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Abstract

We propose an approach for the direct design from data of controllers finalized at solving tracking problems for nonlinear
systems. This approach, called Direct FeedbacK (DFK) design, overcomes relevant problems typical of the standard design
methods, such as modeling errors, non-trivial parameter identification, non-convex optimization, and difficulty in nonlinear
control design. Considering a Set Membership (SM) approach, we provide three main contributions. The first one is a theoretical

framework for the stability analysis of nonlinear feedback control systems, in which the controller f̂ is an approximation

identified from data of an ideal inverse model fo. In this framework, we derive sufficient conditions under which f̂ stabilizes
the closed-loop system. The second contribution is a technique for the direct design of an approximate controller f∗ from data,
having suitable optimality, stability, and sparsity properties. In particular, we show that f∗ is an almost-optimal controller
(in a worst-case sense), and we derive a guaranteed accuracy bound, which can be used to quantify the performance level of
the DFK control system. We also show that, when the number of data used for control design tends to infinity and these data
are dense in the controller domain, the closed-loop stability is guaranteed for a set of trajectories of interest. The technique is
based on convex optimization and sparse identification methods, and thus avoids the problem of local minima and allows an
efficient on-line controller implementation in real-world applications. The third contribution is a simulation study, regarding
the application of DFK to the challenging problem of control design for a class of airborne wind energy generators.

1 Introduction

The reference tracking control problem can be viewed as
a dynamics inversion problem. That is, given a reference
(or desired) solution r for the (nonlinear) system S to be
controlled, find the input u such that the actual system
solution x is “close” to r.

Most control design techniques rely on a two-step ap-
proach to solve this problem: at first, a mathematical
model M of the system S is derived; then, a feedback
control algorithm u = f(r,x, . . .) is designed on the
basis of M , according to different possible procedures.
The inputs to this model-based design approach are the
model M and some given performance specifications.
The modelM has to satisfy two, often contrasting, prop-
erties: on the one hand, it has to be simple, in order to
allow the design of f , while, on the other hand, it has
to describe with sufficient accuracy the dynamical be-
havior of S in the neighborhood of a given reference r,
or for a certain set of references of interest. Typically,
M is derived on the basis of first-principles equations,
which dictate its structure and involve a set of parame-
ters to be identified.We call these kinds of models “phys-
ical”. In order to achieve the above-mentioned features,

the parameters of the physical models are estimated
by means of identification procedures, which employ a
set of input-output measurements collected from the
system S. The described modeling-identification-control
design methodology represents the common practice in
industrial applications of automatic control and it works
nicely in many contexts. However, in several other cases,
it is difficult to derive a simple-but-accurate physical
model. It may also happen that the identification pro-
cedure fails to estimate the model parameters with suf-
ficiently good accuracy. This is typically the case of sys-
tems for which there are no simple first-principles laws
to be used to derive an accurate model, and/or systems
with strong nonlinearities. Another relevant problem of
the approaches relying on physical modeling is the de-
sign of the control algorithm which, in the case of a non-
linear system, can be very difficult from both the theo-
retical and applicative points of view.

These situations motivate the research of data-driven in-
verse control techniques, which are roughly classifiable
in two different categories: indirect techniques, and di-
rect ones. Indirect techniques replace the physical model
with a “black-box” one, usually in the form of a suf-
ficiently rich combination of basis functions, and use
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the measured data to identify the model parameters.
Then, the controller is derived with different possible ap-
proaches that involve some kind of inversion of the iden-
tified model. Several approaches based on neural net-
works follow this indirect procedure for inverse control
(see (Levin & Narendra 1996), the survey (Cabrera &
Narendra 1999), and the references therein). In princi-
ple, indirect techniques rely on the capabilities of neu-
ral networks (or other kinds of approximating functions)
to approximate any continuous function on a compact
set, in order to obtain good approximations of both the
direct model and its inverse. However, obtaining sta-
bility and performance results for indirect inverse con-
trol techniques is quite difficult and, moreover, the use
of neural approximations may give rise to issues like
trapping in local minima during the training phase. Di-
rect techniques for inverse control aim at avoiding the
identification of a model of the system to control, and
to obtain the inverse model directly from the available
input-output data, hence the name Direct Inverse Con-
trol (DIC) (Anuradha, Reddy & Murthy 2009), (Abreu,
Teixeira & Ribeiro 2000), (Norgaard, Ravn, Poulsen &
Hansen 2000), (Campi & Savaresi 2006). Most of the
existing studies concerned with DIC of nonlinear sys-
tems also use neural networks to approximate the inverse
controller (Anuradha et al. 2009), (Abreu et al. 2000),
(Norgaard et al. 2000). Conceptually, the direct design
of the control law eliminates the issues related to the un-
certainty due to neglected dynamics and parameter es-
timation errors, which may affect the model-based and
indirect data-driven design techniques. However, there
is actually no solid theoretical framework regarding the
design of DIC laws, and the existing results are justified
mainly by means of simulation studies. Moreover, the
use of neural networks, or of other kinds of approximat-
ing functions whose training involves non-convex opti-
mization, may still cause the above-mentioned issue of
local minima.

In this paper, we propose an approach, named Direct
FeedbacK (DFK) design, for the direct synthesis from
data of control laws for nonlinear state-space systems, al-
lowing to overcome the problems mentioned above. Con-
sidering a Set Membership (SM) approach, we provide
three main contributions. The first one is to lay out a the-
oretical framework for the stability analysis of nonlinear

feedback control systems, in which the control law f̂ is
an approximation of an ideal inverse controller fo. The
latter is supposed to be not known and is approximated
from measured data. In this theoretical framework, we

derive sufficient conditions under which f̂ stabilizes the
closed-loop system for a set of trajectories of interest.
The second contribution is to present a technique for the
direct design of a controller f∗ from data, having suit-
able optimality, stability, and sparsity properties. In par-
ticular, we show that, under closed-loop stability con-
ditions, f∗ is an almost-optimal controller (in a worst-
case sense), and we derive a guaranteed accuracy bound,
which can be used to quantify the performance level of

the DFK control system. We also show that, when the
number of data used for control design tends to infin-
ity and these data are dense in the controller domain,
the controller f∗ guarantees closed-loop stability for a
set of trajectories of interest. The presented technique is
based on convex optimization and sparse identification
methods, and thus avoids the problem of local minima
and allows an efficient on-line implementation in real-
world applications. The presence of noisy measurements
and process disturbances is accounted for, too. The third
contribution is a simulation study, concerned with the
application of DFK to the challenging problem of con-
trol design for a class of airborne wind energy generators
(see (Fagiano, Milanese & Piga 2010, Fagiano, Milanese
& Piga available online)).

2 Problem formulation

Consider a nonlinear single-input discrete-time system
S in state-space form:

xt+1 = go (xt, ut, et) (1)

where t ∈ Z is the discrete time, xt ∈ X ⊆ Rnx is the
state, ut ∈ U ⊂ R is the input, U

.
= [u, u] accounts for

input saturation, and et ∈ Rne is a noise including both
process and measurement disturbances.

Assumption 1 The noise et is bounded:

et ∈ Bε
.
= {e : ∥e∥∞ ≤ ε}, ∀t ∈ Z

for some ε < ∞. �
Assumption 2 The function go is Lipschitz continuous
with respect to ut: go (xt, ·, et) ∈ F

(
γg, U

)
for any xt ∈

X and any et ∈ Bε, where

F (γ,W )
.
= {f : ∥f (0)∥∞ < ∞,

∥f (z)− f (ẑ)∥∞ ≤ γ ∥z − ẑ∥∞ , ∀z, ẑ ∈ W}
(2)

and ∥·∥∞ is the ℓ∞ vector norm. �
Suppose that the function go defining the system (1) is
unknown, but a set of noise-corrupted measurements is
available:

DL .
=

{
(x̃k+1, x̃k) , ũk, k ∈ T L

}
(3)

where T L .
= {−L + 1, . . . , 0}, ∥x̃k∥∞ < ∞ and ũk ∈ U

for any k ∈ T L.

Let X 0 ⊆ X be a set of initial conditions of the sys-
tem (1) and, for any given initial condition x0 ∈ X 0,
let R (x0) ⊆ ℓ∞ be a set of solutions of interest. The
aim is to control the system (1) in such a way that,
starting from any initial condition x0 ∈ X 0, the sys-
tem solution x = (x1, x2, . . .) tracks any reference signal
r = (r1, r2, . . .) ∈ R (x0). To accomplish this task, we
use the feedback control scheme depicted in Figure 1,
where S is the system (1), f is a controller, rt ∈ R is the
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reference, and R ⊆ X is a bounded set where the trajec-
tories of interest lie. Based on this closed-loop scheme,
we investigate the following problem.

