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Abstract— Airborne wind energy generators aim to produce
renewable energy by means of aerodynamic lift from tethered
wings controlled to fly crosswind paths. The problem of opti-
mizing the operation of such a generator in presence of limited
information on wind speed and direction is considered, aiming
to maximize the average power developed. First, a study of the
traction force is presented for a general path parametrization.
Then, the results of this analysis are exploited to design an
algorithm to maximize the force, hence the power, in real-
time. The algorithm uses only the measured traction force on
the tether, and it is able to adapt the system’s operation to
maximize the average force with uncertain and time-varying
wind. Numerical simulations are presented to highlight the
effectiveness of the approach.

I. INTRODUCTION

Airborne wind energy (AWE) systems [1] aim to harness

wind energy beyond the altitude of traditional wind mills,

in stronger and more steady winds, using tethered wings.

The tethers are used to transfer the energy down to the

ground. Depending on the system layout, the energy is

transferred to the ground as mechanical or electrical energy.

To increase the power output, the wings are controlled to fly

roughly perpendicular to the wind direction [2], in so-called

crosswind paths. In the recent past, an increasing number

of research groups started to develop new concepts of AWE

systems, see e.g. [3], [4], [5], [6], [7], [8], [9], [10], [11], [12],

[13], [14]. Automatic control of the tethered wings plays a

major role for the efficiency and thus also economics of such

energy generators. The goal is to control the wing in order

to fly a crosswind path under state and input constraints,

while maximizing the generated power. In order to maximize

the power output, the wing should fly on a path that yields

the highest traction force for the given wind condition. This

problem has been studied by several research groups, see

[11], [15], [16], [17], [18]. Most of these approaches employ

an optimal path and a trajectory-following controller. Yet, the

offline generated optimal trajectories are subject to model-

plant mismatch, hence they may be sub-optimal or even

infeasible in practice. Moreover, the mentioned approaches

assume that the wind speed and direction at the wing’s

location are known in order to employ the computed optimal

path. However, the wind field changes over distance and time
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and it is difficult to estimate with only a few measurement

points, like those available with ground anemometers.

In order to tackle these issues, in this paper we pro-

pose a model-free optimization approach, based on real-

time adaptation of the flown paths, with no exact knowledge

of the wind conditions. At first, we analyze the influence

of the crosswind path on the traction force, in order to

asses the most important aspects of the flown trajectory for

the sake of power generation. Then, we introduce a real-

time optimization algorithm aimed to improve and adapt

the flown path using only the measurements of the wing’s

position relative to the ground and of the traction forces, i.e.

no knowledge of the wind direction or profile. We present

the results obtained by applying the approach in numerical

simulations.

II. SYSTEM DESCRIPTION AND PROBLEM FORMULATION

We consider an AWE generator that exploits aerodynamic

lift to produce electrical energy. For an overview see e.g. [1].

The main components of the generator are the ground unit,

the tether, and the wing. The tether is used to anchor the wing

to the ground unit, where realizations with one or multiple

tethers are possible. The wing is flown on a periodic path,

sustained by the aerodynamic lift, which results in a traction

force F on the tether. The electricity is either generated

on-board of the wing, with small propellers and on-board

generators [3], or in the ground unit, by unreeling the tether

from drums connected to generators [5], [6], [7], [9].

We define a right-handed inertial coordinate system

(ex,ey,ez), fixed to the ground unit (see Fig. 1). The unit

vectors ex and ey are parallel to the ground and ez is vertical

to the ground pointing upwards. The wing’s position p can

be described by spherical coordinates consisting of the two

angles ϕ and ϑ and the tether length r. Assuming a straight

tether, the azimuthal angle ϕ defines the angle between the

projection of the tether on the ground and the ex axis and the

elevation ϑ represents the angle between the tether and the

ground plane (ex,ey). We assume that the incoming wind is

parallel to the ground and its misalignment with respect to

ex is denoted by ϕW , see Fig. 1.

Due to boundary layer flow effects of the wind above the

earth’s surface, the magnitude of the wind W is a function

of the altitude z above the ground, the so-called wind shear

effect. Common choices to model such a wind shear are

the log or the power laws [19]. In this paper, we consider

the latter, but the results hold for a general monotonically

increasing wind profile. In our coordinate system, the altitude

is given by z = r sinϑ and the power law is defined as





(5) by dealing with the uncertainty of the wind direction and

profile.

