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Abstract

This paper describes the design of an advanced control algorithm for the cool-
ing system of a large business and commercial center. This complex system
comprises phenomena that are difficult to model with physical principles, such
as the demand of the users, heat transport phenomena in a large and complex
pipe network, and the behaviour of cooling elements installed by third parties.
Motivated by these features, a learning-based model predictive control (MPC)
approach is proposed in this paper. The data-driven procedure requires only
high-level prior information, making it is easy to implement and to replicate on
similar systems. Specifically, to derive a dynamic model of the plant, a compari-
son among AutoRegeressive eXogenous (ARX), Output Error (OE), Echo State
Networks (ESN) and Long Short Term Memory (LSTM) neural networks has
been performed. The latter have been eventually selected in view of their higher
predictive performance on a validation dataset. Then, an output feedback MPC
scheme has been designed to cope with the nonlinearity of the model and the
presence of boolean control inputs, corresponding to the on/off switching of
the cooling units. The resulting MPC algorithm has been tested on a grey-box
model of the system, showing significant potential improvements with respect
to the baseline controller currently employed.

Keywords: Cooling station, control for energy saving, learning-based
predictive control, constrained control, nonlinear control, HVAC systems.

1. Introduction

According to [1], over 38% of the energy consumption in Europe is due to
buildings and, within that, about 76% pertains to Heating Ventilation and Air
Conditioning (HVAC) systems [2]. This motivates the research efforts aimed at
improving the efficiency of HVACs by means of sophisticated modelling, sim-
ulation and control strategies. Models and simulation tools of HVAC systems
can be based on black-box identification or physical equations, see the reviews
[3], [4], [5], [6] and the references therein. As for the design of efficient con-
trol systems, several control strategies have been investigated over the years,
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starting from classical controllers with Proportional-Integral-Derivative (PID)
action [7], to more recent research applying agent-based control systems [8], [9],
adaptive fuzzy algorithms [10], [11], [12], or artificial intelligence methods as
reviewed in [13]. Model Predictive Control (MPC) has been widely studied in
view of the possibility to include into the problem formulation state and input
constraints, to consider nonlinear systems, to cope with different goals, like tem-
perature tracking and power consumption minimization, and to take advantage
of the available disturbance predictions, such as weather forecasts or building
occupancy, see the review papers [14], [15], [16], [17]. However, an important
drawback of MPC for HVAC control is the need of a mathematical description
of the thermal behaviour of the building: if done with first-principles, such a
modeling task is difficult and hardly portable from one building to another [13].
In this paper, we consider the design of an advanced control algorithm for the
cooling station of a large business and commercial site located in Milan and
composed of five buildings with fifteen floors each, see Figure 1. The buildings
contain offices and commercial spaces, two server rooms, a canteen, an audi-
torium, and other facilities. About 7000 people work in the center Monday to
Friday, and about 2000 people are present on Saturday, while on Sunday the
main thermal load is due to the servers only. The cooling station, consisting of
four chillers and one absorber, provides cold water to the offices air-conditioning
in spring and summer, while it disperses the heat produced by the servers and
the data centers over the whole year.
A semi-physical (i.e., grey-box) model of this system, based on individual mod-
els of the system’s devices, i.e. chillers, cooling towers, pipes, absorber, has been
developed in [18] and [19], see also [20] for a detailed derivation of the overall
model. These models have been obtained as a mix of physical (i.e., mass and
energy balance) equations and black-box components identified based on avail-
able plant data. Then, the individual models of the devices have been assembled
to obtain the overall plant model, subsequently used to re-tune the relay-based
control system currently implemented. We refer to such a control system as
“baseline” controller.
The grey-box model presented in [18] and [19] well describes the plant dynam-
ics, however, its derivation and tuning turned out to be a very time consuming
task. Moreover, in many cases the information required to derive such a model
might not be available, due to, for example, changes that occurred to the plant
over the years or installation of components from third parties. In these cases,
retrieving such information might require even longer time and additional costs.
For this reason, in this paper we propose an alternative, fully data-driven ap-
proach, which requires only very high-level prior information and is therefore
easily applicable to design MPC algorithms for complex HVAC systems. At
first, different black box dynamic models with linear and nonlinear structures
have been estimated, in order to select the best approach for the problem at
hand. Specifically, in the linear case Autoregressive eXogenous (ARX) and Out-
put Error (OE) models have been considered [21], while in the nonlinear case
ECHO state [22], [23], and Long Short Term Memory (LSTM) [24] recurrent
neural networks have been tested. Among the estimated models, LSTM proved
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to be the most effective ones and have been used in the subsequent control de-
sign phase.
The MPC controller has been designed based on the estimated nonlinear LSTM
model. In order to reduce the computational burden required to solve the un-
derlying optimization problem in each sampling period, successive linearization
along the predicted state trajectories has been adopted, inspired by the algo-
rithm in [25]. In this way, and by considering a quadratic cost function, the
optimization problem to be solved on line turns out to be an Integer Quadratic
Programming (IQP) one, since the control variables are boolean, and represent
the on/off switching of the chillers. The designed MPC, used to control the
semi-physical model, achieves good results in terms of constraints satisfaction
and reduced power consumption (-14%) with respect to the baseline controller.