Problem 1 Design a controller f such that the tracking
error

TEt (f)
.
= ∥rt − xt∥∞

= ∥rt − go (xt−1, f (rt, xt−1) , et−1)∥∞

is “small” for all t = 1, 2, . . ., and for any (x0, r,e) ∈
X 0 ×R×Bε, i.e. for any initial condition x0 ∈ X 0, any
reference sequence r = (r1, r2, . . .) ∈ R (x0), and any
noise sequence e = (e1, e2, . . .) ∈ Bε

.
= {ς = (ς1, ς2, . . .) :

ςt ∈ Bε, ∀t}. �

S
 

rt+1 
xt ut 

et 

f 

Fig. 1. Feedback control system.

In the following, we present a design approach to solve
Problem 1, based on the inversion of go from data, along
with a rigorous theoretical analysis on its stabilizing
properties.

3 DFK control of nonlinear systems

Consider the function go defining the system (1). A con-
troller f can be seen as a right-inverse function of go
with respect to ut, i.e. a function that, given the cur-
rent state xt and the value rt+1 desired for the state at
time t+ 1, provides an input ut = f (rt+1, xt) such that
xt+1 ≃ rt+1.

For a right-inverse function f of go, we can define the
following point-wise inversion error :

IE (f, r, x, e)
.
= ∥r − go (x, f (r, x) , e)∥∞

where (r, x) ∈ Ω
.
= R × X ⊂ Rnw , nw = 2nx, e ∈ Bε,

and ∥·∥∞ is the vector ℓ∞ norm. We can also define the
following global inversion error :

GIE (f)
.
= ∥IE (f, ·, ·, ·)∥∞

where ∥·∥∞ is the functional L∞ norm evaluated over
Ω×Bε.

Given a right-inverse function f with “small” global er-
ror GIE (f), it holds that

r ≃ go (x, f (r, x) , e) (4)

for any (r, x, e) ∈ Ω × Bε. For an invertible function
go, f is also a left-inverse of go, since (4) implies that,
if u is such that r ≃ go (x, u, e), then u ≃ f (r, x) =
f (go (x, u, e) , x). Thanks to these inversion properties,
the function f could be used as the controller in the
closed-loop system of Figure 1, providing a possible so-
lution to the design Problem 1. In fact, if the closed-loop
system is stable and GIE (f) is “small”, then a “small”
tracking error TEt (f) can be obtained.

In order to formalize this idea, consider the following
stability notion.

Definition 1 A nonlinear system (possibly time-
varying) with input ut, state xt, and noise et ∈ Bε

is finite-gain ℓ∞ stable on
(
X 0,U

)
if finite and non-

negative λ and β exist such that

∥x∥∞ ≤ λ ∥u∥∞ + β

for any (x0,u, e) ∈ X 0×U×Bε, where x = (x1, x2, . . .),
e = (e1, e2, . . .) ∈ Bε, u = (u1, u2, . . .) ∈ U , and U is the
input domain. �
Note that this finite-gain stability definition is more
general than the standard one, which corresponds to
the case U = ℓ∞, see e.g. (Khalil 1996). Moreover,
if U = {u : ∥u∥∞ < bu} for some bu < ∞, then
∥x∥∞ ≤ λbu + β, which implies practical stability, see
e.g. (Lakshmikantham, Leela & Martynyuk 1990). From
this latter inequality we also have that, for any given
time Th ∈ N, ∥xt∥∞ ≤ λbu + β, t = 1, . . . , Th, which
implies finite-time stability for any time interval [0, Th],
see e.g. (Mastellone, Dorato & Abdallah 2004, Amato,
Ambrosino, Cosentino & Tommasi 2010).

Consider now the following stabilizability notion.

Definition 2 Given a system of the form (1), define

G(f, rt+1, xt, et)
.
= rt+1 − go (xt, f (rt+1, xt) , et) .

The system is γ-stabilizable on
(
X 0,R

)
if a γ < ∞ and

a right-inverse function f ∈ F (γ,Ω) exist such that

G(f, rt+1, ·, et) ∈ F (γG, X) , γG < 1 (5)

for all t = 1, 2, . . . , and for any (x0, r, e) ∈ X 0 × R ×
Bε. �
The γ-stabilizability condition (5) implies that a right-
inverse function f ∈ F (γ,Ω) exists such that the
closed-loop system described by the difference equation
xt+1 = go (xt, f (rt+1, xt) , et) is finite-gain ℓ∞ stable
on

(
X 0,R

)
. In fact, this equation can be written as

xt+1 = rt+1 − G(f, rt+1, xt, et), which corresponds
to a closed-loop system with reference rt+1, output
xt+1 and negative feedback G(f, rt+1, xt, et) (see the
block diagram inside the dashed line in Figure 2 with
r̂t+1 → rt+1). As it can be easily seen applying the
Small Gain Theorem (see e.g. (Khalil 1996)), closed-
loop stability follows from the fact that γG < 1.
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Stabilizability as defined here has analogies with flat-
ness (Fliess, Lèvine, Martin & Rouchon 1995). However,
the stabilizability condition is somewhat weaker than
the flatness condition. To illustrate this fact, consider
for example a linear system which is not completely con-
trollable, but has a stable uncontrollable part. It is easy
to verify that such a system is stabilizable according to
Definition 2. On the other hand, this system is not flat,
since flatness implies controllability.

The control design approach proposed in this paper re-
quires the stabilizability of the system (1).

Assumption 3 The system (1) is γo-stabilizable on(
X 0,Ro

)
, where X 0 ⊆ X and Ro (x0) ⊆ ℓ∞. �

Under this assumption, we can define an optimal con-
troller as follows.

Definition 3 A right-inverse function fo : Ω → U is an
optimal controller of the system (1) if

fo = arg min
f∈S∩F(γo,Ω)

GIE (f) (6)

where S is the set of all functions f satisfying the stabi-
lizability condition (5). �
Thus, an optimal controller fo is a right-inverse function
which, among all functions stabilizing the closed-loop
system, gives the minimum global inversion error.

Let us now consider a given optimal controller fo.
Clearly, this controller is not known since, as assumed in
Section 2, the function go is not known (even for known
go, the evaluation of fo from (6) may be hard). In this
paper, we propose an approach, called Direct FeedbacK

(DFK) design, that uses an approximation f̂ of fo de-
rived from the available data (3), as the controller f in
the closed-loop system of Figure 1. A suitable identifi-

cation method for deriving the approximation f̂ will be
proposed in Section 4. The remainder of this section is
devoted to derive sufficient conditions under which an
approximation f̂ stabilizes the closed-loop system, and
to provide a bound on the resulting tracking error.

Define the following residue function:

∆ (rt+1, xt)
.
= fo (rt+1, xt)− f̂ (rt+1, xt) . (7)

Choosing a Lipschitz continuous approximation f̂ and
considering that fo is Lipschitz continuous by definition,
we have that ∆ is also Lipschitz continuous. In particu-
lar,

∆ ∈ F (γ∆,Ω∆) (8)

for some γ∆ < ∞, where Ω∆ ⊆ Ω is a compact convex.

Theorem 1 Let Assumptions 1, 2 and 3 hold. Assume
also that

γgγ∆ < 1. (9)

Then:

(i) The DFK closed-loop system

xt+1 = go

(
xt, f̂ (rt+1, xt) , et

)
(10)

is finite-gain ℓ∞ stable on
(
X 0,R∗), where R∗ .

= {r ∈
Ro

(
X 0

)
: (rt, xt−1) ∈ Ω∆, t = 1, 2, . . . , ∀e ∈ Bε} and

Ro

(
X 0

) .
= {r ∈ Ro (x0) , x0 ∈ X 0}.

(ii) The DFK closed-loop system tracking error is tightly
bounded as

TEt

(
f̂
)
≤ IE (fo, rt, xt−1, et−1) + γg |∆(rt, xt−1)|

(11)
for all t = 1, 2, . . . , and for any (x0, r, e) ∈ X 0×R∗×Bε.

Proof. (i) Consider that

xt+1 = go

(
xt, f̂ (rt+1, xt) , et

)
= rt+1 −G(fo, rt+1, xt, et)− F (fo, f̂ , rt+1, xt, et)

(12)
where

G(fo, rt+1, xt, et)
.
= rt+1 − go (xt, fo (rt+1, xt) , et)

F (fo, f̂ , rt+1, xt, et)
.
= go (xt, fo (rt+1, xt) , et)

−go

(
xt, f̂ (rt+1, xt) , et

)
.

(13)
This shows that the system in Figure 1 is equivalent
to the system in Figure 2 where q−1 is the time-shift
operator: q−1xt+1 = xt.

By Definitions 2 and 3, the internal closed-loop system
corresponding to the block diagram inside the dashed
line in Figure 2 defined by

xt+1 = r̂t+1 −G(fo, rt+1, xt, et)

= rt+1 − vt+1 −G(fo, rt+1, xt, et)
(14)

is finite-gain ℓ∞ stable on
(
X 0, ℓ∞

)
. Indeed, it is a closed-

loop system with reference rt+1− vt+1, output xt+1 and
negative feedback G(fo, rt+1, xt, et). Since, by Assump-
tion 3, G(fo, rt+1, ·, et) ∈ F (γG, X), γG < 1, for all
t = 1, 2, . . . , any initial condition x0 ∈ X 0, any noise se-
quence e = (e1, e2, . . .) such that et ∈ Bε ∀t, and any
reference sequence r = (r1, r2, . . .) ∈ Ro (x0), the Small
Gain Theorem (see e.g. (Khalil 1996)) implies closed-
loop finite-gain stability.