III. CROSSWIND TRACTION FORCE

We first investigate the properties of the average traction

force for a flown path using a simplified model, which

allows an analytical study of the force as a function of the

parameters Θ.

A. Analysis of the traction force with a simplified model

A simplified model to estimate the traction force of a

tethered wing depending on its location has been introduced

in [2] and subsequently refined in several contributions, see

e.g. [2], [20]. According to this model, for a constant reeling

speed, the traction force F is a function of the current

location of the wing and of the wind:

F (ϕ,ϑ ,ϕW ,W0,Z0,α) = C v(ϑ)m(ϕ −ϕW ) , (6)

where

C =
1

2
ρACLE2
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)
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2
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v(ϑ) =W (ϑ)2 cos(ϑ)2

m(ϕ −ϕW ) = cos(ϕ −ϕW )2
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Eeq =
CL

CD,eq
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CD +
CD,lAl

4A

. (8)

In (7)-(8), the air density is indicated by ρ , A is the wing

reference area, CL is the wing’s lift coefficient, CD,eq is the

equivalent drag coefficient, accounting for the drag of the

wing and the added drag by the cable. CD,l is the drag

coefficient of the cable and Al = nl r dl is the cable reference

area, where nl is the number of lines supporting the wing, r

is the line length, and dl is the line diameter. For simplicity,

the values of CL and CD are assumed to be constant, as

considered e.g. in [10].

Equations (6)-(8) allow an analysis of the traction force as

a function of the parameters Θ. Since the wing is assumed

to fly within the wind window, we limit the analysis to the

following ranges:

ϕc ∈ (ϕW −π/2,ϕW +π/2)

ϑc ∈ (0,π/2)

ϕmax
∆ ∈ (0,π/2− (ϕc −ϕW )]

β ∈ [−π/2,π/2] .

By inspection, function m(ϕc − ϕW ) : (ϕW − π/2,ϕW +
π/2) 7→ (0,1] is a quasi-concave function with its maximum

at ϕ = ϕW . Function v(ϑc) : (0,π/2) 7→ R+ consists of two

parts. The first part, the wind profile W (ϑ), is assumed to be

monotonically increasing, according to (1), and the second

part, cos(ϑ)2, is also a quasi-concave function in the domain

of v. By using the second-order condition for quasi-concave

functions [21], it can be verified that the product is still quasi-

concave and that the point (ϕ,ϑ) in the wind window with

maximal traction force for (6) is given by (ϕW ,arctan
(√

α
)

).
We will now compute the average traction force for a given

path using (6). By introducing the index k = 1, . . . ,N, which

identifies the samples of a discretized path with sampling

time Ts, any sampled position in the path can be expressed

as (ϕc+ϕ∆(k),ϑc+ϑ∆(k)). The discrete form of the average

traction force (4) can be then written as

1

T

∫ T

0
F(t)dt ≃ 1

NTs

N

∑
k=1

F(k)Ts =
1

N

N

∑
k=1

F(k) (9)

The average traction force F̄ for one period of the path is
thus given by

F̄(Θ,ϕW ,W0,Z0,α) =
1

N

N

∑
k=1

C v(ϑ(k))m(ϕ(k)−ϕW ), (10)

with
ϑ(k) = ϑc +ϑ∆(k)
ϕ(k) = ϕc +ϕ∆(k)

For the following analysis, we focus on the dependence of

F̄ on ϕc, ϑc, and ϕmax
∆ only, and fix the inclination β = 0 (see

Fig. 2). In Fig. 3, the average traction force (10) as a function

of ϕc −ϕW for different ϑc is shown. Note that the forces

in all the plots have been normalized in order to emphasize

the independence of the qualitative behavior on the wind:

stronger winds influence only the numerical values, but the

qualitative behavior of the average force remains unchanged.
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Fig. 3. Average traction force computed with the simplified model with
ϕmax

∆ = 0.3. Solid: ϑc = 0.1, dashed: ϑc = 0.3, and dotted: ϑc = 0.5.

