110−3 1.910−2 3.010−2 7.510−5

all the considered approximations the maximal computed error
is lower than the corresponding worst–case bound. Moreover,
it can be noted that, according to the presented results, the
guaranteed error bounds related to functionsκ̂NN,1 andκLOC,1

are much tighter since the condition̂Lκ̂NN,1 ≤ L̂∆
κ̂NN,1 is

satisfied. As regards the improvements obtained with the local
SM approach, notice that with any of the considered values
of ν, the proposed technique achieves better accuracy than
either κ̂NN,1 or κ̂NN,2, in terms both of theoretical worst–case
bounds and “actual” maximal approximation errors. Moreover,
it can be remarked that, as expected, the worst–case bounds
ζLOC,1 andζLOC,2 decrease asν increases. Thus, this numerical
example shows that, according to the theoretical results ofthe
paper,a) a bound on the worst–case error of a given continuous
preliminary approximating function can be computed,b) the
local SM technique can be employed to systematically improve
the performance of any continuous preliminary approximating
function,c) an arbitrary small guaranteed worst–case error can
be obtained with the local SM approach andd) a tradeoff
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between accuracy and complexity can be achieved by tuningν

and by choosing different preliminary approximating functions
(e.g. neural networks with different numbers of nodes).
All of the approximated controllers always satisfy the input
constraints and satisfy the state constraints after the first step.
In order to evaluate, in relative terms, the closed loop per-
formance and computational times of the considered control
laws, Monte Carlo simulations have been performed starting
from different initial conditions chosen insideX . All the
computations have been performed using MatLabr 7 with an
AMD Athlon(tm) 64 3200+ with 1 GB RAM. The maximal
and average computational times, over all time steps of all
simulations, of the nominal controller were0.7 s and0.1 s,
while the maximal computational timest obtained with each
of the approximated controllers are reported in Table II. Asa
measure of control system performance, at each time step the

ratio d% = 100
dt

‖φt‖2

has been considered, whereφt is the

state trajectory obtained with the nominal controller anddt is
the Euclidean distance betweenφt and the trajectory obtained
with any of the approximated controllers. When‖φt‖2 ≤ 0.05,
the value ofd has been considered to measure the performance
instead ofd%. Then, the maximal valuesd% andd of d% and
d respectively over all time steps of all simulations have been
computed. The obtained results are reported in Table II too.
Note that the neural network approximationsκ̂NN,1 and κ̂NN,2

achieve the lowest value oft (about 14000 times lower than
on–line optimization), however, as expected, their performance
in terms ofd% andd are worse than those obtained with the
related local SM approximating functions with any value ofν.
By increasing the value ofν, better performance are obtained
with the SM approach at the cost of higher computational
times and memory usage. In practice, the tradeoff between
accuracy, computational time and memory requirements has to
be chosen on the basis of the particular control problem and
on the available hardware. Finally, as regards the scalability of
the approach, a state dimension of 7–8 may be still tractable
with the proposed technique and a suitable choice of the set
X , depending also on the considered problem, on the available
hardware and on the influence of each state variable on the
control inputs. Similar limitations affect the other existing
approximation techniques and probably represent the limit
beyond which explicit/approximate NMPC does not give any
advantage with respect to on–line optimization.

V. CONCLUSIONS

The theoretical results presented in this paper rely on SM
theory and provide sufficient conditions for a generic approxi-
mated NMPC law to achieve arbitrary good accuracy. The pro-
posed techniques allow to a) compute a bound on the worst–
case approximation error of a given continuous approximated
NMPC law and b) reduce such a worst–case error bound to
an arbitrarily small value, using a local SM approximation
approach. The results are based on the knowledge of a finite
number ν of exact control moves, computed off–line and
stored. Since the guaranteed error bound obtained with the
local SM approach decreases with increasingν, a tradeoff
can be achieved between accuracy, on–line computational

time and memory usage. A numerical example evidenced the
effectiveness of the results.