Figure 1: Business/Commercial area considered in this paper

The main contributions we provide in the present paper are:

• The application of a recent and powerful class of recurrent Neural Net-
works, i.e. LSTM networks, as a dynamical model of a real complex
system, starting from the dataset sampled in its routine operations.

• The design of a novel predictive control scheme embedding the derived
LSTM model in the controller, and endowed with advanced features such
as the Extended Kalman filter and the application of a linearization algo-
rithm to lighten the computational burden.

• The successful test of the designed control scheme embedding the learned
model on a semi-physical model of the same system, described in previous
contributions and proven to accurately reproduce the real system behavior.
In this way we considered also a mismatch between the model (i.e. LSTM)
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and the plant (i.e. the semi-physical model), that is unavoidable in real
applications.

The whole learning-based algorithm requires only high-level information
about the plant, i.e. the involved variables, namely the inputs (active chillers),
disturbances (external conditions, waste heat available to the absorber) and out-
puts (delivery and return temperatures, and absorbed energy). This, together
with the relatively easy training of LSTM networks, eases the applicability of
this approach to similar plants, where normally these quantities are already
logged by standard control systems and/or devices. The paper is organized as
follows. In Section 2 the cooling station is described. The adopted identification
procedures are described and compared in Section 3. Section 4 presents the con-
trol algorithm and its application to the grey-box model is shown in Section 5.
Finally, conclusions and hints for future developments are discussed in Section
6.

Notation Given a vector v ∈ Rn, we denote v.2 the vector obtained by
squaring vector v element-wise, and diag(v) the diagonal matrix with v on the
diagonal. Given a symmetric matrix Q � 0, we denote ||v||2Q = vTQv. Matrix
0a,b is the null matrix of dimension a, b. We denote the Hadamard (element-
wise) product with ◦.

2. Plant description and control goals

The synoptic of the cooling station is shown in Figure 2. The plant is
composed of the following four different subsystems.

Manifolds Two main recirculation loops are present. The primary loop in-
cludes the delivery manifold, the by-pass valve, and the return manifold,
and it is closed across the chillers and the absorption chiller. The by-pass
valve acts as a link between the delivery and return manifolds; its role is
to guarantee the hydraulic balancing. The water usually flows through the
valve from the delivery to the return manifold, however in some situations
it may also flow in the opposite way. In the latter case, the temperature
measured in the delivery manifold may be different from the one that is
actually experienced by the users. The secondary loop pumps water from
the primary loop to the users, via a group of four modulating pumps, and
channels it back to the cooling machines. This loop splits in three col-
lectors leading to different groups of end-users, both on the forward and
on the return line. The secondary loop pipes can be very long, so that
physical transport delays, solar radiation, and thermal exchange with the
environment are significant.

