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Abstract

Many science and engineering applications feature non-convex optimization problems where the objective
function can not be handled analytically, i.e. it is a black box. Examples include design optimization
via experiments, or via costly finite elements simulations. To solve these problems, global optimization
routines are used. These iterative techniques must trade-off exploitation close to the current best point with
exploration of unseen regions of the search space. In this respect, a new global optimization strategy based
on a Set Membership (SM) framework is proposed. Assuming Lipschitz continuity of the cost function, the
approach employs SM concepts to decide whether to switch from an exploitation mode to an exploration
one, and vice-versa. The resulting algorithm, named SMGO (Set Membership Global Optimization) is
presented. Theoretical properties regarding convergence and computational complexity are derived, and
implementation aspects are discussed. Finally, the SMGO performance is evaluated on a set of benchmark
non-convex problems and compared with those of other global optimization approaches.

1. Introduction

In many science and engineering fields, such as
mechanical design, fluid-dynamics, electromagnet-
ics, multi-physics simulations, control systems tun-
ing, and chemical experiments, black-box optimiza-
tion problems arise. Black-box functions are named
as such due to the fact that an explicit mathemat-
ical model is unavailable, or too complicated to
be handled analytically. In these cases, the opti-
mization strategy can rely only on function values
obtained through empirical tests. Moreover, these
problems may present several local minima, and the
time and resources required to carry out a single
function evaluation are rather large, so that the so-
lution method shall make the most efficient use of
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the available trials. To highlight this fact, we re-
fer to the process of performing a new test as long
function evaluation.

Seeking a minimizer in this framework is referred
to as black-box optimization [1], or derivative-free
optimization [2]. This is in contrast for example
to gradient-based and Newton-type methods where
the (first, or even further) derivatives are also as-
sumed to be available. If the black-box function
is assumed differentiable, one could resort to gra-
dient estimation techniques to still employ these
methods, which however require a rather large num-
ber of long function evaluations to estimate a local
quantity (i.e., the gradient at the currently evalu-
ated point) [3] and are designed to converge to a
local optimum by always improving from the initial
guess, not to explore the decision space searching
for a global solution.

Due to time/resource limitations, in global opti-
mization there are two conflicting aspects that must
be considered when choosing the next test point
for a long function evaluation [3]. The first, ex-
ploitation, pertains to improving the result by test-
ing more points in the vicinity of the current best
known one. The second, exploration, aims to gain
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more information about the cost function in other
regions of the search space, seeking other, possi-
bly better, minima. Exploitation and exploration
strategies are at the core of most global optimiza-
tion approaches, including stochastic global search,
response surface, and Lipschitz-based methods.

Stochastic global search algorithms, such as ran-
dom search methods [4], particle swarm algo-
rithms [5], and its offshoot variants [6, 7], use a
population of search points per iteration. Accord-
ing to the corresponding function values, heuris-
tics are applied to calculate the search point loca-
tions for the next iteration (or “generation”). These
methods are widespread but require numerous long
function evaluations per generation, which can be
impractical. Moreover, aspects such as guaranteed
convergence and optimality gap may be difficult to
analyze. Response surface methods, on the other
hand, generate an approximation of the black-box
function via, e.g., Gaussian process regression [1],
radial basis functions [8, 9], or neural networks [10].
These approximations can then be used for the ex-
ploitation or exploration routines, whichever is ap-
propriate. Albeit the number of long function eval-
uation is lower in this case, optimality gap is again
not easily assessed, and there is an additional expo-
nential computational burden to derive and refine
the approximated objective function.

Another category of black-box optimizers are so-
called Lipschitz-based algorithms. They rely on the
assumption that the long function is Lipschitz con-
tinuous. An early method, proposed independently
by Piyavskii [11] and Shubert [12], uses a known
Lipschitz constant to draw the lower bounds of
the black-box function given the existing samples,
starting with the bounds (corners) of the search
space. In this context, the Piyavskii-Shubert (“saw-
tooth”) method chooses the next point by searching
the location of the minimum lower bound. How-
ever, the method is proposed for one-dimensional
function optimization only; furthermore, Lipschitz
constants are rarely known in practical cases, and
need to be estimated in the process.

A later proposal named DIRECT [13, 14, 15] is a
modification to Piyavskii-Shubert method, remov-
ing the need for a known Lipschitz constant and
starting samples from the corners. Instead, it in-
variably performs a first sample at the center of the
search space, which is afterwards subdivided into
three intervals. The Lipschitz constant estimate
is used to draw the lower bounds, which are used
to select potentially optimal intervals (hyperrectan-

gles). Such hyperrectangles are iteratively subdi-
vided, and their corresponding centers are sampled
by batch, and potential intervals for sampling are
selected again. This cycle proceeds until the max-
imum number of iterations is reached, with each
iteration performing multiple long function evalua-
tions. An offshoot method named DISIMPL [16, 17]
employs simplices instead of hyperrectangles, thus
extending the usage from rectangular search spaces
only to more general polytopic ones. On one hand,
DIRECT and DISIMPL are completely determinis-
tic and reproducible (assuming no noise on function
evaluation), however, they only admit a fixed start-
ing point, and do not propose how to handle ex-
isting sampled points at the beginning of the al-
gorithms. Furthermore, the batch-based sampling
means that the next set of trial points is not cho-
sen until the current batch of sampling is finished,
which can mean overlooking possible precious infor-
mation added by individual samples as they come
in.

LIPO and AdaLIPO [18] use a random binary
variable to decide between exploitation and explo-
ration; the only difference being that the former
assumes a fixed Lipschitz constant, while the latter
estimates it from existing data. For exploitation,
they choose a random point within the set of poten-
tial optimizing points, i.e. those whose lower bound
on the black-box function is below the current best
sample. For exploration, it chooses a random point
from the entire search space. These algorithms, ow-
ing to the simple implementation, are fast in terms
of choosing the next sampling point, and can easily
scale to high dimensional problems without signif-
icant hit on computational burden. However, such
a completely randomized exploitation/exploration
sampling may be inefficient in finding new local
minima, because it does not fully utilize the shape
of lower bounds. Furthermore, the results of such
an algorithm are unrepeatable because of its ran-
domized design.

In the described context, we propose a new
Lipschitz-based algorithm that exploits Set Mem-
bership (SM) nonlinear function approximation
theory [19]. So far, SM theory proved effective
for nonlinear system identification [20], filter de-
sign [21], and controller design [22], among others.
Here, we employ SM theory for the first time in
global optimization. Our paper delivers the follow-
ing contributions:

• The Set Membership Global Optimization
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(SMGO) algorithm for Lipschitz-continuous
black-box functions is introduced. It employs
the concepts of SM lower- and upper bounds
in exploitation and exploration routines. Un-
like the above-mentioned Lipschitz-based al-
gorithms, we address the exploration prob-
lem systematically, by casting it as minimiza-
tion of the uncertainty as inferred using SM
techniques. Furthermore, our proposed algo-
rithm is completely repeatable, and allows one
to consider custom starting points and initial
samples when available;

• Theoretical properties of SMGO are derived,
including convergence, optimality gap, and
computational complexity;

• Practical aspects are discussed, and ways to
improve the computational efficiency are de-
scribed. In particular, an iterative implemen-
tation is described, which exploits results from
previous iterations to alleviate the computa-
tions at the current one;

• The SMGO algorithm is compared with other
representative optimizers with different test
functions, showing that the performance of
SMGO is very competitive w.r.t. the state
of the art, especially on functions with many
global minima.

A preliminary version of this work appeared in
[23]. With respect to that contribution, the al-
gorithm presented here is more efficient, moreover
the theoretical results and implementation analy-
sis are new, and more benchmark results are pre-
sented. The MATLAB code for SMGO, as well
as the other scripts used to generate the results,
are available on GitHub under the following URL:
https://github.com/lorenzosabugjr/smgo.

