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Abstract

The optimal cooling operation of a large business center, with five buildings
totalling about 70, 000 m2 of interiors, is considered. This problem is relevant
due to the high operational costs and energy demand of the cooling system. The
latter features four chillers currently managed with heuristic rules. The aim of
this study is to redesign the control system to minimize the energy consumption
while still meeting the cooling demand. The main challenges are the impossibil-
ity to derive a model of the system based on physics, due to its high complexity
and lack of information on each subsystem, and the on-off behaviour and hys-
teretic operational constraints of the chillers. To solve this problem, a structured
black-box dynamical model of the system is derived using machine learning tech-
niques, exploiting a dataset of more than 500 days of operation. The employed
quantities are easily measurable and include the flow rate and temperature of
the cooling water, electric power consumption, and external temperature and
humidity. Then, the derived model has been used to optimally tune the feedback
control strategy via nonlinear programming, by minimizing the predicted energy
consumption while satisfying the cooling demand. Simulation results with a val-
idation dataset indicate that the proposed approach achieves an energy saving
of 30% with respect to the controller currently adopted, while keeping the tem-
perature in the desired range. The proposed modelling approach, based on data,
results in a high applicability to plants with different layouts and components,
whenever measurements of the relevant quantities are available.

Keywords: Cooling station, control for energy saving, identification,
modelling, optimization, HVAC systems.

1. Introduction

The topic of energy saving in buildings by optimization of their cooling
plants is receiving a growing interest, see for example [13], [18], [3], [29], [26],
[19], [22]. This trend is motivated by the large share, over 38% according to [2],
of the overall energy consumption attributable to buildings; within that, about
50% pertains to Heating Ventilation and Air Conditioning (HVAC) systems,
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see [21]. Notably, this percentage grows up to 76 % in European countries,
see [16], making this issue of pivotal importance. In this kind of plants, it is
typical to use simple rule-based logics [20] that allow to run the system in a
satisfactory but non efficient way, so that there is room for the development of
smarter solutions. The attention to this topic also results in private and public
incentives to enhance energy-efficient solutions, for both environment preserva-
tion and economic convenience. From public institutions, many certificates for
sustainability of buildings have been devised, such as the Leadership in Energy
and Environmental Design (LEED) given by the U.S. Green Building Council,
see [8], together with guidelines to assess energy performances of buildings, see
[14].

In the literature, modeling and control of HVAC systems have been discussed
by several authors. Among the several contributions related to the modeling
approaches, [13] relies on physical equations, intrinsically needing a lot of prior
information, and takes advantage of the possibility of performing experimental
tests on the plant, while [18] develops a predictive control strategy based on
an electric equivalent of the network, whose layout is fully known. In [26] the
model of the system is developed only for the cooling station, without including
the users; indeed, the modular approach proposed therein is based on nonlinear
physical equations of each component, similarly to [24]. A completely different
approach is proposed in [29], where the whole plant is described by means of a
comprehensive neural network, that turns out to be effective, but does not allow
to have physical insights of the phenomena, and makes it difficult to exploit the,
possibly little, prior information available. Neural models trained from data are
also exploited in [30], where the focus is on the cooling load prediction, without
comprising the whole cooling station. Also, a collection and comparison of
different black-box modeling approaches for HVAC systems is reported in [1],
where a relatively small residential system is considered.

Regarding the control strategy, many authors propose the adoption of ad-
vanced control techniques, see for example [23], [4], [12], though these schemes
often entail several issues for their practical implementation [7]. A number of
approaches has been proposed to simplify their design and deployment, among
these it is possible to recall the recent contributions [9] and [25] relying on
machine learning tools. However, the deployment and installation of a novel
controller still remains a crucial issue, even more when it needs measurements
from several devices placed over the typically large and distributed HVAC sta-
tion.

In this article we first derive a complete dynamic model of the cooling sta-
tion of a large commercial site located in Milan, northern Italy, then we use this
model for control design, ending with a ready-to-use solution. Preliminary re-
sults on the identification stage are reported in [27], and here they are extended
and completed with the control optimization. The commercial center is com-
posed of five buildings with fifteen floors each, see Figure 1 for an aerial view
of the site. The buildings are almost totally devoted to offices and commercial
spaces, but there are also two server rooms, a canteen, an auditorium and other
facilities. In working days (Monday-Friday), it is estimated that about 7000
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people occupy this center, about 2000 people are present on Saturdays, while
on Sunday the main thermal load is due to the servers, except for extra events,
such as conferences and meetings. A unique cooling station is in charge of pro-
viding cold water for air-conditioning in spring and summer to the offices, and
to disperse the heat produced by the servers and data centers over the whole
year, that indeed constitute a non-negligible permanent load.