Chillers Chillers are electric cooling machines that remove heat from water
and refrigerate it. Each one includes a cooling tower, condensing water
pumps, and chilled water distribution pumps. The distribution pumps
can operate only according to an on/off behaviour. When switched on,
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Figure 2: Synoptic scheme of the system under analysis

they circulate water with a constant flow rate, while when they are in the
off state the water flowing through the chillers is not cooled, and its flow
rate depends on the pressure drop between the delivery and the return
manifolds. The flow rate in off conditions is crucial to guarantee a proper
mass balance in the system.

Absorption chiller Absorption chillers, or absorbers, are thermal machines
that refrigerate water by exploiting the heat provided by external sys-
tems, such as boilers or heat generators, avoiding heat dispersion to the
environment, so increasing the overall efficiency of the station. Therefore,
absorbers essentially behave as thermal pumps in parallel configuration
with the chillers. Their behaviour significantly depends on external vari-
ables, and for this reason their modelling is a difficult task.

Users The users consist of offices, meeting rooms, server rooms, shops, etc.,
in the five buildings and the rooftop. They receive water from the three
collectors in the secondary loop and warm it depending on their requests.
In total, the users are divided in eight end users, each one having inlet
and outlet temperature measures.

2.1. Control goals

The goal of the control system is to regulate the switching pattern of the
chillers in order to provide cooled water to the users. This means that the
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cooling station must guarantee a balance between the thermal power requested
by the users and the one produced by the station itself. The available control
variables are the chillers’ status, i.e. binary variables si, i = 1, ..., 4 representing
the on/off condition of any chiller. As for the absorption chiller, it is considered
always on when there is waste heat available from the hot circuit; therefore, it
is not taken as a decision variable, but it acts as a disturbance in the control
system.
The control objectives, sometimes conflicting, are:

• To make the water temperature in the delivery manifold lie in a given
range, without exceeding bounds for a long time interval, and stay close
to a set-point value of 8.5◦C.

• To avoid the activation of the chillers for short intervals. In fact, the chiller
activation for too short time slots entails a cost in terms of wearing of the
machine and of power waste, and is not useful to improve the performance
of the plant.

• To minimize the number of active chillers (i.e., in on state) to reduce the
power consumption.

• To switch off the chillers during night and weekends. In fact, in these
periods the thermal load requested by the users is small and in many
cases the absorption chiller can compensate for it.

• To exploit the absorption chiller as much as possible.

• To balance the use of the four chillers equally activated to help balancing
their use.

3. Model identification

3.1. Dataset and model structures

The available experimental data comprise the evolution of hundreds of plant
variables along the period May 2016 - October 2016. Data have been collected
with sampling time Ts = 60 s and in closed-loop working conditions, i.e. un-
der relay-based control (baseline controller) aimed at maintaining the water
temperature in the delivery manifold around 8.5oC. All the data used in the
identification procedure have been normalized with respect to their mean and
standard deviation.
The identified model shall properly describe the dynamics of the following out-
put variables: (i) the temperatures Tman, Tret in the delivery and return man-
ifolds, respectively. These models are needed to enforce, in the control design
phase, suitable safety and comfort constraints; (ii) the power Qc absorbed by
the chillers, which is essentially the cost to be minimized; (iii) the users’ power
consumption Qu. The latter is used to estimate, and possibly predict, the ther-
mal load to be compensated by the chillers.
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The available model inputs are the number of active chillers, the absorber’s
power Qhot, the external temperature Text and humidity Hext, the day of the
week, and the time of the day.

According to a well-established procedure, see [21], the identification phase
has been performed on a subset of the data (identification set), while the model
performances have been cross-validated on a further data set (validation set).
Four different model structures have been taken into consideration: 1) linear
ARX and 2) OE models, see [21]; 3) ECHO state recurrent neural networks,
see [22, 26]; 4) LSTM neural networks, see Section 3.2. The accuracy of the
estimated models - regarding the dynamics of Tman and Tret - has been assessed
by computing the corresponding Normalized Root Mean Square Error (NRMSE)
on the validation data. The results are reported in Table 1, which clearly show

NRMSE

ARX OE ECHO LSTM

Tman 0.0758 0.0571 0.0489 0.0398
Tret 0.0726 0.0480 0.0405 0.0349

Table 1: Comparison between NRMSE (validation data) of the identified linear and nonlinear
models

that LSTM networks outperform the other model structures. For this reason,
LSTM networks have been selected and used to model the overall plant and to
design the predictive control algorithm.