This paper is organized in seven sections. Sec-
tion 2 gives the general problem statement and as-
sumptions. Section 3 describes the proposed SMGO
algorithm. The convergence properties and opti-
mality gap calculations are discussed in Section 4,
with implementation notes in Section 5. Section 6
compares the performance of the proposed algo-
rithm with other global optimization techniques on
representative test functions, and Section 7 con-
cludes this paper and provides insights on future
directions.

2. Problem Statement

Consider a cost function z = fo(x), fo : X → R,
where x ∈ X is the vector of decision variables,
X ⊂ RD is a compact and convex polytope (“search
set”). No analytical form of fo is assumed available.
The a priori knowledge about fo is given by the
following assumption:

Assumption 1. fo is Lipschitz continuous with
unknown Lipschitz constant γo, i.e.,

fo ∈ F(γo)

where

F(γo)
.
=
{
f ∈ C0(X ) : |f(x1)− f(x2)| ≤

γo‖x1 − x2‖,∀x1,x2 ∈ X
}

Being a Lipschitz continuous function on a com-
pact set, fo presents a global minimum z∗:

z∗ = min
x∈X

fo(x). (1)

Let us denote with

X ∗ = { x ∈ X | fo(x) = z∗ } (2)

the corresponding set of global minimizers.
We further assume that it is possible to acquire

information about fo by sampling (long function
evaluation):

Assumption 2. Given a vector of decision vari-
ables x ∈ X , it is possible to sample the cost
function without noise:

z = fo(x).

The set of collected data is denoted as:

X〈n〉 =
{

(x(1), z(1)); (x(2), z(2)); . . . ; (x(n), z(n))
}
(3)

where n ∈ N is the number of data points and
z(i) = fo(x

(i)). For simplicity, with a slight abuse
of notation, we will also write x(i) ∈X〈n〉 when the
pair (x(i), z(i)) belongs to the data set (3).

We denote with (x∗〈n〉, z∗〈n〉) the best pair in
X〈n〉, where

(x∗〈n〉, z∗〈n〉) = arg min
(x(k),z(k))∈X〈n〉

z(k) (4)
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If the result of (4) is not unique, a lexicographic
criterion is used to sort the minimizers, and the
first one is picked. We further denote with δ〈n〉 the
optimality gap:

δ〈n〉 = z∗〈n〉 − z∗. (5)

We assume that a starting number n0 ≥ 1 of
data points is also available, for example collected
by the user in a first testing campaign, forming the
set X〈n0〉 ⊂ X .

We can now state the problem addressed in this
paper.

Problem 1. Design an algorithm that, under
Assumptions 1-2, generates a sequence of points
{x(n0+1),x(n0+2), . . .}, x(i) ∈ X , such that:

∀ε > 0, ∃nε <∞ : z∗〈nε〉 ≤ z∗ + ε. (6)

Moreover, for a finite sequence length N , provide a
method to compute a bound on the optimality gap
δ〈N〉.

3. Set Membership Global Optimization
(SMGO): Algorithm

SMGO addresses Problem 1 with a sequential
procedure, as common in global optimization [1, 13,
18]. At each iteration n ≥ n0, the next test point
x(n+1) is chosen with a strategy that exploits the
prior knowledge on function fo, given by Assump-
tion 1, and the current data set X〈n〉. In particular,
a valid (i.e., consistent with data) estimate of the
Lipschitz constant γo is derived at n0 and updated
at each n > n0, in order to estimate upper and lower
bounds on fo. SMGO then leverages the latter to
compute x(n+1), choosing between an exploitation
mode and an exploration one.

3.1. Preliminaries: Lipschitz constant estimation,
cost function bounds, and search mesh

At the start of each iteration (n > n0), one long
function evaluation z(n) = fo(x

(n)) is carried out,
where x(n) is the test point selected at the previous
iteration. This resulting new data point (x(n), z(n))
is added to the set of collected samples:

X〈n〉 = X〈n−1〉 ∪ (x(n), z(n)).

At the first iteration, n = n0, an initial estimate of
the Lipschitz constant, γ〈n0〉, is computed as:

γ〈n0〉 = max
i,j=1,...,n0, i 6=j

|z(i) − z(j)|
‖x(i) − x(j)‖

(7)

If n0 = 1, the Lipschitz constant estimate can be
initialized as an arbitrarily small number. When
n > n0, the minimum feasible Lipschitz constant
estimate γ〈n〉 is updated as follows:

γ〈n〉 = max

(
γ〈n−1〉, max

k=1,...,n−1

|z(n) − z(k)|
‖x(n) − x(k)‖

)
.

(8)
Such an estimate is guaranteed to be compatible
with the available data and prior information on fo,
given Assumption 2 [20]. Moreover, γ〈n〉 is mono-
tonically increasing with n and convergence to the
true Lipschitz constant γo is guaranteed if the test
points densely cover the search set [22]. This is the
case for the SMGO algorithm as shown in Section
4.

Given the data set X〈n〉 and Lipschitz constant
estimate γ〈n〉 we can compute the following lower
and upper bounds on fo [20]:

z〈n〉(x) , max
k=1,...,n

(
z(k) − µγ〈n〉‖x− x(k)‖

)
, (9)

z〈n〉(x) , min
k=1...n

(
z(k) + µγ〈n〉‖x− x(k)‖

)
. (10)

When µ = 1, the functions z〈n〉, z〈n〉 represent,
respectively, the minimum and maximum values
that the objective function can take for a given
vector of decision variables x ∈ X , given the
information collected up to iteration n.

In SMGO, an (user-defined) overestimation pa-
rameter µ > 1 is used in (9)-(10) to compensate for
the fact that the γ〈n〉 estimated from the currently
available data points is an underestimator of the
true Lipschitz constant γo.

The set

F〈n〉 =
{
f ∈ F(γ〈n〉) : z〈n〉(x) ≤ f(x) ≤ z〈n〉(x)

}
is referred to as the feasible functions set [20] at it-
eration n. The functions z〈n〉(x) and z〈n〉(x) are in-
tersections of hypercones (referred simply as cones

4



black-box function fo

sampled points ( )x
(i)

, z
(i)

lower bound z

upper bound z
slope γ

uncertainty λ

Figure 1: Scalar example of optimal lower and upper
bounds z〈n〉(x), z〈n〉(x) from finite samples of fo, and of

the corresponding uncertainty interval λ〈n〉(x).

in the remainder), each one with vertex at a tested
point. A representation of these bounds is depicted
in Fig. 1 for a function fo with scalar input argu-
ment. It should be emphasized that z〈n〉 and z〈n〉

are calculated from the data in X〈n〉, without any
need for additional evaluations of fo.

The uncertainty about the value of fo at the point
x ∈ X is computed as:

λ〈n〉(x) = z〈n〉(x)− z〈n〉(x). (11)

The SMGO algorithm proceeds in two steps.
First, an exploitation routine searches for a lo-
cal minimizer of z〈n〉. Then, an exploration step
seeks a maximizer of λ〈n〉. Exact solutions for such
subproblems can be computed by utilizing Hyper-
bolic Voronoi Diagrams (HVDs) [20, 24], however
at rather high computational cost. To increase
computational efficiency, we thus introduce a mesh
given by segments li,j connecting any two points
x(i), x(j) ∈X〈n〉:

li,j =
{
x = ax(i) + (1− a)x(j) : a ∈ [0, 1],

x(i),x(j) ∈X〈n〉, i 6= j
}

(12)

Such a mesh allows us to derive analytic solutions
to the computation of the next test point x(n+1),
according to the two strategies presented next.