Moreover, from (14), we have that

∥xt+1∥∞ ≤ ∥r̂t+1∥∞ + ∥G(fo, rt+1, xt, et)∥∞
= ∥r̂t+1∥∞ + ∥rt+1 − go (xt, fo (rt+1, xt) , et)∥∞

≤ ∥r̂t+1∥∞ + IE (fo, rt+1, xt, et)

where the last inequality follows from the definition of
point-wise inversion error. It follows that, for any r̂ =
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(r̂1, r̂2, . . .) ∈ ℓ∞,

∥x∥∞ ≤ ∥r̂∥∞ +GIE (fo) (15)

where x = (x1, x2, . . .).

On the other hand, since by Assumption 2 go (xt, ·, et) ∈
F
(
γg, U

)
for any xt ∈ X and any et ∈ Bε, we have that∥∥∥F (fo, f̂ , rt+1, xt, et)

∥∥∥
∞

= ∥go (xt, fo (rt+1, xt) , et)

− go

(
xt, f̂ (rt+1, xt) , et

)∥∥∥
∞

≤ γg

∣∣∣fo (rt+1, xt)− f̂ (rt+1, xt)
∣∣∣ = γg |∆(rt+1, xt)| .

(16)
Moreover, ∆ ∈ F (γ∆,Ω∆), and this implies that
|∆(rt+1, xt)−∆(rt+1, 0)| ≤ γ∆ ∥xt − 0∥∞, i.e.

|∆(rt+1, xt)| ≤ γ∆ ∥xt∥∞ + |∆(rt+1, 0)| (17)

for any (rt+1, xt) ∈ Ω∆. Inequalities (16) and (17) yield∥∥∥F (fo, f̂ , rt+1, xt, et)
∥∥∥
∞

≤ γgγ∆ ∥xt∥∞+γg |∆(rt+1, 0)|

for any (rt+1, xt) ∈ Ω∆ and any et ∈ Bε. Since R
is a bounded set, and ∆ ∈ F (γ∆,Ω∆), we have that
γg |∆(rt+1, 0)| is bounded by some β < ∞:

γg |∆(rt+1, 0)| ≤ β,

for any rt+1 ∈ R. The following inequality thus hold for
any (rt+1, xt) ∈ Ω∆, any et ∈ Bε, and all t = 1, 2, . . .:∥∥∥F (fo, f̂ , rt+1, xt, et)

∥∥∥
∞

≤ γgγ∆ ∥xt∥∞ + β.

This implies that, for any x = (x1, x2, . . .) with
(rt+1, xt) ∈ Ω∆ ∀t,

∥v∥∞ ≤ γgγ∆ ∥x∥∞ + β (18)

where v = (v1, v2, . . .). Thus, the system inside the dot-
dashed line in Figure 2 defined by

vt+1 = F (fo, f̂ , rt+1, xt, et)

is finite-gain ℓ∞ stable on {x = (x1, x2, . . .) : (rt+1, xt) ∈
Ω∆, ∀t}.
According to the Small Gain Theorem (see e.g. (Khalil
1996)), if (15) and (18) hold and γgγ∆ < 1, it follows
that the overall closed-loop system in Figure 2 is finite-
gain ℓ∞ stable on R∗ (x0). This system is equivalent to
the system (10), which is thus finite-gain ℓ∞ stable on
R∗ (x0) as well. This proves the first claim.

(ii) From (12), the tracking error is bounded as

TEt+1

(
f̂
)

.
=

∥∥∥rt+1 − go

(
xt, f̂ (rt+1, xt) , et

)∥∥∥
∞

≤
∥∥∥G(fo, rt+1, xt, et) + F (fo, f̂ , rt+1, xt, et)

∥∥∥
∞

≤ ∥G(fo, rt+1, xt, et)∥∞ +
∥∥∥F (fo, f̂ , rt+1, xt, et)

∥∥∥
∞
(19)

for all t = 1, 2, . . . From (13) and from the point-wise
inversion error definition, we have

∥G(fo, rt+1, xt, et)∥∞
= ∥rt+1 − go (xt, fo (rt+1, xt) , et)∥∞

= IE (fo, rt+1, xt, et)

(20)

for any (rt+1, xt) ∈ Ω and any et ∈ Bε. From (16),∥∥∥F (fo, f̂ , rt+1, xt, et)
∥∥∥
∞

is bounded as

∥∥∥F (fo, f̂ , rt+1, xt, et)
∥∥∥
∞

≤ γg |∆(rt+1, xt)| (21)

for any (rt+1, xt) ∈ Ω and any et ∈ Bε. The bound (11)
follows from (19), (20), and(21).

Moreover, the bound (19) is tight sinceF (fo, f̂ , rt+1, xt, et)
is independent on G(fo, rt+1, xt, et). The point-wise
inversion error IE (fo, rt+1, xt, et) in (20) is tightly
bounded by GIE (fo), which is minimal due to Defini-
tion 3. The bound (21) is tight since, by definition of
Lipschitz constant, γg is the smallest real number for
which (21) holds for any (rt+1, xt) ∈ Ω and any et ∈ Bε.

It follows that (11) provides a tight bound on TEt

(
f̂
)
.

Note that tightness is here intended in a worst-case
sense: these bounds are the tightest ones that can be
derived on the basis of the available information. �

xt+1 rt+1 

q-1 

vt+1 

- - 

q-1 

+ + 

1+tr̂
 

G(fo,rt+1,·,et) 

F(fo,f,rt+1,·,et) 
^ 

Fig. 2. Equivalent control system.

Theorem 1 can be interpreted as follows. If the system (1)
is γo-stabilizable on

(
X 0,Ro

)
, then an optimal controller

fo ∈ F (γo,Ω) exists such that the closed-loop system

xt+1 = go (xt, fo (rt+1, xt) , et)

is finite-gain ℓ∞ stable on
(
X 0,Ro

)
and the tracking

error is bounded as TEt (fo) ≤ IE (fo, rt, xt−1, et−1),
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where IE (fo, rt, xt−1, et−1) is the inversion error of fo.

However, fo is not known and an approximation f̂ of
it is used instead. If this approximation is sufficiently
accurate on a set Ω∆, allowing us to have a Lipschitz
constant γ∆ satisfying the condition (9), then the closed-
loop system

xt+1 = go

(
xt, f̂ (rt+1, xt) , et

)
(22)

is finite-gain ℓ∞ stable on
(
X 0,R∗), where R∗ is the in-

tersection of the set Ro with the set of all reference sig-
nals yielding a closed-loop solution such that (rt, xt−1) ∈
Ω∆ ∀t. Thus, the following requirements are needed to
have finite-gain ℓ∞ stability:

(1) The set Ω∆ should be “well explored” by the data
(x̃k+1, x̃k), k ∈ T L (a systematic method for as-
sessing the quality of a given data set is provided in
(Milanese & Novara 2007)). Using these data and
a suitable identification method (see Section 4 be-

low), a function f̂ providing an “accurate” approx-
imation of fo on this set can be found, so that γ∆ is
sufficiently small to satisfy the stability condition
(9).

(2) The reference signals used for the controlled DFK
system must belong to Ro, i.e. they must be such
that the function G(fo, rt+1, xt, et) has a Lipschitz
constant γG < 1 ∀t. This requirement can be ac-
complished by using reference signals which are so-
lutions (or approximate solutions) of the system
(1), i.e. signals r = (r1, r2, . . .) for which, at each
time t, a ût ∈ U exists giving rt+1 ≃ go (xt, ût, et) .

If the closed-loop system (22) is finite-gain ℓ∞ stable on(
X 0,R∗), then the tracking error is bounded according
to (11), where IE (fo, rt, xt−1, et−1) is the inversion er-
ror of fo and γg |∆(rt, xt−1)|measures the deterioration

due to using f̂ in place of fo. Clearly, under the reason-
able assumption that IE (fo, rt, xt−1, et−1) is “small”,
we can conclude that the tracking error of the closed-

loop system (10) is “small” if f̂ is an “accurate” approx-
imation of fo.

Remark 1 Under the assumptions of Theorem 1, the
controller f∗ stabilizes the closed-loop system on the
whole set X 0 × R∗ and the bound (11) on the tracking
error holds for any x0 ∈ X 0, (rt, xt−1) ∈ Ω∆ and any
et ∈ Be. The validity of the controller is thus maintained
on the whole domain Ω∆ and not only on the data used
for design.

Remark 2 The Lipschitz constants γ∆ and γg can be
estimated by means of the validation method presented
in (Milanese & Novara 2004) and summarized in Ap-
pendix. Thus, the stability condition (9) can actually be
estimated. Note that, if γ∆ and γg are under-estimated,
the closed-loop system (10) may be unstable, even if sup-
posed to be stable. No problems arise if γ∆ and γg are
over-estimated and condition (9) anyhow holds.