3.2. LSTM models

The general structure of the LSTM models used in this work is the following.
x(k + 1) = σg(Wf u(k) + Uf ξ(k) + bf ) ◦ x(k)+

σg(Wi u(k) + Ui ξ(k) + bi ) ◦ σc(Wc u(k) + Uc ξ(k) + bc )

ξ(k + 1) = σg(Wou(k) + Uoξ(k) + bo) ◦ σc(x(k + 1))

y(k) = Woutξ(k) + bout

(1)

In (1), u ∈ Rm is the input vector, [xT , ξT ]T ∈ Rn is the network state
vector, while y ∈ Rp is the output vector. The vector x ∈ Rnx is also de-
noted hidden state, while ξ ∈ Rnx is denoted output state, where nx = n/2.
(Wf ,Wi,Wo,Wc) ∈ Rnx×m, Wout ∈ Rp×nx , (Uf , Ui, Uo, Uc) ∈ Rnx×nx are
weighting matrices, (bf , bi, bo, bc) ∈ Rnx , bout ∈ Rp are biasing vectors, and
σc(◦) = tanh(◦) ∈ (−1, 1) and σg(◦) = 1

1+e−◦ ∈ (0, 1) are the so-called activa-
tion functions.
Two different submodels with this structure have been identified separately, as
described below.
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3.2.1. Model of the delivery and return manifolds temperatures

These models describe the dynamics of the delivery and return temperatures
Tman and Tret, respectively, inside the manifolds. The inputs include all the
external signals affecting the plant, namely the absorber power Qhot, the users’
power request Qu, the external temperature Text, the external relative humidity
Hext, and the state of the chillers. To represent the latter, we use

∑4
i=1 s

i, i.e,
the sum of the binary variables representing the chillers’ status. Note also that,
while the absorber power Qhot is measured, the users’ power request Qu is, in
turn, obtained with the estimated model discussed later on in Section 3.3.
A comparison between the real transients of Tman and Tret, collected in about
three days, and the outputs of the estimated LSTM models is reported in Figure
3.
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Figure 3: LSTM with 150 hidden states model - Temperature profile in the delivery manifold
(a) and in the return manifold (b).

3.2.2. Chillers’ power consumption

An LSTM recurrent network has also been used to model the power Qc ab-
sorbed by the chillers. The inputs of the model are the same already considered
for Tman and Tret. The NRMSE obtained with the identification and the valida-

NRMSEtrain NRMSEtest

4∑
i=1

P ich 0.0814 0.0889

Table 2: NRMSE of the LSTM model for absorbed power

tion data is reported in Table 2, while Figure 4 shows an example of measured
and estimated power in the validation test.
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Figure 4: LSTM model, with 200 states, of the power Qc consumed by the chillers. The figure
displays two weeks of data.

3.3. Model of the users’ consumption

In this work we use the estimator of the users’ consumption Qu - during
the working days of the week (Monday-Friday), and weekends (Saturday and
Sunday) - described in [18] and [19]. It consists of two different feedforward
networks with one hidden layer. The inputs of these networks are the exter-
nal humidity and temperature, the day of the week and the time of the day,
expressed in minutes.