Due to the complexity of the problem, to the lack of fundamental information
on the size and behavior of many devices, and to the uncertain knowledge of the
users’ demand and operating conditions, a purely physical modeling approach
would be hardly feasible. On the other hand, with a totally black-box approach,
the fundamental a-priori information on the plant layout would be lost and the
achieved results could not be given the physical insight required to interpret
and rely on the identified models. These reasons have suggested to adopt a
structured black-box approach, based on the decomposition of the large-scale
plant into smaller subsystems, connected through known quantities. In the
modeling of the subsystems, all the available physical information has been
used to select the structure of the linear and nonlinear dynamic models, which
have been identified starting from the very large set of data available, related to
more than 500 days of operation, with more than 400 recorded variables . The
obtained models of the subsystems have been tested singularly and then linked
together. The overall model of the plant so obtained has proven to capture the
main system’s dynamics without being too complex, and for this reason it has
been used in the control design phase.

The commercial center is already controlled with a relay-based logic acting
on the switch on/off of the chillers. In order to obtain immediately applicable
results, not requiring any structural change of the control system, it has been
decided to optimize the parameters of the existing logic, i.e. the thresholds on
the temperatures governing the switch on/off of the chillers and the idle time
between successive switches, with the main goal to minimize the energy con-
sumption. Considering a period of one week, an optimization problem has been
formulated by minimizing a cost function penalizing the energy consumption
and the users’ discomfort, and by including physical constraints on the plant
variables. By relying on the identified model, the optimal solution has been
computed in terms of thresholds and idle time variations with respect to the
nominal (currently applied) values. The results achieved, tested in simulation
with the model over one week-long period, show that roughly 30% of energy
savings can be obtained with respect to the existing solution, thanks to control
optimization.

The paper is organized as follows. In Section 2 the overall cooling station
is presented. In Section 3 the model identification approach and the adopted
criteria for model structure selection are described. Section 4 concerns the
problems and the results achieved in the identification of the main subsystems,
namely the chillers, the pipes and the users. In Section 5 the overall model,
composed of the previously identified subsystems, is built and its performance
is compared with the measured data in closed-loop validation. Lastly, Section 6
describes the current control logic, the design of the optimized one and compares
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Figure 1: Business/Commercial area considered in this paper

their performance in the simulated environment. Conclusions and directions for
future work are discussed in Section 7.

A list of the variables and parameters pertaining to the system follows, where
t ∈ Z denotes the discrete time variable:
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Parameters

Quantity Description Value Unit

Ts Sampling time 60 s

wch Nominal cooled water flow rate through each
chiller

355 m3/h

wabs Nominal cooled water flow rate through the ab-
sorber

310 m3/h

T spr Setpoint for the cooled water temperature from
the chiller

8 oC

T abst Threshold temperature difference used to derive
the status of the absorber

0.5 oC

k Overall heat transfer coefficient for pipes 50 W
m2K

cw specific heat of water 4.186 kJ
kgK

ρw density of water 1000 kg
m3

Control logic parameters

Quantity Description Value Unit

∆Ttemp dwell-time for temperature conditions that en-
able switching on/off chillers

300 s

Dt idle-time after a switch in the control logic 600 s

Variables

Quantity Description Value Unit

Ti(t) Water temperature at the delivery manifold ∈ R oC

T ir(t) ith chiller outlet water temperature ∈ R oC

T iin(t) ith chiller inlet water temperature ∈ R oC

Text(t) External temperature ∈ R oC

5



Hext(t) External relative humidity ∈ [5, 95] /

woff (t) Total water flow rate through the
chillers in off state

∈ R m3/h

won(t) Total water flow rate through the ma-
chines (chiller+absorber) in on state

∈ R m3/h

T onr (t) Weighted average temperature of the
on machines

∈ R oC

non(t) Number of active machines ∈ {0, 1, 2, 3, 4, 5} /

si(t) State of the ith chiller ∈ {0, 1} /

P ich(t) Power absorbed by chiller i ∈ R kW

vi(t) Normalized rotational speed of fans
on evaporative tower of ith chiller

∈ [0, 100] %

T absr (t) Cooled water outlet temperature
from the absorber

∈ R oC

T absin (t) Cooled water inlet temperature in the
absorber

∈ R oC

sabs(t) State of the absorber ∈ {0, 1} /

wbp(t) Bypass flow rate ∈ R m3/h

wt(t) Total flow in the primary loop ∈ R m3/h

whot(t) Flow in the secondary loop ∈ R m3/h

Thot(t) Weighted average of the temperatures
at the return collectors

∈ R oC

Qu(t) Thermal power provided by the users ∈ R kW

Qju(t) Thermal power provided by the jth

end-user
∈ R kW

T jin(t) Inlet temperature measure on end-
user j

∈ R oC

T jout(t) Outlet temperature measure on end-
user j

∈ R oC

wju(t) Flow rate through user j ∈ R m3/h

Qpipes(t) Thermal power exchanged through
the pipes

∈ R kW

Qrefr(t) Cooling power provided by the cool-
ing machines

∈ R kW
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2. Plant description

Figure 2: Schematic of the system under analysis

The schematic of the cooling system is shown in Figure 2, while a conceptual
representation is reported in Figure 3. The main components are:

• Primary and secondary loops. In the system, two loops can be distin-
guished. The primary loop comprises the delivery manifold, the by-pass
valve, and the return manifold. The loop is closed across the chillers and
the absorber, and two measures of the water temperature are available:
Ti(t) on the delivery manifold and To(t) on the return manifold (see Fig-
ure 3). The bypass valve directly links the delivery and return manifolds,
it is usually 100% open and it is needed to balance the flowrates of the
loops, in order to avoid overpressure and possible damage to the pumps.
Its pressure drop, its flowrate wbp(t), and its characteristic curve were not
available for our study. Based on the experience of plant operators, a
rough estimate of the total flowrate wt(t) circulating in the primary loop
is 900 m3/h during summer days.
The secondary loop directs water from the primary loop to the users and
drives it back after use. No parameters regarding length, sections, mate-
rials, geometry, deployment, and piping network configuration were avail-
able. The water splits in three collectors, feeding different groups of end-
users, both on the forward line and on the return line, and the water
temperature is measured on each of the six collectors. Four modulating
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Figure 3: Topology of the system

pumps move water from the primary loop, they are controlled to maintain
a delivery pressure; no measures are available. The pipes of the secondary-
loop, from the cooling station to the end-users, can be tens of meters long,
so that the physical transport delays are not negligible. In addition, the ef-
fects of solar radiation and thermal exchange with the environment cannot
be neglected.

• Four chiller units (in Figure 2 only two are shown for clarity and space
limitations). The chillers are thermal machines that cool water from the
return manifold and send it to the delivery manifold; the subtracted heat is
dispersed in the external environment by means of an evaporative tower.
The chillers are connected in parallel and are activated by the control
logic, being the only controllable components of the whole plant. They
are linked to two circuits: the condenser, or auxiliary circuit (in green in
Figure 2) that circulates water to the evaporative towers, and the cooling
circuit (in blue in the figure). In the cooling circuit, each chiller is fed
by pumps drawing hot water from the users through a return manifold.
These pumps operate only in discrete on/off states; when switched on, they
provide a water flowrate that is not measured, so we assumed it constant
and equal to its nominal value wch for each chiller. This on/off behavior
represents a bottleneck for an efficient operation, since the efficiency of
the HVAC systems critically depends on their load, see [5], which should
be varied in order to optimize their power consumption. A scheme of the
chiller/tower group is shown in Figure 4, where in dashed red we mark
the pipes with higher water temperature, and in solid blue the ones with
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lower temperature. The evaporative tower disperses heat by means of
controlled modulating fans. No details are available about the pumping
units, the pipe lengths, the controller of the fans, and the adopted setpoint.
Each chiller embeds a compressor, absorbing energy, that stabilizes the
outlet temperature T ir(t) to the required set-point T spr when a feasible
load is demanded. Based on the available dataset, this condition is always
satisfied, and we assume it will hold from now on.

Figure 4: Chiller and evaporative tower

• An absorber. The absorber is a thermal machine that exploits the waste
heat provided by external systems, such as boilers or heat generators, to
refrigerate water; for this reason it is used whenever possible to increase
the efficiency of the overall cooling station. It is also equipped with an
evaporative tower and it is used in parallel configuration with the chillers.
Inside the absorber, complex reactions take place, see [6], its physical
modeling is highly complex, and infeasible in our case due to the lack of
information about its parameters, and its on/off status during the consid-
ered time period. The absorber represents the main unknown disturbance
of the overall system, since, when turned on, the pumps circulate a nomi-
nal cooled flowrate wabs, of the same order of magnitude as wch. As for the
cooled outlet temperature T absr (t), it often does not settle to any setpoint,
and varies depending on the thermal power provided to the absorber.

• Users. The users comprise offices, commercial spaces, meeting rooms
etc., distributed over the five buildings and the fifteen floors. They receive
water from the three collectors after the pumping unit. The water returns
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at a higher temperature, which depends on the users’ thermal load. In
total the users are divided into eight groups (“end-users” in Figure 2),
with inlet and outlet temperature measures, denoted T jin(t) and T jout(t),
j = 1, ..., 8, respectively.

3. Preliminary data analysis for model identification

As a first step, outliers and infeasible records have been removed from the
available data set. Then, average values have been computed when multiple
sensors measure the same physical quantity, to this regard note that no prior
information is available on the characteristics of the sensors.
By inspection of the dataset, the (unknown) set-point T spr used for control of the
water temperature in the delivery manifold has been estimated equal to 8oC.