From (10), we can notice that the contributions of the left

and right half paths to the average traction force F̄ are not

the same if ϕc 6=ϕW . We therefore derive the average traction

forces for each of the half paths, and investigate the influence

of the parameters Θ on their difference. The average traction

forces of the left and right half paths are:

F̄L =
1

NL

NL

∑
k=1

{Cv(ϑ(k))m(ϕ(k)−ϕW )|ϕ(k)≥ ϕc}

F̄R =
1

NR

NR

∑
k=1

{Cv(ϑ(k))m(ϕ(k)−ϕW )|ϕ(k)< ϕc} ,

(11)

where F̄L and F̄R stand for the average traction force of the

left and right half and NL and NR are the corresponding

number of samples.
The traction force difference between the left and right

halves, using (7) and (11), is given, after some manipulations

and assuming a sufficiently small sampling time, by

∆F̄(Θ,ϕW ,W0,Z0,α) = F̄L − F̄R

≃ C
2

sin(2(ϕW −ϕc))B , (12)



where the positive term B is given by

B =
1

NL

NL

∑
k=1

v(ϑ(k))sin(2|ϕ∆(k)|)+
1

NR

NR

∑
k=1

v(ϑ(k))sin(2|ϕ∆(k)|)

From (12) it can be seen that the difference in traction force

is zero only if ϕc = ϕW and that it is monotonic for |ϕc −
ϕW | ≤ π/4. Moreover, paths with an average position on the

left of the wind direction, as seen from the anchor point

of the tether (i.e. ϕc − ϕW > 0), have a negative ∆F̄ , and

vice-versa (see Fig. 4). This is due to the smaller fraction of

the incoming wind being in tether direction, thus generationg

less traction force. In Fig. 4, a plot of ∆F̄ for different values

of the half-span ϕmax
∆ is shown. By changing the span of the

path, the magnitude of ∆F̄ changes. For larger spans, the

difference between the average traction force given by the

left and right half paths gets larger. The span of the path also

has an influence on the average traction force, see Fig. 5, i.e.

wider paths provide smaller average traction force. Thus, a

path which has a higher traction force due to its small span

will also have a smaller magnitude in ∆F̄ . By changing the

elevation of the path, ϑc, the values of F̄ and |∆F̄ | change

according to the value of v(ϑ) from (7). This is shown in

Fig. 3 for F̄ . In particular, there is a single value of ϑc that

maximizes the traction force, and this value depends only on

the wind profile and not on the misalignment (ϕW −ϕc).
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Fig. 4. Difference of average traction forces ∆F̄ computed with the
simplified model, with ϑc = 0.2 and different values of the span. Solid:
ϕmax

∆ = 0.1, dashed: ϕmax
∆ = 0.3, and dotted: ϕmax

∆ = 0.5.
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Fig. 5. Average traction force computed with the simplified model, with
ϑc = 0.2 and different values of the span. Solid: ϕmax

∆ = 0.1, dashed: ϕmax
∆ =

0.3,and dotted: ϕmax
∆ = 0.5.

B. Analysis of the traction force with a dynamic model

In this section, we employ a dynamic model to asses

the considerations derived in section III-A, and to analyze

the effects of different path inclinations β on the average

forces. The dynamics f (x,u,ϕW ,W0,Z0,α) are modeled here

by a widely used nonlinear point-mass model for a tethered

wing, see e.g. [10], [11], [12], [16], [22], [23]. The dynamic

equations are derived from first principles and the wing is

assumed to be a point-mass. The tether is assumed to be

straight with a distributed mass and non-zero diameter. The

aerodynamic drag of the tether and half of the tether mass

are added to the wing’s drag and mass, respectively. The

aerodynamic forces are modeled with constant lift and drag

coefficients, and effects from gravity and inertial forces are

included. Defining the transversal axis of the wing to point

from the left wing tip to the right wing tip, we can describe

the roll angle ψ as the angle which is drawn between the

transversal axis and the tangent plane on the wind window

at the wing’s position. The wing is assumed to be steered

by a non-zero roll angle, which is manipulated by a control

system, and thus, referring to (2), we have u = ψ . The state

x of this system is given by x = (ϕ,ϑ ,r, ϕ̇, ϑ̇ , ṙ).

In order to carry out the simulations, the controller K

is designed using the approach described in [24]. Such a

controller is able to obtain a symmetric figure eight path

with a required span and inclination, and with the average

position being a given reference location (ϕc,ϑc).

Consistently with Section III-A, the average traction forces

generated during the full path, and the average traction force

generated on the left and right half paths, are computed from

the simulation results:

F̄(Θ,ϕW ,W0,Z0,α) =
1

N

N

∑
k=1

F(k)

F̄L =
1

NL

NL

∑
k=1

{F(k) |ϕ(k)≥ ϕc}

F̄R =
1

NR

NR

∑
k=1

{F(k) |ϕ(k)< ϕc} .