3.4. Overall model

By interconnecting the above-described black-box models, the overall system
model is obtained, presented in Figure 5. Its mathematical equation is of the
form:

χ(k + 1) = η(χ(k), u(k), d(k)) (2)

y(k) = g(χ(k)) (3)

The control input u ∈ {0, 1, 2, 3, 4} is the number of active chillers, while d =
[ Qhot Text Hext day min ]T is the vector of exogenous variables. All the
elements of d can be predicted based on the management of the plant (Qhot),
the weather forecasts (Text, Hext), and the considered time instant (day, min).
Vector χ is the state of the overall model, while the output

y(k) =

[
y1(k)
y2(k)

]
=

[
g1(χ(k))
g2(χ(k))

]
is composed of two sub-vectors: measurable outputs y1 = [ Tman Tret ]T and
non-measurable ones y2 = [ Qc Qu ]T .

9



Figure 5: Block scheme of the LSTM model

4. Control design

The control system proposed in this paper is composed of a state estimator
and an MPC controller, as described below.

4.1. State estimation

The estimate of the states of system (2) is required to implement the state-
feedback MPC algorithm presented in the following. To this end, an Extended
Kalman Filter (EKF), able to cope with nonlinear systems, see [27], has been
implemented with the following structure:

χ̃(k + 1) = η(χ̃(k), u(k), d(k)) + L(k)[y1(k)− ỹ1(k))] (4)

ỹ1(k) = g1(χ̃(k)) (5)

where χ̃(k) and ỹ1(k) are the estimates of χ(k) and y1(k), respectively. L(k)
is the time-varying gain obtained by linearization of the system at the current
estimate, see again [27]. Notably, the matrices of the linearized model are
relatively straightforward to be computed analytically in view of the fact that
(2) is obtained based on the LSTM model structure (1).
Note also that the estimator is fed with a subset of the output vector, i.e. y1(k),
which contains only the measurable variables.

4.2. Successive linearization approach

In MPC, at any time instant k the control law is computed by minimiz-
ing a suitable cost function under the constraint given by the dynamics of the
system under control, besides state and control limitations. The cost function
typically penalizes, over a prediction horizon of length N , the future control
variables u(k + i), i = 0, ..., N − 1, and the future deviations of the output
y(k+ i), i = 1, ..., N , with respect to given reference values. The solution to the
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resulting optimization problem may be difficult to compute when the system is
nonlinear. An efficient approach to overcome this limitation is to linearize the
system’s dynamics around the predicted future trajectories, as proposed in [25],
thus approximating the system with a Linear Time-Varying (LTV) model. This
linearization procedure is described in the following, while the considered opti-
mization problem is formally stated at the end of this section.
At time k, consider a prediction horizon of length N and a candidate input
sequence

Û(k) =
[
û(k)T û(k + 1)T . . . û(k +N − 2)T û(k +N − 1)T

]T
The sequence Û(k) can be defined based on the optimal input sequence, U◦(k−
1), computed at time instant k − 1

U◦(k − 1) =
[
u◦

T

k−1|k−1 u◦
T

k|k−1 . . . u◦
T

k+N−2|k−1

]T
,

where for a generic variable x, xk+j|k denotes its value pertaining to time step

k + j predicted at time k. In particular, one can set Û(k) as:

Û(k) =
[
u◦

T

k|k−1 . . . u◦
T

k+N−2|k−1 u◦
T

k+N−2|k−1

]T
where the term u◦k+N−2|k−1 is considered twice as a reasonable estimate of
u◦k+N−1|k−1. In addition, define the vector of disturbance predictions

D̂(k) =
[
d̂(k)T d̂(k + 1)T . . . d̂(k +N − 1)T

]T
Letting χ̂(k) be the actual state estimate and considering the trajectory gen-

erated using Û(k) we can compute the predicted state χ̂(k + i), i = 1, . . . , N
according to

χ̂ (k + i+ 1) = η
(
χ̂(k + i), û(k + i), d̂(k + i)

)
, i = 0, 1, . . . , N − 1 (6)

At this point we can define the linearized system matrices as

Ak+i =
∂η

∂χ

∣∣∣∣
χ̂(k+i),û(k+i), d̂(k+i)

Bk+i =
∂η

∂u

∣∣∣∣
χ̂(k+i),û(k+i), d̂(k+i)

Mk+i =
∂η

∂d

∣∣∣∣
χ̂(k+i),û(k+i), d̂(k+i)