A non marginal water flowrate, woff (t), passes through the chillers also in
off conditions, but no measures are available. A coarse estimate, based on some
spot measurements, is 30% of wch per chiller. Note that, since the water flowrate
through the overall closed-loop circuit is related, through an unknown relation,
to the loads and to the request by the users, woff is fundamental to guarantee
the proper mass balance along the circuit.
Also the state of the chillers is unknown, so that we reconstructed it a-posteriori
by checking their power consumption P ich(t), i = 1, 2, 3, 4. More precisely, we
defined a binary variable si(t) indicating the state of the chiller, such that:

si(t) =

{
1 P ich(t) > 0

0 P ich(t) = 0
i = 1, 2, 3, 4 (1)

Contrarily to the chillers, the absorber on/off status can not be estimated
from power consumption, since the machine is not connected to any electrical
power source, nor it is recorded. For this reason, we estimated it based on the
inlet-outlet temperature difference in the cooling circuit, and with a threshold
T abst to account for measurement noise and avoid high frequency (fictitious)
switching. More precisely, we defined a binary variable sabs(t) such that:

sabs(t) =

{
1 T absr (t)− T absin (t) < T abst

0 otherwise
(2)

The water flowrate wju(t), j = 1, ..., 8, in each of the eight pipes to the end-
users is measured, so that the total water flowrate circulating in the secondary
loop can be computed as:

whot(t) =

8∑
j=1

wju(t) (3)

The variable whot(t), along a week, is reported in Figure 5, its variations are
in the range 700 − 850 m3/h save for significant drops, occurring typically at
night.

Three sets of temperature measurements are available concerning the users:
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Figure 5: Trend of whot(t)

1. Ti(t) and To(t), i.e. the delivery and return manifold water temperatures.

2. Temperature measures along the three collectors to/from the users (see
Figure 2). We computed their average on the return collectors, weighted
by their flowrates, and named it Thot(t).

3. Temperature measures across the eight end-users, both on the inlet and
outlet sides, named T jin(t) and T jout(t) respectively, j = 1, . . . , 8. We indi-
cate their weighted average values with T̄in(t) and T̄out(t), more precisely:

T̄in(t) =

∑8
j=1 T

j
in(t)wju(t)

whot(t)
, T̄out(t) =

∑8
j=1 T

j
out(t)w

j
u(t)

whot(t)
(4)

At first we checked consistency of the available data, so we compared To(t)
with Thot(t) and T̄out(t). The comparison is shown in Figure 6. First we can
notice that T̄out(t) is significantly biased, secondly in some periods also Thot(t)
is higher than To(t). These discrepancies can not be due to the effects of the so-
lar radiation along the pipes, or to the thermal exchange with the environment,
since these phenomena would produce the opposite effect. Therefore, the most
likely reason is the bypass valve, that directly circulates cold water from the
delivery manifold to the return manifold, thus decreasing the temperature in
the latter. This is confirmed by the fact that this bias occurs only when many
machines are active, as visible again in Figure 6 where the number of active
machines non(t) =

∑4
i=1 si(t) + sabs(t) is represented in dashed line. Unfor-

tunately no measure of the by-pass flowrate wbp(t) is available; this additional
information is fundamental to define the overall model of the system, so we had
to estimate it as described in Section 4.2.4.

On the delivery side, we first compared Ti(t) with the three temperature
measures on the delivery collectors, that exhibit the same pattern, see Figure
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Figure 6: Comparison of the return temperature measures. Blue line: T̄out(t); red line:
Thot(t), yellow line: return manifold To(t). Dashed line: non(t)

7, though a small bias (0.3 oC) is sometimes present in one of the collectors,
possibly due to the drift of one sensor. Indeed, by comparing Ti(t) with the
inlet measures on the end-users T jin(t), a significant difference appears again, as
well as on the return side, as reported for completeness in Figure 8.

4. Model Identification

4.1. Adopted modelling approach

The model for the overall system has been obtained by connecting the mod-
els of the following subsystems: the chillers with their evaporative towers, the
absorber, the end-users, and the piping system. These models are either static
or dynamic, and have been estimated from data according to the following pro-
cedure, unless they directly follow from physical relations:

• In the identification phase, linear model structures, including AutoRegressive-
Exogenous (ARX), AutoRegressive-Moving-Average Exogenous (ARMAX),
Output-Error (OE), see [17], have been first considered. More complex
models, e.g. polynomial models and Neural Networks (NN), have been
employed only when the first proved to be inadequate.

• According to a well-established procedure, see [17], the identification phase
has been performed on a subset of the data (identification set), while the
model performances have been cross-validated on another subset (valida-
tion set).

• The regressors to be included in the models have been chosen based on
two principles: first we have chosen the variables that are known to mostly
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Figure 7: Comparison of the delivery temperature measures. Black line: delivery manifold Ti

measure, bright lines: measures on delivery collectors. Dashed line: non(t)

influence the output from physical considerations, then we have selected
the most influencing regressors with a feature selection technique based
on the LASSO algorithm [28]. In this approach, it is assumed that the
output of the model y depends linearly on the vector of parameters θ to
be estimated, through the relation y(t) = θTϕ(t), where t is the discrete
time variable, ϕ is the vector of regressors and T is the vector transpose
operation. Note that ϕ(t) can be a nonlinear function of measured quanti-
ties. First, a Least Square problem including a large number of candidate
regressors is solved, and its mean prediction squared error ε2 is computed.
Then, a first estimate of θ is obtained by solving the modified least squares
problem

minθ ‖θ‖1
s.t. 1

N

∑N
i=1(y(t)− θTϕ(t))2 < γε2

(5)

where N is the total number of available observations and γ > 1 is a
conservative factor. Finally, the elements of the estimated vector θ with
smaller absolute value (e.g. those below 1

100 of the maximum), which con-
tribute less to compute the output, are removed from the model together
with the corresponding regressors. The last step of the algorithm consists
in retraining the model with the regressors selected in the first phase.