Remark 3 It can be shown that, if γgγ∆ < (1 − γG)
and ∆(0, 0) = 0, then the DFK closed-loop system is
finite-gain ℓ∞ stable on

(
X 0,R∗) without bias. That is,

the closed-loop system is stable according to Definition 1
with β = 0. The inequality γgγ∆ < (1 − γG) can also
be interpreted as a robust stability condition. Indeed,
this condition may ensure closed-loop stability (with bias)
even if γ∆ and γg are under-estimated.

Remark 4 The DFK approach has been proposed for
the case where the system to be controlled is not known,
but it can be applied also when this system is known,
allowing a relatively simple control design. Indeed, if an
accurate system model is available, the data (3) required
for the design can be generated by simulation of the model
equations.

4 Design of almost-optimal sparse SM DFK
controllers

In this section, following a Set Membership framework
(Milanese & Vicino 1991), (Milanese, Norton, Lahanier
& Walter 1996), (Kurzhanski & Veliov 1994), (Chen
& Gu 2000), (Milanese & Novara 2004), (Milanese &
Novara 2005a), (Milanese, Novara, Hsu & Poolla 2009),
we present a technique to design DFK controllers with
suitable optimality properties, from a set of data gener-
ated by the system (1). Then, we discuss some impor-
tant aspects of the proposed technique, such as the basis
function choice and the sparsity properties.

4.1 Design of almost-optimal sparse DFK controllers

Under the stability condition (9), the tracking error
of a DFK control system is bounded as (11), where
IE (fo, rt, xt−1, et−1) is the inversion error of the opti-
mal controller fo and γg |∆(rt, xt−1)| measures the de-

terioration due to using an approximate controller f̂ in
place of fo. Since IE (fo, rt, xt−1, et−1) depends on the
intrinsic stabilizability properties of the system and can-

not be modified, it is crucial to find a controller f̂ yield-
ing a “small”deterioration γg |∆(rt, xt−1)|. Clearly, this
quantity is not known, since ∆

.
= fo − f̂ , and fo is not

known. However, the following information is available.

Experimental information. The data (3) have been
collected, which can be conveniently described as

ũk = fo (w̃k) + dk, k ∈ T L (23)

where w̃k
.
= (x̃k+1, x̃k) and dk

.
= ũk − fo (w̃k) is an

unmeasured noise. �
Prior information on the noise dk. Since the mea-
surements ũk and w̃k are bounded and fo ∈ F (γo,Ω),
it follows that the noise dk is bounded:

dk ∈ Bδ, k ∈ T L (24)

for some δ < ∞ (Bδ is defined in Assumption 1). �
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Prior information on the function∆. From (8), ∆ ∈
F (γ∆,Ω∆) for some γ∆ < ∞ (dependent on f̂), where
Ω∆ is a compact convex set. �

Given this information, we have that fo ∈ FIFS, where
FIFS is the Feasible Inverse Function Set.

Definition 4 Feasible Inverse Function Set:

FIFS
.
= {f = sat [f ] = f̂ +∆ : ∆ ∈ F (γ∆,Ω∆) ,

ũk − f (x̃k+1, x̃k) ∈ Bδ, k ∈ T L}

where sat [u]
.
= max (min (u, u) , u). �

According to this definition, FIFS is the set of all in-
verse functions consistent with the prior and experimen-
tal information. Hence, the tightest bound on the deteri-

oration γg |∆(rt, xt−1)|= γg|fo (rt, xt−1)− f̂ (rt, xt−1) |
which can be derived on the basis of this information is
given by γg sup

f∈FIFS
|fo (rt, xt−1) − f̂ (rt, xt−1) |, leading

to the following definition of worst-case tracking error :

WEt

(
f̂
)

.
= IE (fo, rt, xt−1, et−1) + γgAEt

(
f̂
)

where

AEt

(
f̂
)

.
= sup

f∈FIFS

∣∣∣f (rt, xt−1)− f̂ (rt, xt−1)
∣∣∣

is called the worst-case approximation error. An opti-
mal DFK controller is defined as an inverse function fop
which guarantees the closed-loop stability andminimizes
the worst-case approximation error.

Definition 5 An inverse function fop is an optimal
DFK controller on

(
X 0,R∗) if:

(i) fo− fop ∈ F (γ∆,Ω∆) with γ∆ < 1/γg.

(ii) AEt (fop) = inf
f̂
AEt

(
f̂
)
, for all t = 1, 2, . . . , and

for any (x0, r, e) ∈ X 0 ×R× Bε. �
However, finding an optimal DFK controller may be
hard or not convenient from a computational point of
view, and sub-optimal solutions can be looked for. In
particular, approximations that guarantee a degrada-
tion of at most 2 are often considered in the litera-
ture. These approximations are called almost-optimal
(Traub, Wasilkowski & Woźniakowski 1988), (Milanese
et al. 1996).

Definition 6 An inverse function fao is an almost-
optimal DFK controller on

(
X 0,R∗) if:

(i) fo − fao ∈ F (γ∆,Ω∆) with γ∆ < 1/γg.

(ii) AEt (fao) ≤ 2 inf
f̂
AEt

(
f̂
)
, for all t = 1, 2, . . . , and

for any (x0, r, e) ∈ X 0 ×R× Bε. �
An almost-optimal DFK controller can be obtained by
means of the following algorithm, completely based on
convex optimization.

Algorithm 1

(1) Take a set of Lipschitz continuous basis functions
ϕi : Ω → U , i = 1, . . . , N , a δ > 0, and a 0 < η ≤ 2δ
(indications for properly choosing the basis func-
tions, δ and η are given in Subsection 4.2 below).

(2) Estimate the Lipschitz constant γg of go by means
of the validation method summarized in Appendix,
using the data (x̃k, ũk), k ∈ T L. Choose a γs

∆ ≃
1/γg such that γs

∆ < 1/γg.
(3) Solve the optimization problem

a1 = arg min
a∈RN

∥a∥1

subject to

(a) ∥ũ− Φa∥∞ ≤ δ

(b) |ũl − ũk + [ϕ (w̃k)− ϕ (w̃l)] a|
≤ γs

∆ ∥w̃l − w̃k∥∞ + η, l, k ∈ T L

(25)

where ũ
.
= (ũ1, . . . , ũL), ϕ (w̃k)

.
= [ϕ1 (w̃k) . . .

ϕN (w̃k)], and

Φ
.
=


ϕ1 (w̃1) · · · ϕN (w̃1)

...
. . .

...

ϕ1 (w̃L) · · · ϕN (w̃L)

 .

(4) Compute the coefficient vector a∗ according to the
following optimization problem:

a∗ = arg min
a∈RN

∥ũ− Φa∥∞

subject to

(a) ai = 0, i ∈ supp
(
a1
)

(b) |ũl − ũk + [ϕ (w̃k)− ϕ (w̃l)] a|
≤ γs

∆ ∥w̃l − w̃k∥∞ + η, l, k ∈ T L

(26)

where supp (a) is the complement of supp (a), de-
fined as {1, 2, . . . , N} \ supp (a), and supp (a) is the
support of a, i.e. the set of indices at which a is not
null. �

The DFK controller is defined by

f∗ (rt+1, xt) = sat

[
N∑
i=1

a∗iϕi (rt+1, xt)

]
. (27)

The rationale behind Algorithm 1 can be explained as
follows. After the preliminary operations carried out in
steps 1 and 2, the ℓ1 norm of the coefficient vector a
is minimized in step 3, leading to a sparse coefficient
vector a1, i.e. a vector with a “small” number of non-
zero elements. Sparsity is important to allow an efficient
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on-line controller implementation in real-world applica-
tions (see Subsection 4.3 below for a more detailed dis-
cussion). Constraint (a) in (25) ensures the consistency
between the measured data and the prior information
on the noise affecting these data. Constraints (b) allow
us to guarantee closed-loop stability when a sufficiently
large number of data is used, see Theorem 3 below. At
this point, a1 does not give in general the minimum error
∥ũ− Φa∥∞ among all the vectors with the same spar-
sity level. Then, a vector a∗ is obtained in step 4 with the
same sparsity as a1, giving a minimum error ∥ũ− Φa∥∞,
and satisfying the constraints for closed-loop stability.

Note that Algorithm 1 is run in batch mode using the
data set (3), and all the involved optimization problems
are convex and can be easily solved in polynomial time.
Thus, the algorithm does not require time-consuming
computations and has not to be applied on-line. During
operation, just the identified function f∗ in (27) has to
be evaluated.

Now, define the functions

∆ (w)
.
= min

(
η (w) , min

k∈T L
hk (w)

)
∆(w)

.
= max

(
η (w) , max

k∈T L
hk (w)

) (28)

where η (w) = u− f∗ (w) , η (w) = u− f∗ (w),

hk (w)
.
= ũk − f∗ (w̃k) + δ + γs

∆ ∥w − w̃k∥∞
hk (w)

.
= ũk − f∗ (w̃k)− δ − γs

∆ ∥w − w̃k∥∞

and u and u are the bounds on uk defined below (1).
The following theorem shows that, provided the closed-
loop stability, f∗ is an almost-optimal DFK controller.
The theorem also provides a bound on the worst-case
tracking error which can be effectively evaluated.