APPENDIX A
PROOFS

The following Lemma is instrumental for the proofs of Theorems
1–2

Lemma 1: Let h : X → R be an unknown function defined
over a compact domainX ∈ R

n. Let the prior information available
on h be described by:h ∈ FFSh = {h̃ ∈ ALh

: h̃(x̃) =
g̃, ∀x̃ ∈ Xν , g(x) ≤ h(x) ≤ g(x), ∀x ∈ X} whereALh

is the
set of Lipschitz continuous functions with Lipschitz constant Lh,
Xν = {x̃k ∈ X : h(x̃k) = g̃k, g̃k is known, k = . . . , ν} and
g, g : X → R are Lipschitz continuous functions with Lipschitz
constantLg. Define the functions:

h (x)
.
= min[g(x), min

x̃∈Xν

(h(x̃) + Lh‖x − x̃‖2)],

h (x)
.
= max[g(x), max

x̃∈Xν

(h(x̃) − Lh‖x − x̃‖2)]
(17)

Then:

i) h (x) ≥ sup
h̃∈F F Sh

h̃ (x) , h (x) ≤ inf
h̃∈F F Sh

h̃ (x)

ii) if Lg ≤ Lh, then the boundsh, h ∈ FFSh and they are

tight: h (x) = max
h̃∈F F Sh

h̃ (x) , h (x) = min
h̃∈F F Sh

h̃ (x)

Proof. i) By contradiction. Suppose that a functionha ∈ FFSh exists
such that, for a certainx1 ∈ X ,

ha(x1) > min[g(x1), min
x̃∈Xν

(

h(x̃) + Lh‖x
1 − x̃‖2

)

] = h(x1)

(18)
Denote by x̃b a value of x̃ ∈ Xν such that:
h(x̃b) + Lh‖x

1 − x̃b‖2 = min
x̃∈Xν

(

h(x̃) + Lh‖x
1 − x̃‖2

)

If

h(x̃b) + Lh‖x
1 − x̃b‖2 ≥ g(x1), it means thatha(x1) > g(x1) ⇒

ha /∈ FFSh Otherwise, if h(x̃b) + Lh‖x
1 − x̃b‖2 < g(x1),

it means that ha(x1) > h(x̃b) + Lh‖x
1 − x̃b‖2 . Since it

was assumed thatha ∈ FFSh, ha(x̃b) = h(x̃b). Thus,
ha(x1) − h(x̃b) = ha(x1) − ha(x̃b) > Lh‖x

1 − x̃b‖2.
Moreover, since ha(x1) > h(x̃b) + Lh‖x

1 − x̃b‖2, then
ha(x1) > h(x̃b) ⇒ ha(x1)− h(x̃b) > 0. Then,ha(x1)− ha(x̃b) =
|ha(x1)−ha(x̃b)| > Lh‖x

1−x̃b‖2 ⇒ ha /∈ FFSh. Therefore, there
is no functionha ∈ FFSh with the characteristics specified in (18),
i.e. h(x) ≥ h(x), ∀x ∈ X , ∀h ∈ FFSh. A similar proof holds
for the lower boundh. ii) It will be now shown thath belongs to
FFSh. Conditionsh(x) ≤ g(x), ∀x ∈ X , andh(x̃) = g̃, ∀x̃ ∈ Xν ,
are satisfied by definition. Conditionh(x) ≥ g(x) is also satisfied,
sinceLg ≤ Lh andh(x) = min[g(x), min

x̃∈Xν

(h(x̃)+Lh‖x− x̃‖2)] ≥

min[g(x), min
x̃∈Xν

(g(x̃) + Lg‖x − x̃‖2)] ≥ g(x), ∀x ∈ X . About the

Lipschitz continuity ofh, for anyx1 ∈ X consider a valuẽxb ∈ Xν

such thath(x̃b) + Lh‖x
1 − x̃b‖2 = min

x̃∈Xν

(

h(x̃) + Lh‖x
1 − x̃‖2

)

.