3.2. Exploitation (Mode θ)

Consider the best data point (x∗〈n〉, z∗〈n〉) (4) at

iteration n. Mode θ searches a point x
〈n〉
θ∗ with the

highest predicted improvement w.r.t. x∗〈n〉, ac-
cording to the lower bound z〈n〉 (9). Specifically,
the exploitation routine considers the set of seg-
ments ln∗,i between x∗〈n〉 and any other sampled
point x(i) ∈X〈n〉 to search for the candidate point

x
〈n〉
θ∗ . Here, index n∗ is the data-point index of the

pair (x∗〈n〉, z∗〈n〉) in the data set X〈n〉.
We first evaluate the lower bounds on fo(x) : x ∈

ln∗,i considering only the hypercones defined by the
data points (x∗〈n〉, z∗〈n〉) and (x(i), z(i)), i.e.:

z∗〈n〉 − µγ〈n〉‖x− x∗〈n〉‖ (13)

and
z(i) − µγ〈n〉‖x− x(i)‖. (14)

The intersection of these two cones on the seg-
ment ln∗,i is the smallest feasible value of fo(x) :
x ∈ ln∗,i considering the information given by the
two points (x∗〈n〉, z∗〈n〉), (x(i), z(i)) and the Lips-
chitz constant estimate γ〈n〉. Such an intersection,

denoted with x
(i)
θ , can be derived analytically on

the basis of geometrical considerations (see Fig. 2).
In fact, denoting

si =
z(i) − z∗〈n〉

‖x(i) − x∗〈n〉‖
≥ 0, (15)

it follows that

x
(i)
θ = x∗〈n〉 +

1− si
µγ〈n〉

2
(x(i) − x∗〈n〉). (16)

By evaluating (16) for all possible segments, we

obtain the set X
〈n〉
θ = {x(i)

θ , i = 1, . . . , n, i 6= n∗}.
Then x

〈n〉
θ∗ is chosen as:

x
〈n〉
θ∗ = arg min

x∈X〈n〉θ

z〈n〉(x) (17a)

s.t.

z〈n〉(x) = z∗〈n〉 − µγ〈n〉‖x− x∗〈n〉‖ (17b)

where the constraint (17b) ensures that the point
selected is such that the lower bound z〈n〉 consid-
ering the information provided by all the sampled
points coincides with the lower bound provided by
the current best point (x∗〈n〉, z∗〈n〉) alone. This
usually happens in the vicinity of x∗〈n〉, in particu-
lar at the border of the hyperbolic Voronoi cell per-
taining to x∗〈n〉, see [20]. The feasibility of problem
(17) is always guaranteed, as shown in Lemma 1 in
Section 4.

To decide whether x
〈n〉
θ∗ shall be eventually taken

as the next test point x(n+1) for the long function,
or the exploration routine shall be called instead,
the following condition is evaluated:
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z
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z
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! "n

xθ*
improvement threshold

search
area

! "n

(i)

Figure 2: Qualitative example of the exploitation routine
for a scalar problem.

z〈n〉(x
〈n〉
θ∗ ) ≤ z∗〈n〉 − αγ〈n〉, (18)

where αγ〈n〉 is referred to as the expected improve-
ment threshold and α ∈ [0, 1) is the SMGO ex-
ploitation parameter, adjusted by the user. If (18)
is fulfilled (as in the example of Fig. 2), it means

that the potential improvement provided by x
〈n〉
θ∗ is

larger than the threshold. In this case, we set

x(n+1) = x
〈n〉
θ∗ .

Otherwise, SMGO switches to exploration mode,
described in the following subsection.

3.3. Exploration (Mode ψ)

In this mode, the candidate point x
〈n〉
ψ∗ ∈ X is

chosen as the one with largest λ〈n〉 value among

selected candidates. Sampling x
〈n〉
ψ∗ will yield

λ〈n+1〉(x
〈n〉
ψ∗ ) = 0 (due to noiseless function eval-

uation, see Assumption 2), and the uncertainty in
its vicinity will correspondingly decrease.

Similar to Mode θ, the search for x
〈n〉
ψ∗ considers

the segments among the samples in X〈n〉, in order
to limit the computational complexity. In this case,
we consider as candidates all the midpoints between
any pair (x(i),x(j)) ∈ X〈n〉. The reason is that
midpoints generally feature larger uncertainty than
other points on the segments, which are closer to
one of the two extremes. Hence, we form the set of
midpoints:

X
〈n〉
ψ =

{
x

(i,j)
ψ =

x(i) + x(j)

2

∣∣∣ x(i),x(j) ∈X〈n〉
}
,

(19)
and, according to the described rationale, the ex-
ploration routine picks the next test point as:

x(n+1) = x
〈n〉
ψ∗ = arg max

x∈X〈n〉ψ

λ〈n〉(x). (20)

Also in this case, if (20) does not have a unique
solution, a lexicographic criterion is added to select
the maximizer.

3.4. Algorithm summary

A summarized flow of the SMGO method is given
as pseudo-code in Algorithm 1.

Algorithm 1: SMGO Algorithm

Input: Long function fo, initial data points
X〈n0〉, maximum number of long
function evaluations N , exploitation
parameter α, overestimation parameter
µ

1 while n0 < n ≤ N do
// Long function evaluation, data update

2 Evaluate the long function fo at x(n) and

measure output z(n). Update the data set
X〈n〉 ←X〈n−1〉 ∪ (x(n), z(n))

3 Update current best sample (x∗〈n〉, z∗〈n〉)

and Lipschitz constant γ〈n〉 from X〈n〉

// Exploitation (Mode θ)
4 Evaluate lower bounds on segments around

the current best sample x∗〈n〉 to choose the
exploitation point x

〈n〉
θ∗

5 if expected improvement condition (18) is
met then

6 Assign test point for next iteration

x(n+1) ← x
〈n〉
θ∗

7 else
// Exploration (Mode ψ)

8 Find x
〈n〉
ψ∗ as the midpoint, over all

possible segments, with largest
uncertainty λ〈n〉

9 Assign test point for next iteration

x(n+1) ← x
〈n〉
ψ∗

10 Go to next iteration n← n+ 1

11 Final optimal point and value: get the best

sample (x∗〈N〉, z∗〈N〉) from the set X〈N〉

3.5. On the choice of α and µ

The SMGO parameter α affects only Mode θ: a
smaller α value leads to higher tendency for ex-
ploitation. Regarding µ, using a value close to one
is recommended, because a higher Lipschitz con-

stant overestimator leads to x
(i)
θ → x∗〈n〉 + x(i)

2
,

which would not fully utilize the Set Membership
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approach in exploitation. At the same time, ex-
cessively large values of µ increase the conserva-
tiveness of λ〈n〉. Moreover, in the computation of

λ〈n〉(x
(i,j)
ψ ), x

(i,j)
ψ ∈ X

〈n〉
ψ (19)-(20), with larger µ

values the terms ‖x(i,j)
ψ − x(i)‖, i, j = 1, . . . , n gain

a higher relative importance with respect to the
corresponding values of z(i) (see (9)-(10)), so that
the exploration mode will tend to select the mid-
points that are farthest away from the available
data-points.

4. Theoretical Properties

We now analyze the convergence and optimality
properties of the SMGO algorithm. First, we prove
that problem (17) is always feasible, thus showing
that the exploitation routine always returns a valid

candidate next point x
〈n〉
θ∗ .

Lemma 1. At any iteration n, problem (17) admits
at least one feasible point.