Theorem 2 Let the optimization problem (25) be
feasible. Let Assumptions 1, 2 and 3 hold. Let fo−
f∗ ∈ F (γ∆,Ω∆) with γ∆ = γs

∆ < 1/γg. Then:
(i) The DFK controller f∗ is almost-optimal on(
X 0,R∗).
(ii) The worst-case tracking error provided by f∗ is
bounded as

WEt (f
∗) ≤ IE (fo, rt, xt−1, et−1) + ξt

ξt
.
= γg max

(∣∣∆(rt, xt−1)
∣∣ , |∆(rt, xt−1)|

)
≤ 2γg inf f̂ AEt

(
f̂
) (29)

for all t = 1, 2, . . . , and for any (x0, r, e) ∈ X 0×R∗×Bε.

Proof. (i) If the optimization problem (25) is feasible,
then the function f∗ defined in (27) exists. Now consider
that f∗ = f∗ + ∆, with ∆ = 0. Obviously, if ∆ = 0,

then ∆ ∈ F (γ∆,Ω∆), for any γ∆ ≥ 0. Moreover, f∗ =
sat [f∗] and, from (25) and (26), ∥ũ− f∗ (w̃)∥∞ ≤ δ,
implying that f∗ ∈ FIFS. This guarantees that

AEt (f
∗) = sup

f∈FIFS
|f (rt, xt−1)− f∗ (rt, xt−1)|

≤ 2 inf
f̂

sup
f∈FIFS

∣∣∣f (rt, xt−1)− f̂ (rt, xt−1)
∣∣∣

see (Traub et al. 1988), (Milanese et al. 1996). Then, the
claim follows from the stability condition (9) and the
definition of almost-optimal DFK controller.

(ii) It has been showed that ∆ ∈ F (γ∆,Ω∆). Then,

∆ (w) ≤ ∆(w̃k) + γ∆ ∥w − w̃k∥∞ , ∀w ∈ Ω∆

for any k ∈ T L, which yields

∆ (w) ≤ min
k∈T L

(∆ (w̃k) + γ∆ ∥w − w̃k∥∞) , ∀w ∈ Ω∆.

(30)
Now define ςk

.
= ũk − f∗ (w̃k) and consider that, from

(24),

|∆(w̃k)− ςk|
= |fo (w̃k)− f∗ (w̃k)− ũk + f∗ (w̃k)|

= |fo (w̃k)− ũk| ≤ δ, k ∈ T L.

This implies that ∆ (w̃k) ≤ ςk+δ for any k ∈ T L. Then,
from (30), we have that

∆ (w) ≤ min
k∈T L

(ςk + δ + γ∆ ∥w − w̃k∥∞)

.
= min

k∈T L
hk (w) , ∀w ∈ Ω∆.

(31)

Moreover, since ∆ (w)
.
= fo (w) − f∗ (w) and fo (w) is

upperly saturated by u, the following bound holds as
well:

∆ (w) ≤ u− f∗ (w)
.
= η (w) , ∀w ∈ Ω∆. (32)

Inequalities (31) and (32) imply that the function ∆ is
an upper bound of the unknown function ∆.

For given w, ŵ ∈ Ω∆, let

i
.
= arg min

k∈T L
(ςk + δ + γ∆ ∥w − w̃k∥∞)

î
.
= arg min

k∈T L
(ςk + δ + γ∆ ∥ŵ − w̃k∥∞) .

Then,

H (w)
.
= min

k∈T L
hk (w)

= ςi + δ + γ∆ ∥w − w̃i∥∞
≤ ς̂

i
+ δ + γ∆

∥∥w − w̃̂
i

∥∥
∞ ,

H (ŵ) = ς̂
i
+ δ + γ∆

∥∥ŵ − w̃̂
i

∥∥
∞
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where the inequality follows from the fact that i is by
definition the index minimizing ςk+ δ+γ∆ ∥w − w̃k∥∞.
These yield

H (w)−H (ŵ)

≤ γ∆

∥∥w − w̃̂
i

∥∥
∞ − γ∆

∥∥ŵ − w̃̂
i

∥∥
∞

≤ γ∆ ∥w − ŵ∥∞ , ∀w, ŵ ∈ Ω∆,

which shows that H is Lipschitz continuous with
Lipschitz constant γ∆, i.e. that H ∈ F (γ∆,Ω∆).
Since ∆ (w)

.
= min

(
η (w) , H (w)

)
it follows that

∆ ∈ F (γ∆,Ω∆) as well. Being ∆ an upper bound of ∆,
this implies that

sup
∆∈F(γ∆,Ω∆)

∆(w) = ∆ (w) , ∀w ∈ Ω∆,

i.e. ∆ is the tightest upper bound of the unknown func-
tion ∆. Similarly, it can be shown that ∆ is the tightest
lower bound of ∆. Under condition (9), the bound in
(29) follows from (11) and the definition of ξt. �
Theorem 2 can be interpreted as follows. If the closed-
loop system (22) is finite-gain ℓ∞ stable on

(
X 0,R∗)

with f̂ = f∗, then f∗ is an almost-optimal DFK con-
troller and the resulting tracking error is bounded as
(11), where IE (fo, rt, xt−1, et−1) is the inversion error
of the optimal controller fo and ξt is a tight bound on
the deterioration due to using f∗ in place of fo. The fact
that f∗ is almost-optimal implies that ξt is very close
to the minimum bound achievable. Moreover, ξt can be
easily evaluated, showing that the bounds (11) and (29)
are important, not only from a theoretical point of view,
but also in practice, to quantify the tracking error dete-
rioration due to using an approximation in place of the
ideal controller fo, see the example in Section 5.

These results hold under the stability condition γ∆ <
1/γg. Theorem 3 below shows that the inverse function
f∗ provided by Algorithm 1 satisfies this condition when
the number of data L used to design f∗ tends to in-
finity. The following assumption is needed to prove this
theorem, requiring that the controller domain is “well
explored” by the data w̃k, k ∈ T L.

Assumption 4 The data set DL
w

.
=

{
w̃k, k ∈ T L

}
is

dense on Ω∆ as L → ∞. That is, for any w ∈ Ω∆ and
any ν > 0, an Lν > 0 and a w̃k ∈ DLν

w exist such that
∥w − w̃k∥∞ ≤ ν. �
Another assumption is needed, regarding the noise af-
fecting the data. Define slk

.
= dl − dk, and consider that

slk ∈ Bη, l, k ∈ T L

where η ≤ 2δ and δ is the bound on dk, see (24). If dk can
take any value in the interval [−δ, δ], then η = 2δ. If dk
contains some systematic error (e.g. a constant term),
then we may have η < 2δ.

Assumption 5 The noise slk
.
= dl − dk is tight. That

is, for any µ > 0, an Lµ exists such that

sl1k1 ≤ −η + µ, sl2k2 ≥ η − µ

for some l1, k1, l2, k2 ≥ Lµ. �
This assumption essentially requires that the noise slk
hits the bounds −η and η with arbitrary closeness after
a sufficiently long time. It must be remarked that this
assumption is very weak, since no statistical information
on slk is used. The definition of tight noise proposed here
is a deterministic version of the probabilistic definition
given in (Bai, Cho & Tempo 1998).

Theorem 3 Let the optimization problem (25) be feasi-
ble for any L > 0. Let Assumptions 4 and 5 hold. Then,
fo− f∗ ∈ F (γ∆,Ω∆), where

lim
L→∞

γ∆ = γs
∆ <

1

γg

.

Proof.The data setDL
w becomes dense in Ω∆ asL → ∞.

Then, for any w1, w2 ∈ Ω∆ and any ν > 0, an Lν > 0
and two points w̃i1 , w̃i2 ∈ DLν

w exist such that

∥w1 − w̃i1∥∞ ≤ ν, ∥w2 − w̃i2∥∞ ≤ ν. (33)

Since ∆ is Lipschitz continuous with constant γ∆ < ∞,
it follows that

|∆(w1)−∆(w2)| = |∆(w1)−∆(w2)

+∆ (w̃i1)−∆(w̃i1) + ∆ (w̃i2)−∆(w̃i2) |
≤ |∆(w̃i1)−∆(w̃i2)|+ 2γ∆ν.

(34)

From (23), we have that fo (w̃k) = ũk − dk for any k.
Then,

∆ (w̃i1)−∆(w̃i2) = fo (w̃i1)− fo (w̃i2)

+f∗ (w̃i2)− f∗ (w̃i1)

= ũi1 − ũi2 − di1 + di2 + f∗ (w̃i2)− f∗ (w̃i1) .

(35)

Moreover, the constraints (b) in (25) and (26) imply that

|ũi1 − ũi2 + f∗ (w̃i2)− f∗ (w̃i1)|
= |ũi1 − ũi2 + [ϕ (w̃i2)− ϕ (w̃i1)] a|

≤ γs
∆ ∥w̃i1 − w̃i2∥∞ + η.