If h(x̃b) + Lh‖x
1 − x̃b‖2 ≥ g(x1), it means thath(x1) = g(x1),

thus for anyx2 ∈ X , sinceh(x2) ≤ g(x2), the following holds:
h(x2)−h(x1) ≤ g(x2)− g(x1) ≤ Lg‖x

2 −x1‖2 ≤ Lh‖x
2 −x1‖2.

Otherwise, if h(x̃b) + Lh‖x
1 − x̃b‖2 < g(x1), it means that

h(x1) = h(x̃b) + Lh‖x
1 − x̃b‖2 and, for anyx2 ∈ X , it can be

noted thath(x2) = min[g(x2), min
x̃∈Xν

(h(x̃) + Lh‖x
2 − x̃‖2)] ≤

h(x̃b)+Lh‖x
2− x̃b‖2 ≤ h(x̃b)+Lh‖x

2−x1‖2 +Lh‖x
1− x̃b‖2 =

h(x1) + Lh‖x
2 − x1‖2 ⇒ h(x2) − h(x1) ≤ Lh‖x

2 − x1‖2

In a similar way, it can be shown thath(x2) − h(x1) ≥
−Lh‖x

2 − x1‖2 Therefore, since h(x2) − h(x1) ≤
Lh‖x

2 − x1‖2 and h(x2) − h(x1) ≥ −Lh‖x
2 − x1‖2,

|h(x2) − h(x1)| ≤ Lh‖x
2 − x1‖2, ∀x1, x2 ∈ X ⇒ h ∈ ALh

Thus, if Lg ≤ Lh function h belongs toFFSh and, considering
result (i) of this Lemma, it is a tight upper bound for
h̃(x), ∀x ∈ X , ∀h̃ ∈ FFSh. A similar proof holds for the
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tight lower boundh. �

Proof of Theorem 1. i) Trivial application of Lipschitz continuity
properties ofκi and κ̂i.
ii)–vi) Note that the pointwise value of∆κ̂,i is bounded:
∀x ∈ X , ui ≤ κi(x) ≤ ui ⇒ ui − κ̂i(x) ≤ κi(x) − κ̂i(x) =
∆κ̂,i(x) ≤ ui− κ̂i(x) and that the boundsui− κ̂i, ui− κ̂i : X → R

are Lipschitz continuous functions with Lipschitz constant Lκ̂,i.
Thus, the prior information on∆κ̂,i is summarized by:∆κ̂,i ∈ Di,
where Di = {∆i ∈ AL∆κ̂,i

: ∆i(x̃) = ũi − κ̂i(x̃) =

∆κ̂,i(x̃), ∀x̃ ∈ Xν , ui − κ̂i(x) ≤ ∆i(x) ≤ ui − κ̂i(x), ∀x ∈ X}.
Thus, Lemma 1 can be used to compute the bounds∆κ̂,i, ∆κ̂,i

of Di, given by (11). On the basis of these bounds, it can
be noted that |∆κ̂,i(x)| ≤ max(∆κ̂,i(x),−∆κ̂,i(x)). Thus,
∀x ∈ X , |∆κ̂,i(x)| ≤ sup

x∈X

max
(

∆κ̂,i(x),−∆κ̂,i(x)
)

= ζi(ν).

Moreover, if Lκ̂,i ≤ L∆κ̂,i
, due to Lemma 1 the boundζi(ν)

(10) is the tightest on the basis of the available prior information
on κi, since it is computed on the basis of functions∆κ̂,i, ∆κ̂,i

which tightly bound the setDi. Furthermore, if property (12)
holds it can be noted that∆κ̂,i(x̃) = κi(x̃) − κ̂i(x̃) =
ũi − ũi = 0, ∀x̃ ∈ Xν . Then, by substituting∆κ̂,i(x̃) = 0
and χi(x) = min

x̃∈Xν

(

L∆κ̂,i
‖x − x̃‖2

)

] in the computation of

ζi given in (10), by straightforward manipulations it can be
shown thatζi = sup

x∈X

min[max(ui − κ̂i(x), κ̂i(x) − ui), χi(x)].