Proof. Take the pair (x(i), z(i)) such that

z(i) − µγ〈n〉‖x∗〈n〉 − x(i)‖=
max

(x,z)∈X〈n〉\(x∗〈n〉,z∗〈n〉)
z − µγ〈n〉‖x∗〈n〉 − x‖,

(21)
and consider the corresponding candidate exploita-

tion point x
(i)
θ given by (16). By construction we

have that

z(i)−µγ〈n〉‖x(i)
θ −x

(i)‖= z∗〈n〉−µγ〈n〉‖x(i)
θ −x

∗〈n〉‖,

and we want now to prove that this point also co-

incides with z〈n〉(x
(i)
θ ), i.e. that:

z(i) − µγ〈n〉‖x(i)
θ − x(i)‖ =

max
(x,z)∈X〈n〉

z − µγ〈n〉‖x(i)
θ − x‖. (22)

Assume now, for the purpose of contradiction,
that:

∃(x(j), z(j)) 6= (x(i), z(i)) :

z(j)−µγ〈n〉‖x(i)
θ −x

(j)‖ > z(i)−µγ〈n〉‖x(i)
θ −x

(i)‖,
(23)

thus invalidating (22). Then, denoting with a =
1
2 (1− si

µγ〈n〉
) (see (16)), we would have:

z(j) − µγ〈n〉‖x∗〈n〉 − x(j)‖ ≥

z(j) − µγ〈n〉‖x∗〈n〉 − x
(i)
θ ‖−µγ

〈n〉‖x(i)
θ − x(j)‖ >

z(i) − µγ〈n〉‖x(i)
θ − x(i)‖−µγ〈n〉‖x∗〈n〉 − x

(i)
θ ‖ =

z(i) − µγ〈n〉
(
‖x(i)

θ − x(i)‖+‖x(i)
θ − x∗〈n〉‖

)
=

z(i) − µγ〈n〉
(
(1− a)‖x∗〈n〉 − x(i)‖+a‖x∗〈n〉 − x(i)‖

)
=

z(i) − µγ〈n〉‖x∗〈n〉 − x(i)‖,

which contradicts equation (21). Then, (23) is

false, while (22) holds true, implying that point x
(i)
θ

satisfies constraint (17b), hence proving the result.

4.1. Convergence of SMGO algorithm

We next show that after finite iterations, an ε-
suboptimal point is obtained, as required by Prob-
lem 1. For simplicity, we consider the following
technical assumption, which in practice can be re-
placed by a vertex estimation mechanism presented
in Section 5.1. Let us denote with V ∈ N the num-
ber of vertices of the polytope X , and with c(v) the
v-th vertex.

Assumption 3. The starting data set X〈n0〉 con-
tains all the vertices of X : c(v) ∈ X〈n0〉, ∀v ∈
[1, . . . , V ].

We start by proving four lemmas that are instru-
mental to show SMGO convergence.

In the following, for a point x and positive scalar
r, denote with B(x, r) the closed hyper-ball:

B(x, r) = {y : ‖y − x‖≤ r}

Lemma 2. Mode θ will fail after a finite number
of iterations.

Proof. At iteration n, denote with G〈n〉 the subset
of the search space where a candidate test point is
accepted to perform an exploitation, i.e.,

G〈n〉 ,
{
x ∈ X : z〈n〉(x) < z∗〈n〉 − αγ〈n〉

}
.

When a candidate point inside this set is chosen
as x(n+1) in Mode θ, two cases arise:

1. The new sample does not change the current
best point x∗〈n〉. In this case, z(n+1) ≥ z∗〈n〉.
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Denote as B(x(n+1), rθ), the hyper-ball cen-
tered at x(n+1) with finite radius

rθ ,
z(n+1) − (z∗〈n〉 − αγ〈n〉)

µγ〈n+1〉 .

It follows that ∀x ∈ B(x(n+1), rθ)

z〈n+1〉(x) ≥ z∗〈n〉 − αγ〈n〉.

Therefore all the points inside the hyper-ball
are not eligible for exploitation. Hence, we
have:

G〈n+1〉 = G〈n〉 \ B(x(n+1), rθ)

i.e., G diminishes by a finite amount, which is
valid even when γ〈n〉 updates, because γ〈n〉 is
bounded by γo.

2. The new sample replaces the current best point
x∗〈n〉. In this case z(n+1) < z∗〈n〉 and therefore
G〈n+1〉 ⊂ G〈n〉 due to the new threshold. More-

over, the hyper-ball B(x(n+1), rθ), with rθ =
α

µ
around the new sample is also removed from G.

Hence, G〈n〉 = ∅ after finite iterations, and Mode θ
will fail, proving the lemma.

Lemma 3. Let Assumption 3 hold and consider
any unsampled point x̂ in the interior of X and any
sample x(i) ∈X〈n〉. Consider the open half-space:

Q =
{
x ∈ X : (x− x(i))>(x̂− x(i)) > 0

}
.

Then, there exists at least one sample x(j) ∈X〈n〉∩
Q, i 6= j.

Proof. Let us assume, for the purpose of contradic-
tion, that the lemma does not hold. That is, there
is no sample in the open half-space Q. Due to As-
sumption 3, this would also apply to all vertices
c(v), v = 1, . . . , V of X . Therefore, we would have:

(x̂− x(i))>(c(v) − x(i)) ≤ 0, ∀v = 1, . . . , V. (24)

Two cases could then arise:

1. Inequality in (24) applies strictly for at least
one vertex c(v). In this case, any such vertex
c(v) and x̂ would reside on opposite sides of the
hyper-plane

P ,
{
x : (x̂− x(i))>(x− x(i)) = 0

}
.

However, consider any w ∈ X . Since the latter
is a convex polytope, we can write

w =

V∑
v=1

bvc
(v) (25)

with 0 ≤ bv ≤ 1, v = 1, . . . , V , and
V∑
v=1

bv = 1.

Hence, it would apply that

∀w ∈ X , (x̂− x(i))>(w − x(i)) =

(x̂− x(i))>

(
V∑
v=1

bvc
(v) −

V∑
v=1

bvx
(i)

)
=

V∑
v=1

bv(x̂− x(i))>(c(v) − x(i)) < 0,

which would mean that all w ∈ X reside on the
opposite side of P with respect to x̂ . This can
only happen if x̂ /∈ X , falling in a contradiction
with the assumptions.

2. Equality in (24) applies for all c(v), v =
1, . . . , V . This would mean that all vertices
(and consequently, all w ∈ X ) belong to the
hyper-plane P containing x(i). In turn, this
would imply that either x̂ /∈ X (if ‖x̂−x(i)‖>
0), or x̂ = x(i), both of which fall in contradic-
tion with the assumptions.

Since both cases 1. and 2. lead to contradiction, the
claim of the lemma must be true, thus completing
the proof.

Lemma 4. Consider any unsampled point x̂ and
any radius r such that X〈n〉 ∩ B(x̂, r) = ∅. Then,
given Assumption 2 and a Lipschitz constant esti-
mate γ〈n〉 obtained with (7)-(8), it applies that

λ〈n〉(x̂) ≥ 2(µ− 1)γ〈n〉r. (26)

Proof. Consider the point x̂ and denote with
(x(a), z(a)), (x(b), z(b)) ∈ X〈n〉 the data pairs that
determine the upper and lower bounds z〈n〉(x̂),
z〈n〉(x̂), respectively, i.e:

z〈n〉(x̂) = min
k=1...n

(
z(k) + µγ〈n〉‖x̂− x(k)‖

)
=

z(a) + µγ〈n〉‖x̂− x(a)‖
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z〈n〉(x̂) = max
k=1,...,n

(
z(k) − µγ〈n〉‖x̂− x(k)‖

)
=

z(b) − µγ〈n〉‖x̂− x(b)‖.

Then, considering that X〈n〉 ∩ B(x̂, r) = ∅, that
(µ − 1) > 0, and taking into account (7)-(8) we
have:

λ〈n〉(x̂) = z〈n〉(x̂)− z〈n〉(x̂)
= z(a) − z(b)+

µγ〈n〉
(
‖x̂− x(a)‖+‖x̂− x(b)‖

)
≥ −γ〈n〉‖x(a) − x(b)‖+

µγ〈n〉
(
‖x̂− x(a)‖+‖x̂− x(b)‖

)
≥ −γ〈n〉

(
‖x̂− x(a)‖+‖x̂− x(b)‖

)
+

µγ〈n〉
(
‖x̂− x(a)‖+‖x̂− x(b)‖

)
≥ 2 (µ− 1) γ〈n〉r

which proves the result.

Note that in Lemma 4 we are not assuming that
the estimate γ〈n〉 is larger than γo: the result fol-
lows by how the estimate is computed, combined
with the use of µ > 1.