(7)

resulting in the linear time-varying system (see [20]):

χ(k + i+ 1) = Ak+iχ(k + i) +Bk+iu (k + i) +Mk+id̂(k + i) + h(k + i) (8)

where the additive term

h (k + i) = χ̂(k + i+ 1)− (Ak+iχ̂(k + i) +Bk+iû(k + i) +Mk+id̂(k + i)) (9)

can be computed at time k over the whole horizon i = 1, . . . , N − 1.
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4.3. Reference input trajectory definition

In this section we describe how the reference input trajectory, to be used in
the cost function, is defined. The computation is based on the following available
trajectories: (i) the prediction of the absorber’s available power Qhot(k + i),
i = 0, . . . , N − 1; (ii) the prediction of the users’ power request Qu(k + i), i =
0, . . . , N − 1; (iii) the nominal power absorbed by each chiller Qcu. Exploiting
this information, we predict the number of chillers required to be active during
the prediction horizon as

ur(k + i) = round

(
Qu(k + i)−Qhot(k + i)

Qcu

)
(10)

In short, we define

Ur(k) =
[
uTr (k) uTr (k + 1) ... uTr (k +N − 1)

]T
(11)

4.4. Disturbance compensation

The state estimate provided by the described EKF at each time instant is
exploited at every optimization occurrence as initial state to compute the pre-
dicted trajectories thanks to the estimated LSTM model. This estimate suffers
naturally of model/plant mismatch given the intrinsic difference between the
real plant (simulator) and the LSTM model. In order to partially compensate
it, according to [28], we provide the controller with a signal e(k) = y1(k)− ỹ1(k)
that is added as a biasing term to the future output predictions.

4.5. Optimization problem and MPC algorithm

The MPC problem has been defined by choosing the prediction horizon
N = 120, corresponding to two hours of time, and long enough to include
the dominant dynamics of the system. Moreover, in order to reduce the overall
computational burden associated with the solution of the underlying optimiza-
tion problem, it has been assumed that the control variable can vary only every
M = 20 minutes, so that the total number of variations in the considered horizon
is Ns = N/M = 6. This choice is motivated also by the cooling dynamics of the
chillers, which settles in about 10 min, and can not be switched so frequently.

The vector of optimization variables is defined as

Ū(k) =
[
u(k)T u(k +M)T ... u(k + (Ns − 1)M)T

]T
(12)

and the control variables are defined at any time instant as

u(k + i) = u(k +

⌊
i

M

⌋
M) , i = 0, ..., N − 1 (13)

and collected in vector

U(k) =
[
u(k)T u(k + 1)T ... u(k +N − 1)T

]T
(14)
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In addition, as customary in MPC, the vector of control increments

δŪ(k) = Ū(k)− Ū(k −M) (15)

is weighted in the cost function to reduce the variability of the MPC control
action over time, and consequently limit the switches of the chillers. Moreover,
letting

Ũ(k) =
[
uo

T

k|k−M uo
T

k+M |k−M ... uo
T

k+(Ns−2)M |k−M

]T
(16)

it is also worth penalizing the vector difference

δŨ(k) = Ū(k)− Ũ(k) (17)

to reduce the effects of the linearization error due to the procedure described in
Section 4.2. We define the difference

δUr(k) = U(k)− Ur(k) (18)

which can be included in the cost function to force the future control action
to be close to the predicted ones based on the future expected evolution of the
external environmental and load conditions.

Denoting with Λ(k) a vector of nonnegative slack variables introduced to
guarantee the feasibility of the problem at any time instant, see [29], the opti-
mization problem is:

min
Ū(k),Λ(k)

J = ||Ū(k)||2R + ||δŪ(k)||2∆R + ||δŨ(k)||2
∆R̃

+ ||δUr(k)||2∆Rr
+ ρ||Λ(k)||1

(19)
The minimization of (19) at any time instant k must be performed subject to the
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following set of constraints, where inequalities between vectors are element-wise:

u(k + i) = u(k +

⌊
i

M

⌋
M) , i = 0, ..., N − 1 (20a)