Additionally, note that χi(x) = min
x̃∈Xν

(

L∆κ̂,i
‖x − x̃‖2

)

=

L∆κ̂,i
min
x̃∈Xν

(‖x − x̃‖2) ≤ L∆κ̂,i
dH(X ,Xν) and that, due to its

formulation,χi(x) ≥ 0. Then, due to property (4) it is obtained that
0 ≤ lim

ν→∞
χi(x) ≤ lim

ν→∞
L∆κ̂,i

dH(X ,Xν) = 0 ⇒ lim
ν→∞

χi(x) = 0.

Note also that ui − κ̂i(x) ≥ 0 and κ̂i(x) − ui ≥ 0,
because κ̂i satisfies the input saturation constraints by
assumption. Thus, the value ofζi (13) is such that
ζi = sup

x∈X

min [max (ui − κ̂i(x),−ui + κ̂i(x)) , χi(x)] ≥ 0

and it can be noted that0 ≤ lim
ν→∞

ζi = lim
ν→∞

sup
x∈X

min(max(ui −

κ̂i(x),−ui + κ̂i(x)), χi(x)) = sup
x∈X

min(max(ui − κ̂i(x),−ui +

κ̂i(x)), lim
ν→∞

χi(x)) = 0 ⇒ lim
ν→∞

ζi = 0 �

Proof of Theorem 2. i–iii) Property (5) and Lipschitz continuity
of κLOC

i are trivially satsified by construction. For anỹxh ∈ Xν ,
note that min

x̃∈X
(∆κ̂,i(x̃) + L∆κ̂,i

‖x̃h − x̃‖2) = ∆κ̂,i(x̃
h) and

max
x̃∈X

(∆κ̂,i(x̃) − L∆κ̂,i
‖x̃h − x̃‖2) = ∆κ̂,i(x̃

h). Moreover, since

by assumption (5)̂κi satisfies the input constraints, it can be noted
that ∆κ̂,i(x̃

h) = κi(x̃
h) − κ̂i(x̃

h) ≤ ui − κ̂i(x̃
h) and ∆κ̂,i(x̃

h) =
κi(x̃

h) − κ̂i(x̃
h) ≥ ui − κ̂i(x̃

h). Thus, the following result is
obtained:∆κ̂,i(x̃

h) = ∆κ̂,i(x̃
h) = ∆κ̂,i(x̃

h). As a consequence,

∆OPT
κ̂,i (x̃h) =

1

2
(∆κ̂,i(x̃

h) + ∆κ̂,i(x̃
h)) = ∆κ̂,i(x̃

h), ∀x̃h ∈ Xν .

Therefore, it can be noted that:κLOC
i (x̃) = κ̂i(x̃) + ∆OPT

κ̂,i (x̃) =
κ̂i(x̃) + ∆κ̂,i(x̃) = κi(x̃)− κ̂i(x̃) + κ̂i(x̃) = κi(x̃) = ũ, ∀x̃ ∈ Xν .
As it has been shown in the proof of Theorem 1, the prior information
on the approximation error∆κ̂,i is summarized by∆κ̂,i ∈ Di. Thus,
according to Lemma 1,∆κ̂,i(x) ≤ ∆κ̂,i(x) ≤ ∆κ̂,i(x), ∀x ∈ X .
Therefore, by straightforward manipulations it can be noted

that |κi(x) − κLOC
i (x)| ≤

1

2
(∆κ̂,i(x) − ∆κ̂,i(x)), ∀x ∈ X ⇒

|κi(x) − κLOC
i (x)| ≤ sup

x∈X

1

2
(∆κ̂,i(x) − ∆κ̂,i(x)) = ζLOC

i , ∀x ∈ X .