The traction force difference between the left and right half

path is

∆F̄(Θ,ϕW ,W0,Z0,α) = F̄L − F̄R .

As done before, we want to know how F̄ and ∆F̄ change for

different values of Θ, including the inclination β .

Comparing the traction force for various ϕc and ϑc with

a symmetric horizontal path shape (i.e. β = 0) shows good

qualitative correspondence with the simplified model used in

Section III-A, thus indicating that gravity and inertial forces

do not change the system behavior. If the path is inclined, i.e.

β 6= 0, the average traction force does not increase more than

2% for ϕc around the optimum of F̄ , but the values of ∆F̄

change significantly. In fact, when the path is inclined, the

traction force difference is not zero anymore for ϕc−ϕW = 0,

see Fig. 6. The effect of larger spans in the presence of

β 6= 0 is the same as the one observed in Section III-A, i.e.

a larger value of ϕmax
∆ increases ∆F̄ for fixed values of the

other parameters. As expected from the simplified analysis,

stronger wind or different tether length r do not affect the

qualitative results.
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Fig. 6. Traction force difference ∆F̄ computed with the point-mass model
for ϑc = 0.4, ϕmax

∆ = 0.24, and different inclinations β = 0 (solid), β = 0.3
(dashed), β = 0.6 (dot-dashed), and β = 0.9 (dotted).

C. Discussion

The results of the previous two sections show that there

is a single optimal average location, denoted as (ϕ∗
c ,ϑ

∗
c ),

yielding the maximal average traction force for a given path

shape. In particular, we have ϕ∗
c = ϕW , while ϑ ∗

c depends on

the vertical wind profile. The average traction force is very

sensitive on the average position of the path. A misalignment

in ϕc with respect to ϕ∗
c of roughly 20◦ can lead to a decrease

of average traction force of 15%, while 50% of the force is

obtained for a misalignment of roughly 45◦, see Fig. 3. An

average elevation ϑc 6= ϑ ∗
c can also reduce the traction force

by a significant amount, in the same order as for ϕc.

The difference in average traction force, ∆F̄ , is zero

for horizontal paths with an average position ϕc = ϕW .

Moreover, for paths with zero inclination, the sign of ∆F̄

is the opposite w.r.t. that of ϕc−ϕW , i.e. ϕc−ϕ∗
c . Therefore,

the value of ∆F̄ is a good indicator of the alignment of ϕc

with the wind direction ϕW . However, ∆F̄ is sensitive to

changes in β . With β 6= 0 the difference in traction force

∆F̄ is not anymore zero for ϕc = ϕW , and the sign of ∆F̄ is

not the opposite w.r.t the sign of the misalignment ϕc −ϕW

anymore (see Fig. 6).

The span of the path in the elevation direction ϑ was

not considered in this work. However, from our analysis the

effects of this aspect on the average traction force are similar

to the one seen for the lateral span ϕmax
∆ .

In conclusion, the analysis above shows that optimizing

the average position (ϕc,ϑc) yields the largest increase of

average traction force (hence generated power). The shape

of the path, in terms of span and inclination, has only

a relatively small influence on the traction force. In the

next section, we exploit these considerations to derive an

algorithm able to optimize in real-time the average path

location, using only the measurements of traction force on

the tethers.

IV. REAL-TIME OPTIMIZATION AND ADAPTATION

ALGORITHM

As seen in the previous section, the average location of a

flown path has the largest influence on the generated traction

force among all of the considered parameters. Thus we aim

to find the best average location in ϕ and ϑ for a given

path shape, in order to maximize the average power output

of the AWE system. Since the inclination of a path has an

adverse effect on ∆F̄ and does not affect F̄ , we only consider

horizontal paths with β = 0. Enforcing a horizontal path can

be done in practice with a suitable controller as in [25]. Thus,

in the following we consider Θ
.
= (ϕc,ϑc) as optimization

variables, fix the half-span ϕmax
∆ to a prescribed value and

select β = 0.