χ∗(k) = χ̃(k) (20b)

χ̂(k) = χ̃(k) (20c)

χ∗(k + i+ 1) = Ak+iχ
∗(k + i) +Bk+iu (k + i) +Mk+id̂(k + i) + h(k + i),

i = 0, ..., N − 1 (20d)

χ̂ (k + i+ 1) = η
(
χ̂(k + i), û(k + i), d̂(k + i)

)
, i = 0, 1, . . . , N − 1 (20e)

h (k + i) = χ̂(k + i+ 1)− (Ak+iχ̂(k + i) +Bk+iû(k + i) +Mk+id̂(k + i)),

i = 0, ..., N − 1 (20f)

χ̃(k + 1) = η(χ̃(k), u(k), d(k)) + L(k)[y(k)− g(χ̃(k))] (20g)

y∗1(k + i) = g1(χ∗(k + i)) + e(k), i = 0, ..., N − 1 (20h)

Ymin − Λ(k) ≤ y∗1(k + i) ≤ Ymax + Λ(k), i = 0, ..., N − 1 (20i)

0 ≤ U(k) ≤ 4 (20j)

−1 ≤ δŪ(k) ≤ 1 (20k)

−1 ≤ δŨ(k) ≤ 1 (20l)

Λ(k) ≥ 0 (20m)

Where the matrices Ak+i, Bk+i, Mk+i are defined in (7), the positive definite
diagonal matrices R, ∆R, ∆R̃ ∈ RNsm×Nsm and ∆Rr ∈ RNm×Nm in (19) are
the tunable parameters of the controller, while ρ is a sufficiently large weight so
that Λ(k) is close to zero when a feasible solution exists.
The effects of these parameters on the control tuning can be summarized as
follows:

• Larger values of R elements induces the controller to decrease the overall
number of active chillers;

• Larger values of ∆R elements induces the controller to reduce the overall
number of switches;

• Larger values of ∆R̃ elements induces the controller to reduce the devi-
ation of the optimal solution from the candidate solution Û(k) used to
generate the state trajectory for linearization;

• Larger values of ∆Rr elements induces the controller to reduce the devi-
ation of the optimal solution from the reference trajectory Ur(k);

• ρ is a penalty parameter to force the slack variables Λ(k) to be close to
zero when a feasible solution exists.

In (20i), Ymin =
[
TmanMin TretMin

]T
and Ymax =

[
TmanMax TretMax

]T
specify the minimum and maximum values allowable to the temperatures inside
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the manifolds. The constraints on δŪ(k) are included to force the control varia-
tion at successive time instants to be at most equal to one, while the constraints
on δŨ(k) are introduced to force the real control variable to be close to the one
used in the linearization procedure.
Once the optimal control vector Ū(k) has been computed, and according to a
standard receding horizon principle, only its first element uok|k is applied and
the overall optimization procedure is repeated M time instants later.

Overall, the complete control scheme is presented in Figure 6, where the
process is represented by the physical simulator described in [20].

Figure 6: Control scheme of the plant

5. Numerical results

The presented control scheme has been tested in simulation. The design
parameters are reported in Table 3.

Parameters V alue
ρ 109

R diag(15)
∆R diag(55)

∆R̃ diag(60)
∆Rr diag(3)
Ymax [12 15]
Ymin [5 5]

Table 3: Weights of the MPC on equations with static prediction
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The signal Ur(k) provided by the static prediction is shown in Figure 7a.
Note that the chillers are off while the requested power is below a threshold,
corresponding to the value that the absorber is able to satisfy, thus fulfilling the
fourth goal introduced in Section 2.1. Nevertheless, increasing the magnitude
of the weighting matrix ∆Rr to keep the control action close to Ur(k) may
still lead to a non-desired switching behaviour. Therefore, a further condition
is imposed on the value of the thermal load requested by the users (shown in
Figure 7b), in order to decide whether to switch the chillers off. Specifically, if
ur(k) = 0 and the average value of the forecast thermal load over the prediction
horizon is lower than a predefined threshold, then the optimization problem is
not solved and the chillers are shut down until one of the two conditions is no
longer met. This simple logic is particularly helpful at night, when the thermal
request is low, in order to automatically deactivate the controller, other than
doing it manually or with a time-based logic.
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Figure 7: Reference value of the control action provided by the static prediction (a), thermal
load requested by the users (b)