Lemma 5. Let Assumption 3 hold, and assume
that Mode ψ is undertaken infinitely often as n →
+∞. Then, for any x̂ ∈ X and any σ > 0, ∃nσ <
∞ such that

min
x(i)∈X〈nσ〉

‖x(i) − x̂‖< σ.

Proof. Consider any point x̂ ∈ X . If x̂ ∈ X〈n〉 for
some n < ∞, we have min

x(i)∈X〈n〉
‖x(i) − x̂‖= 0 and

the claim is trivially proven. Consider then the case
x̂ /∈X〈n〉, ∀n ∈ [1,+∞). Pick the nearest sample

x̄〈n〉 = min
x(i)∈X〈n〉

‖x(i) − x̂‖ (27)

and consider the open half-space:

Q =
{
x ∈ X : (x− x̄〈n〉)>(x̂− x̄〈n〉) > 0

}
.

Now, we select sample x̃〈n〉

x̃〈n〉 = arg min
x(j)∈X〈n〉∩Q

‖x(j) − x̄〈n〉‖. (28)

Such a sample is always guaranteed to exist, in force
of Lemma 3. We note that due to our selection
criterion for x̃〈n〉, the set

H =
{
x ∈ Q : ‖x− x̄〈n〉‖< ‖x̃〈n〉 − x̄〈n〉‖

}
does not have any sample in its interior, otherwise
any such sample should have been selected as x̃〈n〉

in (28). The geometry of H is an open half-hyper-
ball, with center at x̄〈n〉 and radius ‖x̃〈n〉 − x̄〈n〉‖.

We now show that a midpoint inside H is going
to be sampled after finite iterations. There exists at

least the midpoint m̂ ,
x̄〈n〉 + x̃〈n〉

2
in the interior

ofH. Consider the ball B(m̂, h) centered at m̂ with
radius h:

h = max
a∈R+

a

s.t.
B(m̂, a) ⊂ H

(29)

Then, recalling that there are no samples inside H,
by Lemma 4 we have:

λ〈n〉(m̂) ≥ 2(µ− 1)γ〈n〉h. (30)

Furthermore, we consider the set of points not be-
longing to H, whose uncertainty is larger than that
of m̂

R〈n〉(m̂) =
{
x /∈ H : λ〈n〉(x) > λ〈n〉(m̂)

}
.

We then sort all candidate midpoints in the set

X
〈n〉
ψ , by decreasing λ〈n〉 values:

M 〈n〉 ,
{
m
〈n〉
1 , . . . ,m

〈n〉
M

}
: λ〈n〉(m

〈n〉
k ) ≥ λ〈n〉(m〈n〉k+1)

where m
〈n〉
k = x

(i,j)
ψ for some x(i),x(j) ∈ X〈n〉

(see (19)) and M =
n(n− 1)

2
is the total num-

ber of segments at iteration n. In Mode ψ, the

first-ranking candidate m
〈n〉
1 is taken for sampling.

Its uncertainty is necessarily larger than λ〈n〉(m̂)
(otherwise m̂ would have been ranked higher), i.e.

m
〈n〉
1 ∈ R〈n〉(m̂). Assume, for the purpose of con-

tradiction, that points in H are never sampled.

At iteration n + 1, the midpoint m
〈n〉
1 /∈ H is thus

sampled and its uncertainty λ〈n+1〉(m
〈n〉
1 ) becomes

zero. Since this point does not belong to H, the
value of h in (29) is still valid, while the uncertainty
bound (30) may either be the same, or increase in
case γ〈n+1〉 > γ〈n〉 (see (8)). Moreover, for any
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point x ∈ X we have

λ〈n+1〉(x) ≤ 2µγ〈n+1〉‖x−m
〈n〉
1 ‖ (31)

as shown by direct application of (9)-(11). Consider

now the ball B(m
〈n〉
1 , rλ), where

rλ =

(
1− 1

µ

)
h. (32)

On the basis of (30), (31) and (32) we have that:

∀x ∈ B(m
〈n〉
1 , rλ), λ〈n+1〉(x) ≤ 2µγ〈n+1〉rλ =

2(µ− 1)γ〈n+1〉h ≤ λ〈n+1〉(m̂). (33)

Hence,

R〈n+1〉(m̂) = R〈n〉(m̂)\
(
R〈n〉(m̂) ∩ B(m

〈n〉
1 , rλ)

)
.

This means that the volume of set R〈n〉(m̂) dimin-
ishes by a finite quantity at each iteration, since the
value of h does not depend on n; and becomes null
after finite iterations, since Mode ψ is assumed to be
undertaken infinitely often. Denote with n̄−1 <∞
the iteration at which this happens. Then, no mid-
point outside the set H would have uncertainty
larger than λ〈n̄〉(m̂), so that a midpoint

{
x

(i,j)
ψ ∈X

〈n̄〉
ψ ∩H : λ〈n̄〉(x

(i,j)
ψ ) ≥ λ〈n̄〉(m̂)

}
will be ranked first in M 〈n̄−1〉 and sampled at iter-
ation n̄, thus falling in contradiction.
We thus demonstrated that, in finite iterations, a
point inside H is sampled. Moreover, denoting such
a point as x(n̄), by construction we have

‖x(n̄) − x̄〈n〉‖< ‖x̃〈n〉 − x̄〈n〉‖. (34)

Then, two cases may occur: either x(n̄) is closer to
x̂ than x̄〈n〉, or not. In the former case, repeating
the process from (27) we’ll have that x̄〈n̄〉 = x(n̄)

and x̃〈n̄〉 = x̄〈n〉. In the latter case, x̄〈n̄〉 = x̄〈n〉 and
x̃〈n̄〉 = x(n̄). In both cases, the radius of the half-
hyper-ball H shrinks because of (34). By induction
we thus have:

lim
n→∞

‖x̃〈n〉 − x̄〈n〉‖= 0. (35)

Next, still considering x̄〈n〉 as the nearest sample
to x̂ (27), we are going to show that there exists a

radius a > 0 such that

‖x− x̂‖ < ‖x̄〈n〉 − x̂‖,∀x ∈ Q ∩ B(x̄〈n〉, a) (36)

To this end, consider any point x ∈ Q and as-
sume, for the sake of contradiction, that (36) never
holds. This would mean that the nearest point to
x̂ on the segment connecting x̄〈n〉 to x is always
x̄〈n〉, no matter how close the two points are. In
turn, this would imply that:

d

da
‖((1− a)x̄〈n〉 + ax)− x̂‖

∣∣∣∣
a=0

≥ 0, (37)

i.e.,

1

‖x̄〈n〉 − x̂‖
(x̄〈n〉 − x̂)>(x− x̄〈n〉) ≥ 0

(x̂− x̄〈n〉)>(x− x̄〈n〉) ≤ 0

which would imply that x /∈ Q, thus falling in a con-
tradiction. Hence, the directional derivative (37)
must be negative for all x ∈ Q, meaning that there
exists a scalar a > 0 such that in the neighborhood
Q∩ B(x̄〈n〉, a) the property (36) holds.

Combining (35) and (36), we obtain that, after a
finite number k of iterations, the following condition
holds:

‖x̄〈n+k〉 − x̂‖ < ‖x̄〈n〉 − x̂‖.

This implies that

lim
n→∞

‖x̄〈n〉 − x̂‖= 0,

and, for any σ > 0, we finally have

∃nσ : min
x(i)∈X〈nσ〉

‖x(i) − x̂‖< σ

thus proving the lemma.

Theorem 1. Let Assumptions 1 and 3 hold. Then,
∀ε > 0, ∃nε <∞ : z∗〈nε〉 ≤ z∗ + ε.