(36)

From (35) and (36), we have that

∆ (w̃i1)−∆(w̃i2) ≤ γs
∆ ∥w̃i1 − w̃i2∥∞ + η + si2i1

∆(w̃i1)−∆(w̃i2) ≥ −γs
∆ ∥w̃i1 − w̃i2∥∞ − η + si2i1

(37)
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where si2i1
.
= di2 − di1 .

Now, take a ν1 such that

0 < ν1 < min (∥w1 − w̃i1∥∞ , ∥w2 − w̃i2∥∞) < ν.

Then, an Lν1 > 0 and two points w̃j1 , w̃j2 ∈ DL
w, with

L ≥ Lν1 exist such that

∥w1 − w̃j1∥∞ ≤ ν1 < ν, ∥w2 − w̃j2∥∞ ≤ ν1 < ν.

Repeating this argument an infinite number of times,
we have that, for any w1, w2 ∈ Ω∆ and any ν > 0,
the number of couples (w̃i1 , w̃i2) , (w̃j1 , w̃j2) , . . ., with
w̃i1 , w̃i2 , w̃j1 , w̃j2 , . . . ∈ DL

w, satisfying inequalities (37)
tends to infinity as L → ∞. This fact and Assumption
5 imply that, for any µ > 0, a couple (w̃i1 , w̃i2), with
w̃i1 , w̃i2 ∈ DL

w, exists such that the first of inequalities
(37) holds with si2i1 ≤ −η + µ as L → ∞. This implies
that, for this couple,

∆ (w̃i1)−∆(w̃i2) ≤ γs
∆ ∥w̃i1 − w̃i2∥∞ + µ.

Using inequalities (33), we obtain that

∆ (w̃i1)−∆(w̃i2) ≤ γs
∆ ∥w1 − w2∥∞ + 2γs

∆ν + µ.

This inequality and (34) yield

∆ (w1)−∆(w2) ≤ γs
∆ ∥w1 − w2∥∞+2γs

∆ν+2γ∆ν+µ.

Analogously, it can be shown that

∆ (w1)−∆(w2) ≥ −γs
∆ ∥w1 − w2∥∞−2γs

∆ν−2γ∆ν−µ

and, consequently,

|∆(w1)−∆(w2)| ≤ γs
∆ ∥w1 − w2∥∞+2γs

∆ν+2γ∆ν+µ.
(38)

Since this inequality holds for any ν, µ > 0, we have that

|∆(w1)−∆(w2)| ≤ γs
∆ ∥w1 − w2∥∞

for any w1, w2 ∈ Ω∆. The claim follows from the fact
that γs

∆ < 1/γg. �
Remark 5 If γg is excessively over-estimated in step 2
of Algorithm 1, γs

∆ may be chosen too small and, con-
sequently, the optimization problems (25) and (26) may
result to be not feasible. On the other hand, if γg is exces-
sively under-estimated, the closed-loop system (10) may
result to be unstable, even if supposed to be stable. In or-
der to improve the DFK control robustness and to pre-
vent stability problems in situations where γg is under-
estimated, the constant γs

∆ in step 2 of Algorithm 1 can
be chosen such that γs

∆ < (1− γG)/γg, (see Remark 3),
where γG can be used as a design parameter, allowing us
to tune the DFK control rubustness level.

4.2 Choice of basis functions and noise bound

One important step required by any parametric iden-
tification method is the choice of the basis functions
ϕi. This choice can be carried out considering the nu-
merous options available in the literature (e.g. Gaus-
sian, sigmoidal, wavelet, polynomial, trigonometric), see
(Sjöberg, Zhang, Ljung, Benveniste, B.Delyon, Gloren-
nec, Hjalmarsson & Juditsky 1995). Gaussian basis func-
tions are widely used, defined as

ϕi (w) = e−∥Q(w−w̃i)∥2

(39)

where Q ∈ Rnw×nw is a diagonal matrix where the kth
element is proportional to the width of the function along
the dimension k. These functions are universal approx-
imators, see e.g. (White 1991), and will be used in the
example presented in Section 5.
An inappropriately chosen family of functions can force
the retention of many basis functions by the identifica-
tion algorithm, and this may lead to an increased in-
verse model complexity and, in some situation, to a large
tracking error or even to closed-loop instability. The
available prior information can be used in order to ad-
dress this important issue. Suppose that the bound δ
is (approximately) known from some prior information
available on the noises acting on the system. If the op-
timization problem (25) in Algorithm 1 is feasible and
a∗ is sparse, it may be concluded that the basis func-
tions have been correctly chosen, since a small number of
them is able to “explain” the measured data. If the opti-
mization problem (25) is feasible and a∗ is not sparse, it
may be guessed that the basis function choice is not ap-
propriate, since using a number of basis functions about
equal to (or greater than) the number of data may lead
to overfitting problems. If the optimization problem (25)
is not feasible, it may be certainly concluded that the
basis function choice is not appropriate. In the case that
no prior information on the noises is available, the value
of δ should be taken slightly larger than the minimum
value for which the optimization problem (25) is feasi-
ble and then, if necessary, tuned by means of a trial and
error procedure. Once δ has been chosen, the parameter
η required in steps 3 and 4 of Algorithm 1 can be eas-
ily chosen considering that this parameter is a bound on
the noise slk

.
= dl − dk. This noise is certainly bounded

by 2δ, but it can also be smaller than 2δ, e.g. in the pres-
ence of systematic errors. Thus, a reasonable choice is
η = 2δ − ρ, for some small ρ > 0.

4.3 Sparsity properties

In Section 4, an ℓ1 algorithm for sparse approximation
from data has been presented, which provides almost-
optimal controllers for nonlinear systems. The reason
why a sparse approximation has been looked for is
twofold. First, a sparse function is easy to implement on
real-time processors, which may have limited memory
and computational capacity. Second, sparse approxima-
tions are able to provide good accuracy on new data by
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limiting well-known issues such as over-fitting and the
curse of dimensionality. In the remainder of this subsec-
tion, we briefly discuss the notion of sparse function and
explain the connection with the proposed ℓ1 algorithm.

A sparse function is a linear combination of many basis
functions, where the vector of linear combination coeffi-
cients is sparse, i.e. it has only a few non-zero elements.
The sparsity of a vector a is typically measured by the
ℓ0 quasi-norm, defined as the number of its non-zero
elements. Sparse identification can thus be performed
by looking for a coefficient vector of the basis func-
tion linear combination with a “small” ℓ0 quasi-norm.
However, the ℓ0 quasi-norm is a non-convex function
and its minimization is in general an NP-hard problem.
Two main approaches are commonly adopted to deal
with this issue: convex relaxation and greedy algorithms
(Tropp 2004), (Fuchs 2005), (Tropp 2006), (Donoho,
Elad & Temlyakov 2006). In convex relaxation, a suit-
able convex function, e.g. the ℓ1 norm, is minimized in-
stead of the ℓ0 quasi-norm (Fuchs 2005), (Tropp 2006),
(Donoho et al. 2006). In greedy algorithms, the sparse
solution is obtained iteratively, (Tropp 2004). Algorithm
1 presented in Section 4 is essentially an improved ℓ1 al-
gorithm: in step 1, an optimization problem is solved,
where the ℓ0 quasi-norm is replaced by the ℓ1 norm, and
additional constraints for closed-loop stability are used.
In step 2, a vector a∗ is obtained with the same support
of a1, giving minimum ∥ũ− Φa∥∞, and satisfying the
constraints for closed-loop stability.

5 DFK control of a power kite

5.1 Kite-energy control problem

The Kite-energy technology aims to harvest high alti-
tude wind energy by using tethered flexible wings (power
kites), connected to the ground by means of two lines,
made of strong composite fiber and wound around two
drums, kept at the ground level and linked to reversible
electric motors (Fagiano, Milanese & Piga 2010). The
system composed by the kite, the lines, the on-board
sensors, the drums, the generators and the control hard-
ware is named Kite Steering Unit (KSU). A kite energy
generator prototype has been constructed at Politecnico
di Torino (in collaboration with local companies), which
has also been used for naval propulsion (Fagiano, Mi-
lanese, Razza & Gerlero 2010, http://www.kitenav.com/
n.d.), (Fagiano, Milanese, Razza & Bonansone 2012).
The KSU can be employed in different configurations
to generate energy (see e.g. (Fagiano 2009), (Fagiano
et al. available online) for details). In the so-called KE-
yoyo configuration, the KSU is fixed with respect to the
ground and energy is generated by continuously repeat-
ing a two-phase cycle, in which the lines are unrolled by
strong pulling forces, thus generating power, and then
rolled back using low pulling forces. In the KE-carousel
configuration, the line length is kept constant and en-
ergy is produced by exploiting the motion of the KSU
towed by the kite along a fixed path on the ground. In
whatever configuration is used, the kite has to be con-

trolled to fly on figure-eight paths in crosswind condi-
tions (see Figure 4), which maximize the pulling forces
on the lines and hence the generated electrical power.
However, such paths are unstable and cannot be tracked
without a proper feedback control, see e.g. (Ilzhöfer,
Houska & Diehl 2007).