Recall that we assume that the underlying controller

accepts reference values for the average location where the

path should be flown. The presented algorithm will then

compute such reference values in order to solve the following

optimization problem:

max
ϕc,ϑc

F̄(Θ,ϕW ,W0,Z0,α) . (13)

We assume that the parameters ϕW ,W0,Z0,α , specifying

the wind direction and profile, are not known, hence the

optimization problem (13) is uncertain due to the lack of

information on ϕW and the wind shear profile. On the other

hand, we assume that the traction force F is measured, as

well as the position of the wing w.r.t. the ground unit. Hence

the values of F̄ and ∆F̄ for each flown path are measured.

The analysis presented in the previous section indicates

that we can reformulate the optimization problem as

max
ϑc

[

max
ϕc

F̄(Θ,ϕW ,W0,Z0,α)

]

, (14)

i.e. (14) can be maximized separately in ϕc and ϑc. Also,

note that for horizontal paths we have

argmax
ϕc

F̄(Θ,ϕW ,W0,Z0,α) = argmin
ϕc

|∆F̄(Θ,ϕW ,W0,Z0,α)|(15)

as it can be derived from (10) and (12) and from the results in

Section III-B. Therefore, the problem (13) can be solved by

addressing two subsequent optimization problems indepen-

dently. We will first exploit the measure of ∆F̄ to find the best

location in ϕ , i.e. to compute argmin |∆F̄(Θ,ϕW ,W0,Z0,α)|,
and then the measure of F̄ to find the best location in ϑ ,

i.e. solving (14) with the previously found optimal ϕc. The

advantage of using ∆F̄ to find the optimal ϕc, instead of using

only F̄ , is that a single value of ∆F̄ , i.e. a single flown path,

gives a qualitative indication of the misalignment ϕc −ϕW .

By using only F̄ , the values obtained by two paths, with

different ϕc, would be needed to estimate the search direction

for the parameter ϕc, which would take at least twice as long.

Thus, the adaptation in ϕ direction is sped up by looking at

the traction force difference ∆F̄ .

A. Algorithm Outline

We present a short outline of an algorithm which is

able to adapt the average position of a path, such that

it converges to the optimum. The algorithm iterates over

subsequent complete paths flown by the wing, and exploits

the values of F̄ and ∆F̄ measured in the current and past

paths. It uses a coordinate search approach, see e.g. [26],

to solve the two subsequent optimization problems, since no

gradient information is available. The value ∆F̄min is used as

a stopping criterion for the ϕ direction adaptation.



Algorithm 1: Optimization/Adaptation

1 while true do

2 if |∆F̄ |> ∆F̄min then

3 min
ϕc

|∆F̄ |
4 update ϕc

5 else

6 max
ϑc

F̄

7 update ϑc

8 end
9 end

TABLE I

POINT-MASS MODEL PARAMETERS

A = 9 m m = 2.45 kg r = 30 m
nl = 3 dl = 0.003 m

CL = 0.8 CD = 0.134 CD,l = 1.2
W0 = 5 m/s Z0 = 4 m α = 0.1

V. NUMERICAL SIMULATIONS

We tested the approach in simulation using the same point-

mass dynamical model of the system as in [12] and the

controller presented in [25]. The results indicate that the

approach is able to tune in real-time the controller in order

to follow a changing wind direction and adapt the paths’

average elevation according to the (unknown) wind profile.

The main parameters of the model are listed in Tab. I. A plot

with the time course of the average location of the path and

the wind direction can be seen in Fig. 7.
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Fig. 7. Simulation results obtained by applying the proposed algorithm
on the point-mass model. The solid and dashed lines represent the average
ϕ and ϑ positions of the path, ϕc and ϑc, respectively. The dashed-dotted
line shows the wind direction.

VI. CONCLUSION AN FUTURE WORK

We presented an analysis of the average traction force

generated by a tethered wing and, based on the results of such

analysis, we proposed an algorithm to adapt and optimize in

real-time the average position of the flown path without exact

knowledge of the wind direction and profile. The algorithm

is not dependent on the system configuration, e.g. number

of lines or position of the generator, and it can be used

as an extension of any working controller for a tethered

wing, provided that the controller is able to fly the wing

on a symmetric horizontal path and to attain a reference

position in terms of average location of the path in the wind

window. We tested the approach with numerical simulations,

showing a good performance in adapting and optimizing the

system’s operation in the presence of unknown and changing

wind conditions. Real-world experiments on a small-scale

prototype have been carried out as well (see [27]) and the

results will be presented in the near future.
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