Proof. Consider a point x̂ ∈ X ∗ (see (2)) and take

σ =
ε

γo
. For any n, denote

x̄〈n〉 = arg min
x(i)∈X〈n〉

‖x̂− x(i)‖

In virtue of Lemma 2, the exploration mode will be
called infinitely often. Now, by applying Lemma 5,

we have that ∃nσ < ∞ : ‖x̂ − x̄〈nσ〉‖ < σ =
ε

γo
.

Then, in virtue of Assumption 1 we have:
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fo(x
∗〈nσ〉)− fo(x̂) = z∗〈n〉 − z∗ ≤
fo(x̄

〈nσ〉)− fo(x̂) ≤ γo‖x̂− x̄〈nσ〉‖ < ε (38)

Thus proving the result with nε = nσ.

4.2. Optimality gap

Considering a run of the SMGO algorithm with
N iterations, we now analyze the gap between the
best sampled value and the actual global minimum,

δ〈N〉 = z〈N〉∗ − fo(x∗)

denoted as the optimality gap. In calculating such
a difference, the SM-based guarantees z〈N〉(x) ≤
fo(x) ≤ z〈N〉(x) can be utilized in the case of a
known Lipschitz constant γo. Hence, the upper

bound of the optimality gap δ
〈N〉

can be considered
as the difference between z〈N〉∗ and the minimum
lower bound z〈N〉 defined in (9) generated by data
set X〈N〉, i.e.

δ
〈N〉

= max
x∈X

(
z〈N〉∗ − z〈N〉(x)

)
= z〈N〉∗ − min

x∈X
z〈N〉(x) (39)

The calculation of min
x∈X

z〈N〉(x) in (39) entails cal-

culation of the hyperbolic Voronoi cells and of the
lower bounds at their vertices. Denoting with V 〈N〉

the set of such vertices generated from X〈N〉, (39)
can be expressed as

δ
〈N〉

= z〈N〉∗ − min
v∈V 〈N〉

z〈N〉(v). (40)

The acquisition of HVD vertices using the sam-
ples can be approached as described in [24], which
is referred for more information. The calculation
of HVD cells and vertices entail computations with
exponential complexity w.r.t. D [24]. However, an
interested user can obtain an upper bound on the
optimality gap by carrying out (40).

5. Computational Aspects

This section presents an analysis of the computa-
tional aspects of the proposed algorithm and possi-
ble improvements. The first aspect discussed is on
ensuring the coverage of X , followed by a discussion
on the computational complexity.

n iterations

copy
x

(n)

copy

initialization new sample

Figure 3: Corner mirroring of nearest sample point

5.1. On the coverage of the search set

The selection method for candidate points de-
scribed in Section 3 allows SMGO to only explore
the volume inside the convex hull of the sampled
points in X〈n0〉. Hence, in order to ensure explo-
ration throughout all the search set X , all its ver-
tices c(v) should also be considered in the candidate
points generation, as stated in Assumption 3. One
approach is to first evaluate fo on all c(v) before ac-
tually starting with exploitation/exploration. How-
ever, in the case of a hyperrectangle, this entails an
exponential number of long function calls w.r.t. di-
mensionality D.

To address this issue, a simple approach is pro-
posed in order to ensure coverage in X without ex-
plicitly calling fo to evaluate the corners. Moreover,
with this approach Assumption 3 is not needed any-
more for the theoretical results to hold. At each
iteration n, the midpoints between any sample and
all the vertices of X are included as candidate ex-
ploration samples, even if the vertices do not belong
to X〈n〉. Moreover, for the purpose of computing
the uncertainty of each midpoint, the cost function
value fo(c

(v)) at the v-th vertex c(v) is estimated
as:

fo(c
(v)) ≈ z(w), where w = arg min

k=1,...,n
‖x(k)−c(v)‖

(41)
i.e., equal to the cost function value at the near-
est sampled point. The concept of this strategy
is shown in Fig. 3. Thanks to Assumption 1 and
Lemma 5, with an increasing number of sample
points in X the estimate (41) approximates more
and more accurately the true function value at the
vertex.

5.2. On the computational burden

There are three main routines within an iteration
of SMGO: Lipschitz constant update, exploitation
by Mode θ routine, and eventually, if the expected
improvement threshold is not achieved, exploration
by Mode ψ. The worst-case SMGO complexity
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analysis assumes that each iteration eventually pro-
ceeds to Mode ψ.

The first routine compares the incoming n-th
sample with n − 1 existing ones, resulting in O(n)
complexity.

The Modes θ and ψ can be designed as iterative
routines as well to significantly improve the compu-
tational burden, as discussed in the following.

The exploitation Mode θ comprises the selection

of n−1 candidate points x
(i)
θ for each segment ln∗,i

from x∗〈n〉 to all the other sampled points according
to (15)-(16), and the calculation of z〈n〉 for each

x
(i)
θ using (9). Both are O(n) operations, leading

to a compounded complexity of O(n2). However,
when γ〈n〉 and x∗〈n〉 do not change from iteration

n − 1 to n, a cache can store x
(i)
θ locations and

corresponding z〈n〉. From (9), it is convenient to

save z(k̃) and ∆̃(i) , µγ〈n〉‖x(i)
θ − x(k̃)‖, where

k̃ = arg max
k∈[1...n]

(
z(k) − µγ〈n〉‖x(i)

θ − x(k)‖
)
.

In practice, information are saved1 about the hy-

percone that actually generated z〈n〉 for each x
(i)
θ .

As long as x∗〈n〉 stays the same, previously existing

x
(i)
θ locations do not need to be computed again.
Furthermore, calculating z〈n〉 for an existing ex-

ploitation point x
(i)
θ reduces to

z〈n〉(x
(i)
θ ) = max

(
z〈n−1〉(x

(i)
θ ), z(i)

new

)
(42)

where

z(i)
new = z(n) − µγ〈n〉‖x(i)

θ − x(n)‖

for an incoming sample (x(n), z(n)).

Note that when z〈n〉(x
(i)
θ ) changes due to (42),

z(k̃) = z(n) and ∆̃(i) = µγ〈n〉‖x(i)
θ − x(n)‖. As

a result, computing z〈n〉 for all existing candidate
points is O(n), i.e. O(1) for each. Now, consider
the situation when γ〈n〉 is updated, assuming that
x∗〈n〉 and k̃ do not change. This implies rescaling
∆̃(i) such that

∆̃
(i)
〈n〉 =

γ〈n〉

γ〈n−1〉 ∆̃
(i)
〈n−1〉 (43)

1It can be understood that z(k̃) is the value at the tip,
while ∆̃(i) is the height of the hypercone.

and updating z〈n〉 with the new sample (x(n), z(n))
using (42), still resulting in O(1) per candidate
point. This implies a Mode θ aggregate complexity
of O(n).

Finally, one new candidate point x
(n)
θ is evalu-

ated using (9), which is O(n). Hence, as long as
x∗〈n〉 does not change, the introduction of a cache
reduces Mode θ to O(n). However, when x∗〈n〉

changes, i.e. x∗〈n〉 = x(n), computing all x
(i)
θ lo-

cations must be repeated from the start, leading to
O(n2) worst-case complexity for Mode θ as stated
before.

As defined, Mode ψ generates
n(n− 1)

2
candi-

date points (midpoints among all existing samples)
at each iteration. Furthermore, the calculation of
λ〈n〉 for each candidate point is O(n), resulting in
O(n3) for each exploration iteration.

Note that behavior in Mode ψ does not depend
on the current best point, because n new segments
are added to the search set at iteration n. A cache
solution can be introduced also in this mode, up-
dating λ〈n〉-related values iteratively.

For each existing x
(i,j)
ψ , the values to be saved

are z(k̂) and ∆̂(i,j) (for z〈n〉), and z(ǩ) and ∆̌(i,j)

(for z〈n〉), where k̂ and ǩ are defined as

k̂ = arg min
k∈[1...n]

(
z(k) + µγ〈n〉‖x(i,j)

ψ − x(k)‖
)
,

ǩ = arg max
k∈[1...n]

(
z(k) − µγ〈n〉‖x(i,j)

ψ − x(k)‖
)
.