Moreover, due to Theorem 1, the approximation error∆κ̂,i

is bounded by (10) ζi = sup
x∈X

max(∆κ̂,i(x),−∆κ̂,i(x))

and it can be noted that
1

2
(∆κ̂,i(x) − ∆κ̂,i(x)) ≤

max(∆κ̂,i(x),−∆κ̂,i(x)), ∀x ∈ X , thus ζLOC
i =

sup
x∈X

1

2
(∆κ̂,i(x) − ∆κ̂,i(x)) ≤ sup

x∈X

max(∆κ̂,i(x),−∆κ̂,i(x)) = ζi.

iv)–v) The considered prior information onκi is given by (14). For
any generic functioñκi, consider the corresponding error function

∆̃i = κ̃i − κ̂i. From (14) it can be noted that:̃κi ∈ FFS∆,i ⇒
∆̃i ∈ AL∆κ̂,i

; κ̃i ∈ FFS∆,i ⇒ ∆̃i(x̃) = ũi − κ̂i(x̃), ∀x̃i ∈ Xν

and κ̃i ∈ FFS∆,i ⇒ ui − κ̂i(x) ≤ ∆̃i(x) ≤ ui − κ̂i(x), ∀x ∈ X .
Thus, the following necessary condition is obtained:
κ̃i ∈ FFS∆,i ⇒ ∆̃i ∈ Di. On the other hand, if∆̃i ∈ Di

thenui − κ̂i(x) ≤ ∆̃i(x) ≤ ui − κ̂i(x) ⇒ ui ≤ ∆̃i(x) + κ̂i(x) ≤
ui ⇒ ui ≤ κ̃i(x) ≤ ui. Moreover, ∆̃i ∈ Di ⇒ κ̃i(x̃) =
κ̂i(x̃) + ∆̃i(x̃) = κ̂i(x̃) + ũi − κ̂i(x̃) = ũi, ∀x̃ ∈ Xν and,
since ∆κ̂,i ∈ Di, κ̃i − κ̂i = ∆̃i ∈ AL∆κ̂,i

. Thus the following

sufficient condition is also obtained:̃κi ∈ FFS∆,i ⇐ ∆̃i ∈ Di

Therefore, κ̃i ∈ FFS∆,i ⇐⇒ ∆̃i ∈ Di.Moreover, note that
e(κi, κ̃i) = ‖κi − κ̂i − ∆̃i‖∞ = ‖∆κ̂,i − ∆̃i‖∞ = e(∆κ̂,i, ∆̃i) ⇒
E(κi, κ̃i) = sup

κi∈F F S∆,i

e(κi, κ̃i) = sup
∆κ̂,i∈Di

e(∆κ̂,i, ∆̃i) =

E(∆κ̂,i, ∆̃i). Therefore, sincẽκi ∈ FFS∆,i ⇐⇒ ∆̃i ∈ Di

and E(κi, κ̃i) = E(∆κ̂,i, ∆̃i), finding an optimal approximation
κLOC

i = κ̂i + ∆OPT
κ̂,i ≈ κi such thatκLOC

i ∈ FFS∆,i, considering
the informationκi ∈ FFS∆,i, is equivalent to finding an optimal
approximation∆OPT

κ̂,i ≈ ∆κ̂,i such that∆OPT
κ̂,i ∈ Di, considering the

information ∆κ̂,i ∈ Di, i.e. E(κi, κ
LOC
i ) = inf

κ̃i∈F F S∆,i

E(κi, κ̃i) =

inf
∆̃i∈Di

E(∆κ̂,i, ∆̃i) = E(∆κ̂,i, ∆
OPT
κ̂,i ) = r∆,∞,i. Thus, the aim is to

show that∆OPT
κ̂,i = 1/2 (∆κ̂,i + ∆κ̂,i) (15) belongs toDi and is an

optimal approximation of∆κ̂,i. This result can be straightforwardly
derived from the proof of Theorem 4 of [7]. �
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[13] J. Traub and H. Woźniakowski,A General Theory of Optimal Algo-
rithms. New York: Academic Press, 1980.

[14] G. Beliakov, “Interpolation of Lipschitz functions,”Journal of Compu-
tational and Applied Mathematics, vol. 196, pp. 20–44, 2006.

[15] D. W. Jordan and P. Smith,Nonlinear ordinary differential equations.
Oxford University Press, 1987.