4.2. Model identification results

The models of the different subsystems are described next.
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Figure 8: Comparison of the delivery temperature measures. Black line: delivery manifold Ti

measure, bright lines: measures on end-users.

4.2.1. Chillers and evaporative towers

Chiller cooled water temperature

The temperature of the cooled water T ir(t), see Figure 4, is one of the most
meaningful variables of the chiller. As anticipated, each time the chiller is
activated, it settles to the desired setpoint T spr = 8 oC. Typical transients are
reported in Figure 9, which shows that AutoRegressive models (AR) are suitable
to describe this dynamics. More specifically, the error variable is defined as

e(t) = T spr − T ir(t), i = 1, 2, 3, 4 (6)

and estimated the parameters of the second-order AR model

e(t) = a1e(t− 1) + a2e(t− 2) (7)

The choice of a second-order model is motivated by the two physical phenomena
of the system: the cooling of the heat exchanger inside the chiller, with a faster
time constant, and the thermal exchange with the cooled water, with a slower
time constant. The model has been identified with the data collected on chiller
4 and validated against other chillers, always leading to satisfactory results, see
again Figure 9. In chiller off conditions, T ir(t) is meaningless for the thermal
balance, moreover its measurements are affected by drifts, possibly due to the
external temperature and the solar radiation warming.

Chiller condenser output temperature

The condenser output temperature T ic(t), i = 1, ..., 4 has a significant influ-
ence upon the chiller’s efficiency, see [29] and [11]. As shown in Figure 4, T ic(t)
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Figure 9: Chiller cooled water temperature. Comparison between real data and model re-
sponse for T i

r(t), i = 1, 2, 3, 4 with validation data. Solid line: model response, dashed line:
real data

depends on the water temperature from the return manifold T iin(t), on the envi-
ronmental conditions expressed by the the ambient temperature and humidity,
Text(t) and Hext(t), respectively, on the chiller cooled water temperature T ir(t)
(the output of the model previously described), and on the command vi(t) to
the tower fans. These variables have been considered as inputs of a second order
Output Error (OE) model, which represents a satisfactory compromise between
accuracy and simplicity. The delays between inputs and output have been se-
lected to be zero for all the inputs, save for the one related to vi(t), which has
been set equal to one, since this signal acts on the tower and is physically de-
tached from the chiller. Figure 10 shows the comparison between real data and
model responses for T ic(t), the latter identified on Chiller 4. The performance
is satisfactory despite the many uncertainties, for instance the fact that the
relative humidity measure is corrupted by a non negligible measurement noise.
Again, the model is valid for the on condition of the chillers, while there is no
utility in modeling T ic(t) during the off phases.

Chiller Regulator identification

The identification of the regulator computing the command to the fans vi(t)
is required to simulate the model of T ic(t). The following assumptions, to be
validated a-posteriori, have been made: (i) the controller is a Proportional-
Integral (PI) one, (ii) the controlled variable is T ic(t), as confirmed by the plant
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Figure 10: Chiller condenser output temperature. Comparison between real data and model
response for T i

c (t), i = 1, 2, 3, 4. Dark line:model response, light line: real data

operators, (iii) the setpoint is 24 oC, as often specified in the guidelines of
chiller manufacturers. The identification has been performed according to a
direct approach, i.e. with the input-output data of the controller, neglecting
the feedback effect, see [10]. The proportional and integral gains Kp = −25
and Ki = −1.5 × 10−5 have been obtained. In addition, it has been verified
that the PI has been implemented without an anti wind-up scheme, that would
be recommendable since the control input is often saturated, and without the
reset of the initial condition at every switch of the chiller. The performances
provided by the identified controller confirm the previous assumptions and can
be considered satisfactory, as shown in Figure 11.

Chiller Power consumption

A detailed model of the chillers power consumption P i(t), i = 1, ..., 4 is
needed to properly state a control problem aimed at optimizing the managing
costs. Starting from physical considerations, we first selected the following vari-
ables, assumed to be the most influencing ones: T iin(t), T ir(t) (obtained with the
identified model specified in Section 4.2.1), the external conditions Text(t) and
Hext(t), the control variable vi(t), and T ic(t), that is known from literature to
influence the absorbed power. We a-priori considered as regressors all polyno-
mials of first and second order, including cross-products of the selected variables.
This choice is motivated by the physical insight that power is proportional to
the square of some of the involved variables, in particular temperatures. Static

16



Aug 18 Aug 19 Aug 20
2016   

0

50

100
%

 fa
n 

sp
ee

d
Chiller+tower 1

Jul 04 Jul 05 Jul 06 Jul 07
2016   

0

50

100

%
 fa

n 
sp

ee
d

Chiller+tower 2

Aug 29 Aug 31 Sep 02 Sep 04
2016   

0

50

100

%
 fa

n 
sp

ee
d

Chiller+tower 3

Sep 22 Sep 23
2016   

0

50

100

%
 fa

n 
sp

ee
d

Chiller+tower 4

Figure 11: Chiller regulator. Comparison between real data and model response for vi(t), i =
1, 2, 3, 4. Dark line: identified regulator response, light line: real data

models have been estimated, since from the physics it is reasonable to assume
that possible delays between the model inputs and the power itself are negligible
with respect to the adopted sampling time Ts = 60 s. The identification pro-
cedure led to a model that is able to properly describe the power consumption
(see Figure 12), although sometimes less performing when applied to the data
of chiller 1. This could be due to the different wear of the chiller and/or to the
measurement noise related to the temperatures sensors.