The iterative updates are performed using eq.
(42) and (43). This then results in O(1) for each
existing midpoint, and O(n) for each new midpoint
generated by new segments from incoming x(n) to
the n− 1 existing points. This results in O(n2) for
Mode ψ, and in turn, a O(n2) worst-case complex-
ity for SMGO.

Remark 1. Note that when γ〈n〉 is updated (which
always implies a growth of its value), the proposed
iterative implementation might result in more con-
servative bounds z〈n〉 and z〈n〉 than if repeatedly
recalculated at every iteration, i.e. lower z〈n〉 for
Mode θ, and larger λ〈n〉 in Mode ψ. This oc-
curs because with higher γ〈n〉-values the HVD lay-
out increasingly approaches that of a non-hyperbolic
Voronoi tessellation, i.e. the cones providing the

tightest bounds at any x
(i,j)
ψ could change when
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γ〈n+1〉 � γ〈n〉, and z〈
ˆ
k〉 and z〈

ˇ
k〉 would tend to the

nearest sample w.r.t. said x
(i,j)
ψ . These effects are

not accounted for by the iterative update procedure,
which assumes that the bound-generating cones re-
main the same. However, the theoretical properties
of SMGO are still valid with the iterative implemen-
tation. In fact, all the arguments for Lemma 2 are
valid also with iteratively-computed lower bounds.
Regarding the exploration mode, inequality (26) in
Lemma 4 is consistent with the more conservative
iteratively-computed γ〈n〉. Furthermore, when sam-

pling a new point m
〈n〉
1 , for which λ〈n+1〉(m

〈n〉
1 ) is

exactly computed, (33) still holds. Hence, all argu-
ments laid out in Lemma 5 still hold.

6. Performance Test Results

In this section, the proposed SMGO algorithm
is evaluated on well-known benchmarks, usually
employed in black-box optimization, comparing
its performance with representative Lipschitz-based
methods: DIRECT and AdaLIPO. In addition,
the Bayesian optimization approach (BayesianO)
is also considered in the tests. The results
are discussed in terms of iteration-based opti-
mization performance and computational times.
All scripts used for this section are available at
https://github.com/lorenzosabugjr/smgo.

6.1. Test parameters

Seven test functions of varying structure and di-
mensions are chosen for this test, covering a variety
of characteristics relevant to black-box optimization
benchmarks. Their search bounds, optimal values
and relevant features are summarized in Table 1.
A reasonable assumption in real-life applications is
that the black-box function has no available opti-
mal value. Hence, each algorithm is given a budget
of N = 500 long function evaluations for each opti-
mization run. The optimal results after the eval-
uation budget are then measured and compared
among the different algorithms, in what is referred
as a fixed-cost/budget comparison [25]. All com-
putations were performed in MATLAB 2020b on a
system with AMD Ryzen 9 3900X (3.80 GHz) and
32 GB RAM.

To assess the sensitivity of each algorithm to dif-
ferent initial information and randomized decisions,
100 independent runs (trials) were performed. For
each trial, the same randomly-generated starting
point is given to AdaLIPO, SMGO, and BayesianO.

On the other hand, DIRECT considers a fixed set of
search points, not allowing to randomize the start-
ing samples.

SMGO is implemented as described in Algorithm
1 with parameters α = 0.001 and µ = 1.025.
AdaLIPO is implemented as described in [18] with
parameter p = 0.1. DIRECT is implemented as
described in [14], not requiring any tuning param-
eter. Finally, the algorithm available in the Mat-
lab Statistics and Machine Learning Toolbox is em-
ployed for the BayesianO implementation, using the
provided default parameters.

6.2. Iteration-based performance

The evolution of the best sample z∗〈n〉 along
the iterations (n ∈ [50, 500]) for each algorithm
is shown in Figs. 4 and 5 for the Rosenbrock and
Deb’s functions, respectively. The graphs show the
distribution of the best sampled cost for the 100
independent runs. Note that the results of the DI-
RECT algorithm do not show dispersion due to the
fact that it is a deterministic search method. DI-
RECT follows a batch sampling strategy, hence the
graphs show for each n value, the best results for
the previously-sampled batches.

The Rosenbrock function is a standard test case
for gradient-based algorithms, with a unique global
minimum (unimodal) for D = 2; however it has
2 minima for D = 4 ∼ 30 [26]. The location
of x∗ is at (1, 1, . . . , 1), hence the classical search
bounds −10 ≤ xi ≤ 10 would be advantageous for
DIRECT, which invariably samples the center of
the search hyper-box. For this reason, the search
bounds are changed to move x∗ away from the cen-
ter.

As seen in Fig. 4, DIRECT has only improved
marginally the initial sampled cost after the 500
iterations. Also AdaLIPO achieved marginal im-
provements after 500 iterations. This might be as-
sociated to the completely randomized exploration
and exploitation decisions. On the other hand,
both SMGO and BayesianO achieved large im-
provements during the first 100 iterations, while
slight enhancements are observed during the final
400 iterations. SMGO exhibits a wider distribution
among different runs and, on average, achieves a
better result after 500 iterations.

In the case of Deb’s function #1, as shown
in Fig. 5, the presence of numerous global min-
ima causes a bad performance for DIRECT, which
barely improved its initial best cost. On the other
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Description Function definition f(x) Bounds z∗ Features

Rosenbrock
∑D
i=1[100(xi+1 − x2i )2 + (1− xi)2] −40 ≤ xi ≤ 5 0.0 unimodal,

non-separable

Styblinski-Tang 1
2

∑D
i=1

(
x4i − 16x2i + 5xi

)
−5 ≤ xi ≤ 5 −39.166D multimodal,

separable

Deb’s #1 1
D

∑D
i=1 sin6(5πxi) −1 ≤ xi ≤ 1 −1.0 multimodal,

separable,
numerous
global minima

Deb’s #2 1
D

∑D
i=1 sin6[5π(x

3/4
i − 0.05)] 0 ≤ xi ≤ 150 −1.0 multimodal,

separable,
numerous
global minima

Schwefel −
∑D
i=1 xisin

(√
|xi|
)

−500 ≤ xi ≤ 500 −418.982D multimodal,
separable,
numerous
local minima

Salomon 1−cos

(
2π
√∑D

i=1 x
2
i

)
+0.1

√∑D
i=1 x

2
i −40 ≤ xi ≤ 70 0 multimodal,

non-separable

Brown
∑D−1
i=1 (x2i )

(x2i+1+1) + (x2i+1)(x
2
i+1) −1 ≤ xi ≤ 4 0 multimodal,

non-separable

Table 1: Test functions used for comparative tests
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Figure 4: Optimal value distribution w.r.t. iterations,
10D Rosenbrock function (log scale)
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Figure 5: Optimal value distribution w.r.t. iterations,
10D Deb’s function #1
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hand, AdaLIPO, BayesianO, and SMGO have re-
sulted in similar results, achieving very similar aver-
age costs after the iteration limit, while BayesianO
shows more concentrated values among runs. In
this case the randomized mechanism of AdaLIPO
allows it to discover low-cost regions to improve the
best sample. Furthermore, Bayesian’s usage of a re-
sponse surface, and SMGO’s geometry-based can-
didate points derivation have become useful in look-
ing for low-cost regions in the search space.

A summary (mean best values) of the algorithms’
outcomes after 500 iterations are shown in Table 2.
Note that the results tabulated for DIRECT were
achieved at iterations which are a bit larger than
the pre-defined maximum N = 500, owing to its
batch-based samples generation. In most test cases,
BayesianO achieved the best average results, while
SMGO and DIRECT attained the best average per-
formance in 2 cases each. On the other hand,
AdaLIPO achieved fair results, even if it ranked
second-place or worse for most of the tested func-
tions.