One of the key components of the Kite-energy system
is therefore the control system, whose task is guiding
the kite in order to generate the maximum amount of
power, while at the same time satisfying operational con-
straints, since the wing has to be kept above a mini-
mal height from the ground and line wrapping has to be
avoided. The design of the kite control system has been
carried out in (Ilzhöfer et al. 2007), (Fagiano 2009) and
(Fagiano, Milanese & Piga 2010) by applying Nonlin-
ear Model Predictive Control (NMPC) techniques with
quite good results. However, these techniques rely on an
accurate model of the system, which in this case is hard
to derive due to the various uncertainties involved in the
dynamics of a real power kite. The DFK approach, not
requiring the knowledge of any model, has been adopted
here instead.

5.2 Application of DFK control to Kite-energy

The model described in (Fagiano 2009) and (Fagiano,
Milanese & Piga 2010) has been used as the “real” sys-
tem, with the parameter values indicated in Table 1.

Table 1
Model parameters

m 5 Kite mass (kg)

A 10 Characteristic area (m2)

dl 0.0035 Diameter of a single line (m)

ρl 970 Line density (kg/m3)

CD,l 1 Line drag coefficient

α0 3.5 Base angle of attack (◦)

ρ 1.2 Air density (kg/m3)

r 50 Line length (m)

d 5 Distance between the lines’

hang points on the kite (m)

∆t 0.1 Sample time (s)

In this model, a Cartesian coordinate system (X,Y, Z)
is considered (see. Fig. 3), where the X axis is aligned
with the nominal wind speed vector direction. The wind

speed vector is represented as W⃗l = W⃗0+W⃗T , where W⃗0

is the nominal wind speed, supposed to be known and
expressed in (X,Y, Z) coordinates as

W⃗0 =
(
WX(Z), 0, 0

)
(40)

and WX(Z) is a known function which describes the
variation of wind speed with respect to the altitude Z

(see e.g. (Archer & Jacobson 2005)). The term W⃗T may
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have components in all directions and is not supposed to
be known, accounting for wind unmeasured turbulence.
The kite position can be expressed as a function of its
distance r from the origin and of the two angles θ and
φ, as depicted in Fig. 3, which also shows the three unit
vectors eθ, eφ and er of a local coordinate system cen-
tered at the kite center of gravity. The variable r is also
the length of the lines, supposed to be straight.

r

X Y

Z eϕ

eθ

r
e

θ

ϕ

KSU
W
0

r

X Y

Z eϕ

eθ

r
e

θ

ϕ

KSU
W
0

 

Fig. 3. Model scheme of a KE–yoyo.

For simplicity, a fixed value of r has been used in this ex-
ample, but the DFK approach proposed here can be used
without significant modifications also with a variable
line length r. The considered system model is described
by a set of differential equations (see (Fagiano 2009),
(Fagiano, Milanese & Piga 2010)) of the form

ż (τ) = gco

(
x (τ) , u (τ) , W⃗T (τ)

)
(41)

where τ ∈ R is the continuous time, x (τ) = (θ (τ) , θ̇ (τ) ,

φ (τ) , φ̇ (τ)) is the state of the system, W⃗T is the wind
turbulence speed, u (τ) = arcsin (∆l/d) is the command
input, ∆l is the difference between the lengths of the two
lines, d is the distance between the attachment points of
the two lines on the kite.

DFK design has been performed supposing that the
model (41) is unknown, but a set of noise-corrupted
data can be acquired through preliminary experiments.
In order to generate these data, a real-time simulator
of the model (41) has been developed, where the input
u (τ) can be chosen by means of a joystick. Using this
simulator and considering a sampling period Ts = 0.5
s, a set of L = 2000 measurements ũk = u (Tsk) ,
x̃k = x (Tsk) , k = −L + 1, . . . , 0, has been generated.
In this simulation, the kite has been “manually” piloted
by means of the joystick in such a way to cover the re-
gion φ ∈ [−1, 1] rad, θ ∈ [0.5, 1.5] rad, without falling
down. The following wind shear model (see (40)) has
been used:

WX(Z) = 6.7 log

(
Z

0.1

)
/ log

(
50

0.1

)
(42)

where the nominal wind speed WX is about 6 m/s at 30
m of altitude. The wind turbulence has been simulated
by adding to the nominal wind W⃗0 a random Gaussian
vector of zero mean and standard deviation std(w(τ))
= (1.5, 1.5, 1.5) m/s. The measurements of each com-
ponent of the state x̃k have been corrupted by a white
Gaussian noise having a noise to signal standard devia-
tion ratio of 3%. The main reason for considering Gaus-
sian noises is to show that our design method, which
relies on the assumption of bounded noise, can provide
satisfactory performances even in cases where the noises
are not deterministic but stochastic. Moreover, for 10 of
the collected data points, the value of ũk has been sig-
nificantly changed in order to simulate the presence of
outliers.

A discrete-time almost-optimal controller of (41) has
been designed by means of Algorithm 1 (Subsection 4.1)
from the generated data, where the outliers have been re-
moved through the algorithm described in the Appendix.
This controller is given by

ut = f∗ (rt+1, xt)

where t = 1, 2, . . . is the discrete time, ut = u (Tst) ,
xt = x (Tst), and f∗ is a sparse function of the form (27).
N = L = 2000 Gaussian basis functions of the form
(39) have been used, where the diagonal elements of Q
have been chosen by means of Lemma 2 in (Milanese &
Novara 2004). The value δ = 2.65 has been chosen in
step 1 of Algorithm 1 (slightly larger than the minimum
value for which the optimization problem (25) was fea-
sible). Consequently, the value η = 5.2 ≃ 2δ has been
taken. In step 2, the Lipschitz constant γg has been esti-
mated using the validation procedure summarized in ap-
pendix, and the value γg = 1.5 has been obtained. Then,
the value γs

∆ = 0.6 < 1/γg has been chosen. All the
optimization problems in Algorithm 1 have been solved
using the CVX package (Grant & Boyd 2010).

The control system depicted in Figure 1 has been imple-

mented in Simulink, where et = W⃗T (Tst), f̂ = f∗, and
S is the kite system (41). The control system has then
been tested using a reference signal corresponding to a
periodic orbit having, in the (φ, θ)-plane, a figure-eight
shape, see Figure 4. This signal has been generated by
manually piloting the kite as close as possible to a figure-
eight path and then smoothing the resulting measured
signals. The figure-eight path has been chosen consider-
ing the geometric and physical properties of the kite and
the limitations imposed by the available space. As pre-
viously discussed, this kind of orbit is optimal in terms
of traction force maximization, but is unstable without
feedback control.

For comparison, a NMPC controller has also been imple-
mented. This controller, operating with a sampling time
τs (not necessarily equal to Ts), is based on applying at
each time step lτ s, l = 1, 2, . . ., the following algorithm:

(1) Compute a k-step prediction X̂l(ū) = (x̂l+1, . . . , x̂l+k)
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by iterating a discretization of the “true” system equa-
tions (41) over the time interval [lτ s, lτ s + kτ s] as-
suming a constant input u (τ) = ū and a wind speed

W⃗T =
(
WX(Z), 0, 0

)
.

(2) Find the command input by solving the optimization

problem u∗
l = argminū∈[−20,20]

∥∥∥Rl − X̂l(ū)
∥∥∥, where

Rl = (rl+1, . . . , rl+k), rl is the reference signal obtained
from the above figure-eight orbit and ∥·∥ is the matrix 2-
norm. This optimization problem, though non-convex,
can be solved quite efficiently by means of a gridding
technique (ū is a scalar variable). �
After extensive simulations, the sampling time τ s = 0.1
s and the prediction step horizon k = 1 have been se-
lected for the NMPC controller, since providing the best
results in terms of tracking error. It has also been tried
to perform the k-step prediction in step (1) by integra-
tion of the “true” system equations (41) over the time
interval [lτ s, lτ s + kτ s]. However, the same tracking ac-
curacy has been obtained, at the expense of a signifi-
cantly higher computational time. A grid of 20 points
uniformly distributed in the interval [-20,20] has been
used in step (2): no significant improvements have been
observed considering a larger number of points.

The Root Mean Square tracking errors provided by the
DFK and NMPC control systems have been evaluated
for two levels of turbulence: weak turbulence (std(w(τ))
= (0.5, 0.5, 0.5) m/s) and strong turbulence (std(w(τ))
= (2, 2, 2) m/s). These errors have been computed as
RMSi = RMS (ri,t − xi,t), where i indicates the ith
vector component and

RMS (zt)
.
=

√√√√ 1

200

200∑
t=1

z2t .

A Monte Carlo simulation consisting of 1000 trials has
been carried out, where all the above operations have
been repeated for each trial.