4.2.2. Users

As anticipated, the users are distributed over the five buildings, and very
little information is available on their dynamical behavior. A modeling approach
based on physical equations would be infeasible in this case, given the complexity
of the process, the lack of information, and the sparse layout of the end-users.
The main quantity to be described, in order to properly simulate the system and
to reproduce the water heating dynamics, is the thermal power Qu(t) requested
by all the users. With reference to the j-th end-user, the thermal power Qju(t)
can be computed as

Qju(t) = ρwcww
j
u(t)(T jout(t)− T

j
in(t)) (8)

where cw is the specific heat of the water and wju(t) is the water flowing
through the user’s cooling circuit. This computation has been made with the
flowrate measurements associated with the end-users, and not with the ones
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Figure 12: Chiller power consumption. Comparison between real data and model response
for P i(t), i = 1, 2, 3, 4. Dark line: model response, light line: measured data

related to the delivery and return collectors, to mitigate as much as possible the
effect of transport delays. Eventually the total thermal power is computed by
summing all the end-users contributions:

Qu(t) =

8∑
j=1

Qju(t) (9)

In principle, the required thermal power depends on the environmental condi-
tions (represented by Hext(t) and Text(t)), on the day of the week, and on the
hour of the day. For this reason, we have estimated two different models: one
for the working days (Monday-Friday), and one for the weekends (Saturday and
Sunday). As additional inputs, besides Hext(t) and Text(t), the minute of the
day has been considered. In the working days this input goes from 1 (midnight)
to 1440 (23:59), while for the weekends it goes from 1 to 2880, so as to distin-
guish between Saturdays and Sundays. The adopted model structure is a static
neural network with one hidden layer and twenty neurons.

The model outputs are compared to the real data in Figures 13 (for week-
days), and 14 (for weekends). It is apparent that the network is capable to
reproduce well the computed quantity Qu(t), and especially the low-frequency
components of the signal. The higher frequencies are due to switching and
short-term regulations of the cooling machines at the users’ side, that are to-
tally unknown and unpredictable, and have to be accounted for as a disturbance
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Figure 13: Thermal load of the users during working days. Light line: real computed value
Qu(t). Black line: predicted value

against which the cooling station has to react. Note that in Figure 14 the sam-
ples corresponding to different weekends are merged, so that the timescale is
not continuous.

4.2.3. Pipes

The pipes are among the most uncertain parts of the system, since no pa-
rameters are available on their length and section, and they can not be neglected
both in terms of heat exchanged with the environment and of transport delay.
Given the lack of information, and based on very rough estimates, the follow-
ing simplifying assumptions have been introduced: (i) the five tubes out of the
chillers and the absorber have radius R = 0.1 m and converge to the delivery
manifold, whose cross-section is equal to the sum of sections of the inlet pipes,
(ii) the average length from the cooling station to the end-users is L = 80 m.
Considering an average value for wt(t) equal to w̃t = 750m3/h (see Figure 5),
the average speed ṽ is computed as:

ṽ =

(
w̃t

3600

)
/(5πR2) (10)

and the transport delay is estimated as:

∆td =
L

ṽ
∼ 60.31s (11)

which is close to the adopted sampling time Ts = 1 min. Thus, the unitary
delay is added both on the forward and on the return line (see Figure 3)
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Figure 14: Thermal load of the users during weekends. Data merged from non-contiguous
days. Light line: real computed value Qu(t). Black line: predicted value

Assuming the average overall heat transfer coefficient k = 50 W
m2K , taken

from [15], the thermal power exchanged with the external environment can be
computed as:

Qpipes(t) =
k

1000
2πReq2L(Text(t)− Ti(t)) (12)

where Req =
√

5πR2

π is the radius of the delivery manifold tube, and the

length L is considered twice to account for the delivery and return paths. The
bias present on the sensors at the inlet side of end-users, see Section 3, does not
allow one to validate these equations, that are hence tested with the closed-loop
temperatures of the delivery and return manifolds in Section 5.

4.2.4. Estimate of the bypass flowrate and hydraulic balance of the loops

For the estimation of the bypass flowrate wbp(t) and of the flowrate woff (t)
through the chillers in off mode, reference is made to the scheme of Figure 3.
The developments are mainly based on static thermal balances. To this end,
preliminarily define won(t) as the sum of flowrates through the active machines:

won(t) =

4∑
i=1

si(t)wch + sabs(t)wabs (13)
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From the mass balance equation of the (primary and secondary) loops, see
Figure 3, we can write:

wt(t) = won(t) + woff (t) = whot(t) + wbp(t) (14)

The flowrates woff (t) and wbp(t) account for the mismatch between the
water required by the utilities whot(t), pumped by a dedicated and independent
set of pumps, and won(t), that instead is ruled by the control logic of the plant.