Furthermore, for each test function (with the
same starting points across all algorithms), the
number of trials (out of 100) resulting in best re-
sults for each respective algorithm is shown in Ta-
ble 3. As with the average performance, BayesianO
achieved the most best trials in 9 out of the 13
tested functions. Furthermore, in Deb’s #1 (5D),
Schwefel (5D and 10D), and Salomon (5D and 10D),
it resulted in best results in almost all of the given
trials. On the other hand, SMGO had the most best
results in Rosenbrock and Deb’s #2 (10D), and had
the second largest count of best trials in Deb’s #1
(10D) and Deb’s #2 (5D). AdaLIPO registered the
second count of best trials in Deb’s #2 (10D), and
had no best trials for 4 functions. Lastly, DIRECT
had no best trials for 8 out of 13 test functions,
but took almost all the best results in the Brown
function (5D and 10D).

We have also compared the outcomes of SMGO
with the competitor methods using the Wilcoxon
and Kruskal-Wallis non-parametric statistical tests,
pairing the results by the shared random initial
point. Both test were performed with 5% sig-
nificance level and with the null hypothesis that
SMGO results are statistically similar to those from
the respective competitor method. The two tests
agreed that SMGO results were statistically similar
to AdaLIPO for Styblinski-Tang (5D), Deb’s #2
(5D, 10D), Schwefel (10D), and Brown (10D). Fur-
thermore, similarities were found between SMGO

and BayesianO for Deb’s #2 (10D). Given these
results, SMGO is found to have competitive results
compared with the considered global optimization
algorithms on the test functions employed in the
analysis.

6.3. Computational time

The computational time required to complete an
iteration for each considered algorithms is analyzed
for the case of the 5D Deb’s function #1 optimiza-
tion. Fig. 6 (in log scale) shows the time required
to complete an iteration as n increases. The mech-
anism of DIRECT calculates recursive hyperboxes
to be sampled by batches, hence the computational
time per iteration is not well defined, therefore re-
sults are not shown in the plot. For AdaLIPO
an almost flat line is observed, with 10 to 100 µs
per iteration, implying a computational time inde-
pendent of the iteration number. SMGO has re-
sulted in a polynomial complexity w.r.t. iterations,
which is expected from the computational analy-
sis presented in Section 5. Finally, BayesianO is
the most demanding algorithm, requiring compu-
tational times per iteration between 2 and 3 orders
of magnitude larger than SMGO in this test case.

The computational times observed for all the con-
sidered test functions have shown trends similar to
those on the 5D Debs function #1. Table 4 summa-
rizes the results, showing the total computational
time required to complete an optimization run. The
AdaLIPO algorithm, based on a simple mechanism
of randomized generation of exploitation and ex-
ploration points, always shows very fast computa-
tional times, not affected by the dimensionality of
the decision variable, scarcely affected by n, and
taking 0.01-0.02 s per optimization run for all the
test functions.

From the tests, BayesianO requires the largest
computational times, which achieved around 4-5 s
per iteration at n = 500 for most of the 10 dimen-
sions functions. On the other hand, SMGO exhibits
an intermediate per-iteration time around 100 µs to
10 ms for 5 dimensions functions and tens to hun-
dreds of ms for 10 dimensions functions. Further-
more, for SMGO the total optimization run time
when applied to 10 dimensions functions is around
10 times those employed for 5 dimensions functions.
However, this is significantly faster than BayesianO,
ranging from around 15 times shorter time for 10D
functions, to 70 times shorter time for 5D functions.

The observed computational times, combined
with the competitive optimization results presented
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Test function D DIRECT AdaLIPO SMGO BayesianO
Rosenbrock 10 1.17 E +5 1.77 E +7 8.63 E +4 9.35 E +4

Styblinski-Tang
5 -1.95 E +2 -1.59 E +2 -1.58 E +2 -1.95 E +2
10 -3.19 E +2 -2.61 E +2 -2.96 E +2 -3.33 E +2

Deb’s #1
5 -5.29 E−1 -8.29 E−1 -8.07 E−1 -9.68 E−1
10 -2.11 E−1 -6.74 E−1 -6.97 E−1 -7.35 E−1

Deb’s #2
5 -5.97 E−1 -8.32 E−1 -8.33 E−1 -8.59 E−1
10 -3.98 E−1 -6.72 E−1 -6.81 E−1 -6.77 E−1

Schwefel
5 -1.47 E +3 -1.28 E +3 -1.23 E +3 -1.90 E +3
10 -1.48 E +3 -1.83 E +3 -1.79 E +3 -2.67 E +3

Salomon
5 3.45 E 0 2.64 E 0 2.19 E 0 6.38 E -1
10 5.05 E 0 5.79 E 0 5.29 E 0 2.40 E 0

Brown
5 6.46 E -4 1.39 E -1 8.29 E -2 3.90 E -3
10 4.76 E -2 9.78 E -1 9.61 E -1 1.65 E -1

Table 2: Results summary for comparative tests:
averages of z∗〈n〉 over 100 runs, after 500 iterations per trial.

Test function D
DIRECT AdaLIPO SMGO BayesianO
1st 2nd 1st 2nd 1st 2nd 1st 2nd

Rosenbrock 10 3 34 0 0 75 12 22 54

Styblinski-Tang
5 12 88 0 0 0 0 88 12
10 15 71 0 0 8 15 77 14

Deb’s #1
5 0 0 2 61 2 35 96 4
10 0 0 12 37 37 25 51 38

Deb’s #2
5 0 0 27 28 28 36 45 36
10 0 0 29 28 44 25 27 47

Schwefel
5 0 82 1 8 0 9 99 1
10 0 0 0 56 0 44 100 0

Salomon
5 0 0 0 30 0 70 100 0
10 0 48 0 8 0 44 100 0

Brown
5 98 2 0 0 0 0 2 98
10 100 0 0 0 0 0 0 100

Table 3: Results summary for comparative tests:
number of best and 2nd best trials for the tested algorithms

Test function D AdaLIPO SMGO BayesianO
Rosenbrock 10 0.017 74.96 1071.04

Styblinski-Tang
5 0.013 7.71 511.66
10 0.014 75.01 1085.11

Deb’s #1
5 0.012 7.71 574.08
10 0.014 74.64 1164.80

Deb’s #2
5 0.012 7.72 576.63
10 0.014 73.97 1176.10

Schwefel
5 0.011 7.77 583.24
10 0.014 75.13 1188.08

Salomon
5 0.013 7.63 643.25
10 0.015 75.08 1033.54

Brown
5 0.012 7.82 476.40
10 0.013 75.47 886.81

Table 4: Comparison of total optimization run times, averaged over the
100 independent runs for each test case (all in seconds)

in Figs. 4-5, and Table 2, indicate that the pro-
posed SMGO algorithm shows a good trade-off be-
tween optimization performance and computational
speed, compared to the other considered methods.

7. Conclusions and Further Work

In this work a sequential algorithm for global
optimization of black-box functions has been pro-
posed. The SMGO algorithm assumes a Lipschitz-
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Figure 6: Calculation times on 5D Deb’s #1 (log scale)

continuous cost function and is based on a nonlin-
ear Set Membership function approximation. The
selection of the test points where the black-box
function is evaluated is carried out by solving sim-
plified geometry-based problems on the guaran-
teed lower bounds or uncertainty intervals of the
function, provided by a Set Membership model. It
is shown that the SMGO algorithm finds a sub-
optimal solution with desired tolerance after fi-
nite iterations and converges asymptotically to the
global minimum. Furthermore, the computational
complexity of the algorithm is discussed and a
cache-based solution is introduced to improve the
computational burden.

The proposed method is evaluated against other
representative global optimization methods on sev-
eral test functions, comparing the quality of the
best solutions found after a fixed number of calls to
the black-box function. The results show the com-
petitiveness of the SMGO algorithm compared to
state of the art methods found in literature. Ongo-
ing research aims to extend the algorithm to include
constraints and its evaluation on experimental ap-
plications.
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