To validate the controller performance, a comparison among the proposed
solution, the baseline controller actually implemented on the plant, and its op-
timized version described in [19] has been made. The optimized control logic
has been derived exploiting a grey-box system model. The parameters of the
existing controller are optimized via nonlinear programming, by minimizing the
predicted energy consumption while satisfying the cooling demand. A compar-
ison in terms of water temperature in the delivery manifold, control action and
electrical power consumption is reported in Figures 8, 9, 10. It is worth noticing
how the baseline controllers, both in their current and optimized versions, are
not able to anticipate the user’s power request and to satisfy the constraints on
the water temperature. These lacks lead to the turn on of the second chiller in
the first hours of the day and may cause possible discomforts to the users.
On the contrary, the predictive controller avoids an undesired behaviour of the
control variable (e.g., unnecessary switching), exploiting the disturbances fore-
cast, and fulfills the output constraints. The whole multi-objective problem can
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be managed by a suitable choice of just few parameters, shown in Table 3.
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Figure 8: Water temperature in the delivery manifold: comparison among baseline (dashed
green line), optimized baseline (dotted orange line) and learning-based predictive controller
(solid blue line)
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It is noticeable that the control scheme achieves a good trade-off between the
control objectives described in Section II, in particular:

• The water temperature in the delivery manifold satisfies the upper bound
of 12oC and its average value is similar to the one of measured data with
the baseline controller, even though the total number of chillers used is
reduced. Specifically, the average value of the simulation data with MPC
controller is 0.14◦C lower than the one resulting from measured data.

• The switching behaviour is reduced; particular attention is given to the
early morning, where the prediction of the thermal load allows the control
system to anticipate the activation of a chiller and avoids the use of more
than one chiller for a short time interval.

• According to the previous comments, the shut-down of the chillers during
night is anticipated based on the thermal load prediction.

• The absorption chiller is fully exploited since its cooling capability is ex-
pressed in the static prediction formula (see 10) allowing, when possible,
to switch the chillers off.

• The total power absorbed by the cooling station is reduced, also due to
the limitation of the number of active chillers. Using the power model
based on LSTM network described in Section 3, a comparison among the
power consumption is reported in Figure 10. Specifically, in the period
considered, the power consumption, estimated by means of the tailored
LSTM model, is decreased from 21250 kWh with the baseline controller
to 18260 kWh with MPC controller, thus obtaining a reduction of 14%.

6. Conclusions

This paper has described a procedure for the design of a control system for
a large cooling station of a commercial center. A dynamic model of the plant
has been obtained with Long Short Term Memory networks trained with exper-
imental data, an Extended Kalman Filter has been used as state estimator, and
a Model Predictive Control algorithm has been designed to compute the control
variables, which correspond to the on/off commands to the chillers. The use
of black-box (LSTM) models is a fundamental step in the design procedure,
since it allows one to avoid the time consuming physical modeling of the sys-
tem, made difficult by many uncertain aspects, such as the length of the pipes,
transport delays, and chillers’ functioning in off conditions. The proposed ap-
proach is applicable to a wide class of HVAC problems independently from the
plant topology and from the nature (boolean or continuos) of the control inputs.
Indeed, the use of only high-level information makes this algorithm attractive to
every dynamical systems where the physical modelling is too difficult, expensive
or time consuming.
The performance provided by the control system, tested in simulation, is very
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Figure 10: Power consumption: comparison between baseline (dashed green line), optimized
baseline (dotted orange line) and learning-based predictive controller (solid blue line)

promising, and shows that the main temperatures of the cooling system are
maintained in prescribed limits and significant energy savings are achieved with
respect to the relay-based controller currently used.
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