The estimator of woff (t) and wbp(t) distinguishes two cases, i.e.:

• If won(t) < whot(t), then wbp(t) = 0 and woff (t) = whot(t)− won(t).

In this condition, the users require a significant amount of water, and the
active machines pump less flow rate, so that woff (t) >0, while wbp(t) is
assumed to be zero.

• If won(t) > whot(t), then wbp(t) = − (whot(t)− won(t)) and woff (t) = 0.

In this case, the active machines pump more water than that required by
users, thus imposing the total flow of the primary loop and forcing a non
null value of wbp(t). The flowrate woff (t), on the other hand, is null, since
active machines provide enough flow to feed the users.

In both cases, we can write the thermal balance equation related to the users
as

Thot(t) = Ti(t) +
Qu(t) +Qpipes(t)

ρwcwwhot(t)
(15)

Given that no measures of wbp(t) and woff (t) are available, their estimates
can be validated only through the temperature predictions obtained from the
simulation of the whole plant, as reported in the next section.

5. Closed-loop validation

The models of the subsystems have been linked together according to the
layout of the plant, see Figure 3, and a simulator of the overall system has been
developed in the Matlab/Simulink environment.

The temperature Ti(t) in the delivery manifold has been computed as follows.
First, the auxiliary variable T onr (t) has been computed as the average, weighted
by the flow rates, of the temperatures due to the active machines:

T onr (t) =

∑4
i=1 si(t)T

i
r(t)wch + sabs(t)T

abs
r (t)wabs

won(t)
(16)

Then, Ti(t) has been obtained as the weighted contribution of the active ma-
chines and of the water passing through the chillers in off mode, that flows at
temperature To(t):

Ti(t) =
won(t)T onr (t) + woff (t)To(t)

wt(t)
(17)

21



In a similar way, it is possible to compute the temperature To(t) in the return
manifold, given by

To(t) =
whot(t)Thot(t) + wbp(t)Ti(t)

wt(t)
(18)

The transients of Ti(t) and To(t), computed with the simulator, are com-
pared to the corresponding measured values in Figures 15 and 16, which show
the effectiveness of the adopted modeling approach for the overall system. Per-
formances are less satisfactory during the weekend (16-18 July) since the chillers
are nearly always off, as shown in Figure 17, so that the plant is more sensitive
to unmodelled disturbances raising from the users and the absorber, that are
the only active components. The root mean square error is 0.35 oC for the
delivery temperature Ti, and 0.5 oC for the return temperature To. These are
acceptable values given the present uncertainty.
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Figure 15: Closed-loop validation. Delivery manifold temperature Ti. Black line: simulated
value. Grey line: real value

6. Control design and performance evaluation

The plant is controlled using a relay-based logic, which rules when to switch
chillers on and off. The controller includes also a minimal idle time to be ob-
served, denoted by Dt, after the switching of a chiller, in order to wait for its
effect to completely influence the temperatures and avoid too frequent com-
mutations. The conditions implemented in the control logic and governing the
switches are based on Ti(t) and To(t), and are reported in the following tables
1 and 2, related to the on and off switching cases, respectively.
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Figure 16: Closed-loop validation. Return manifold temperature To. Black line: simulated
value. Grey line: real value

ON Switching

Ti > τon,1 To > τon,1 Chiller 1

Ti > τon,2 To > τon,2 Chiller 2

Ti > τon,3 To > τon,3 Chiller 3

Ti > τon,4 To > τon,4 Chiller 4

Table 1: Control logic: on switching temperature conditions

τon,k < τon,k+1 and τon,k < τon,k+1, k = 1, 2, 3 are tuning parameters, whose
values are not reported here for confidentiality reasons. The logic governing the
switch off of the chillers is dual,

where again τoff,k < τoff,k+1 and τoff,k < τoff,k+1, k = 1, 2, 3.
Every condition on the temperature must be fulfilled for a period longer than

∆Ttemp = 300 s before producing a switch, and it is possible to switch only one
chiller at a time. The subsequent commutation can take place only after a fixed
idle time Dt, set equal to 10 minutes, provided that the associated conditions
hold. This is designed to avoid activating chillers only because temperatures
are raising suddenly, for example in the early morning when the load increases,
but only one chiller is enough to control the system.

Optimization of the control logic

The settings of the parameters of the control logic are manually driven and
based on empirical rules. As an alternative, due to the availability of the identi-
fied model described in the previous sections, in this paper it is proposed to tune
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OFF switching

Ti < τoff,1 To < τoff,1 Chiller 1

Ti < τoff,2 To < τoff,2 Chiller 2

Ti < τoff,3 To < τoff,3 Chiller 3

Ti < τoff,4 To < τoff,4 Chiller 4

Table 2: Control logic: off switching temperature conditions

these parameters by solving an optimal control problem. More specifically, we
have introduced three optimization variables ∆Ton, ∆Toff , ∆Dt and modified
the temperatures thresholds and the idle time as follows:

τ̃on,k = τon,k + ∆Ton

τ̃on,k = τon,k + ∆Ton

τ̃off,k = τoff,k + ∆Toff , k = 1, 2, 3, 4

τ̃off,k = τoff,k + ∆Toff

D̃t = Dt + ∆Dt

(19)

The objective function takes into account both the performances of the plant,
measured in terms of discomfort, and its running cost. As for the first, since
the plant is devoted to serving utilities and satisfying their load demand, we
have weighted the mismatch between the cooling power and the load demand in
absolute value. Specifically, we have defined the global cooling power provided
by the cooling machines as:

Qrefr(t) = cwρwwt(t)(Ti(t)− To(t)) (20)

As for the running cost, it is directly proportional to the absorbed power,
that has been modelled as described in Section 4.2.1. Therefore, this term must
also be included in the cost function.
The optimization problem takes the following form:

min
∆Ton,∆Toff ,∆Dt

∫ tf

t0

4∑
i=1

P ich(t) + α|Qu(t) +Qpipes(t) +Qrefr(t)| dt

subject to ∆Ton ≤ ∆Ton ≤ ∆Ton

∆Toff ≤ ∆Toff ≤ ∆Toff

∆Dt ≤ ∆Dt ≤ ∆Dt

(21)

where ∆Ton, ∆Ton, ∆Toff , ∆Toff and ∆Dt, ∆Dt are lower and upper
bounds on the optimization variables.
The reference week from July 14th to 20th has been taken as the interval of
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Baseline∫ tf
t0
|Qu(t) +Qpipes(t) +Qrefr(t)| dt

∫ tf
t0

∑4
i=1 P

i
ch(t) dt

1.33× 104kWh 2.83× 104kWh

Optimized logic (α = 1)∫ tf
t0
|Qu(t) +Qpipes(t) +Qrefr(t)| dt

∫ tf
t0

∑4
i=1 P

i
ch(t) dt

1.36× 104kWh 1.92× 104kWh

Table 3: Comparison between the current and the optimized control logic on the plant

optimization [t0, tf ] , which is the same period reported for the validation of the
models in Figures 15 and 16.

The nonlinear optimization problem has been solved with the fmincon rou-
tine available in Matlab. The computed optimal solution is ∆Do

t = 0min,
∆T oon = 2oC, ∆T ooff = 1oC. From a physical standpoint, the optimized param-
eters imply that the idle time is not changed, but the thresholds are raised both
for the on and off switching. In practice, the chillers switch on when the tem-
perature is higher than before. The control logic has been implemented in the
plant simulator, and experiments have been performed with both the original
and the optimized control. Some of the results achieved are reported in Figure
17, which shows that the optimized logic drives the plant to a more regular
control pattern, avoiding the switching of the chillers when not necessary, and
exploiting completely one chiller in place of having two machines not working
at full capability. Indeed, the new thresholds are such that the switching off of
one chiller for a short period of time, followed by its new activation, is avoided,
see again Figure 17. A comparison between the current and the optimized logic
performances acting on the plant in reported in Table 3.

The table shows that, at the price of an increase of about 2.5% of the dis-
comfort term |Qu(t) +Qpipes(t) +Qrefr(t)|, the power consumption is reduced
of about 30%, thus motivating the use of the optimized parameters.

7. Conclusions

A structured black-box approach for modelling a cooling station serving a
large business center has been presented. It relies on a very large data-set
employed to derive models of the subsystems composing the plant, eventually
connected together according to the actual plant schematic. Modelling perfor-
mance proved to be satisfactory despite the critical uncertainties present in the
problem. Based on the obtained model, the parameters of the currently adopted
control logic have been optimized, leading to promising results in terms of en-
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Figure 17: Comparison between the number of active chillers with current and optimized
control logic. Solid line: optimized, dashed line: current logic

ergy savings. The proposed approach allows one to quickly model similar plants
by suitably composing their constituting subsystems, and the control approach
does not require any hardware nor software modification, leading to a simple
but effective strategy.

Future work will concern both the test on the real plant and the development
of a hybrid Model Predictive Controller, possibly with a more intense use of
black box estimation techniques, for instance neural networks, to reduce the
modelling efforts.

References

[1] Abdul Afram, Alan S Fung, Farrokh Janabi-Sharifi, and Kaamran Raa-
hemifar. Development and performance comparison of low-order black-box
models for a residential hvac system. Journal of Building Engineering,
15:137–155, 2018.

[2] A Allouhi, Y El Fouih, T Kousksou, A Jamil, Y Zeraouli, and Y Mourad.
Energy consumption and efficiency in buildings: current status and future
trends. Journal of Cleaner production, 109:118–130, 2015.

[3] Fatima Amara, Kodjo Agbossou, Alben Cardenas, Yves Dubé, and Sousso
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