In Tables 2 and 3, theRMS error averaged over the 1000
trials are reported for the two control systems (the av-
erage values are denoted with RMS). In Figure 4, the
orbit of the kite driven by the DFK controller obtained
in one trial is compared in the (φ, θ)-plane to the ref-
erence for the two wind strength levels. From these re-
sults, it can be concluded that the DFK controllers are
able to yield an accurate tracking, even for strong turbu-
lence, achieving performances similar to those obtained
by the NMPC controller, which has been designed using
the exact knowledge of the system dynamics (a situa-
tion that rarely occurs in practice). It can also be noted
that, among the 2000 basis functions, only 63 have been
selected by Algorithm 1 in average, yielding controllers
f∗ whose evaluation is very “fast” and can be easily per-
formed on-line. Note that the average times required for
computing the DFK and NMPC controllers at a given
point resulted to be about 1 ms and 9 ms, respectively,

on a standard PC equipped with two Xeon 2GHz pro-
cessors.

The bound ξt measuring the deterioration due to us-
ing an approximation in place of the ideal (unknown)
controller fo has also been evaluated for the 1000
realizations, yielding an average Root Mean Square
value RMS (ξt) = 0.029 in both the cases of weak
and strong turbulence. This value is quite small com-
pared to the average Root Mean Square of the system
state, which resulted to be RMS(∥xt − x∥∞) = 0.543,

x = 1
200

∑200

t=1
xt, showing that the approximate con-

trollers f∗ do not give a significant performance degra-
dation with respect to the ideal controllers fo.

It must be remarked that the situation simulated in this
example is quite realistic: in a first phase, the kite is
“manually” piloted in order to generate data; in a second
phase, the data are used for model identification and/or
control design; in a third phase, the kite is automatically
piloted by the designed controller.

Table 2
Root mean square tracking errors, wind speed std=0.5 m/s.

Controller RMS1 RMS2 RMS3 RMS4

DFK 0.009 0.010 0.011 0.009

NMPC 0.033 0.025 0.010 0.007

Table 3
Root mean square tracking errors, wind speed std=2 m/s.

Controller RMS1 RMS2 RMS3 RMS4

DFK 0.028 0.024 0.046 0.032

NMPC 0.057 0.040 0.027 0.021
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Fig. 4. Kite orbit. Above: weak wind. Below: strong wind.
Bold (black) line: reference. Dashed (red) line: kite trajec-
tory.
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6 Conclusions

In this paper, an approach called Direct FeedbacK
(DFK) design has been proposed, for the direct design
from data of control laws for nonlinear state-space sys-
tems. The approach overcomes relevant problems typ-
ical of the standard design methods, such as modeling
errors, non-trivial parameter identification, non-convex
optimization and difficulty in nonlinear control design,
and allows an efficient on-line controller implementa-
tion in real-world applications. A simulation study has
also been presented, regarding DFK control of a power
kite used for high altitude wind energy conversion. This
study shows that the proposed technique may be used
with satisfactory results in quite challenging applica-
tions, involving complex unstable nonlinear systems.

Acknowledgment: This research has received funding
from the European Union Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement n.
PIOF-GA-2009-252284 - Marie Curie project “Innova-
tive Control, Identification and Estimation Methodolo-
gies for Sustainable Energy Technologies”.

References

Abreu, G. C. M. D., Teixeira, R. L. & Ribeiro, J. F. (2000), A
neural network-based direct inverse control for active control
of vibrations of mechanical systems, in ‘Proceedings of the
sixth Brazilian Symposium on Neural Networks’, pp. 107–
112.

Amato, F., Ambrosino, R., Cosentino, C. & Tommasi, G. D.
(2010), ‘Input-output finite time stabilization of linear
systems’, Automatica 46(9), 1558–1562.

Anuradha, D. B., Reddy, G. P. & Murthy, J. S. N. (2009),
Direct inverse neural network control of a continuous stirred
tank reactor (cstr), in ‘Proceedings of the International
MultiConference of Engineers and Computer Scientists’,
Hong Kong.

Archer, C. L. & Jacobson, M. Z. (2005), ‘Evaluation of global
wind power’, J. Geophys. Res. 110, D12110.

Bai, E., Cho, H. & Tempo, R. (1998), ‘Convergence properties of
the membership set’, Automatica 34(10), 1245–1249.

Cabrera, J. & Narendra, K. S. (1999), ‘Issues in the application of
neural networks for tracking based on inverse control’, IEEE
Transaction on Automatic Control 44(11), 2007–2027.

Campi, M. & Savaresi, S. (2006), ‘Direct nonlinear control design:
The virtual reference feedback tuning (VRFT) approach’,
IEEE Transactions on Automatic Control 51(1), 14–27.

Chen, J. & Gu, G. (2000),Control-Oriented System Identification:
An H∞ Approach, John Wiley & Sons, New York.

Donoho, D., Elad, M. & Temlyakov, V. (2006), ‘Stable recovery of
sparse overcomplete representations in the presence of noise’,
Information Theory, IEEE Transactions on 52(1), 6 – 18.

Fagiano, L. (2009), Control of Tethered Airfoils for High–Altitude
Wind Energy Generation, PhD thesis, Politecnico di Torino,
Italy. Available on–line:
http://lorenzofagiano.altervista.org/docs/
PhD thesis Fagiano Final.pdf.

Fagiano, L., Milanese, M. & Piga, D. (2010), ‘High-altitude wind
power generation’, IEEE Transactions on Energy Conversion
25(1), 168–180.

Fagiano, L., Milanese, M. & Piga, D. (available online),
‘Optimization of airborne wind energy generators’,
International Journal of Robust and Nonlinear Control .

Fagiano, L., Milanese, M., Razza, V. & Bonansone,
M. (2012), ‘High-altitude wind energy for sustainable
marine transportation’, IEEE Transactions on Intelligent
Transportation Systems 13(2), 781–791.

Fagiano, L., Milanese, M., Razza, V. & Gerlero, I. (2010), Power
kites for naval propulsion, in ‘American Control Conference
2010’, Baltimore, MD.
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7 Appendix: Nonlinear SM validation proce-
dure

In this appendix, the validation theory of (Milanese &
Novara 2004) is summarized. This theory is important
within the DFK approach for estimating the Lipschitz
constants γ∆ and γg appearing in Theorems 1 and 2. The
formulation presented here considers a generic function f
with Lipschitz constant γ, but can be applied with minor
modifications to estimate the constants γg of go and γ∆
of ∆.

Suppose that a set of data (w̃k, z̃k), k ∈ T L is available,
described by

z̃k = f (w̃k) + ek, k ∈ T L

where ek is a noise (not necessarily the same as the one
in (1)), f : W → Z, W ⊆ Rnw and Z ⊆ R. Assume that
et ∈ Bε for some ε > 0 and that f ∈ F (γ,W ). Under
this assumption, we have that f ∈ FFS, where FFS is
the Feasible Function Set.

Definition 7 Feasible Function Set:

FFS
.
= {f ∈ F (γ,W ) : z̃k − f (w̃k) ∈ Bε, k ∈ T L}.

�
According to this definition, FFS is the set of all func-
tions consistent with prior assumptions and data. As
typical in any identification/estimation theory, the prob-
lem of checking the validity of prior assumptions arises.
The only thing that can be actually done is to check
if prior assumptions are invalidated by the data, evalu-
ating if no function exists consistent with data and as-
sumptions, i.e. if FFS is empty.

Definition 8 Prior assumptions are validated ifFFS ̸=
∅. �
The following result provides necessary and sufficient
conditions for prior assumption validation. Define the
function f (γ,w)

.
= min

k∈T L
(z̃k + ε+ γ ∥w − w̃k∥) .

Theorem 4
i) A necessary condition for prior assumptions
to be validated is: f (γ, w̃k) ≥ z̃k − ε, k ∈ T L.
ii) A sufficient condition for prior assumptions
to be validated is: f (γ, w̃k) > z̃k − ε, k ∈ T L.

Proof. Minor modifications of the proof of Theorem 1
in (Milanese & Novara 2004). �
The validation Theorem 4 can be used for assessing
the value of the Lipschitz constant γ so that the suffi-
cient condition holds. Suppose that ε has been chosen
by means of any criterion (e.g. using some prior knowl-
edge on the noises in the case that f = go or following
the indications given in Subsection 4.2 when f = ∆; the
dispersion function defined in (Hsu, Vincent, Novara,
Milanese & Poolla 2005), (Hsu, Claassen, Novara, Khar-
gonekar, Milanese & Poolla 2005) can be used in general
to estimate ε). The constant

γmin .
= inf

f(γ̂,w̃k)>z̃k−ε, k∈T L

γ̂ (43)

represents theminimumLipschitz constant for which the
prior assumptions are validated. A reasonable estimate
of γ is thus a value slightly larger than γmin. Note that
the evaluation of γmin is quite simple, as shown by the
examples in (Milanese & Novara 2004) and (Milanese &
Novara 2005b).

Theorem 4 can also be used to eliminate eventual outliers
from the data set DL .

= {(w̃k, z̃k), k ∈ T L}. Indeed,
suppose that the sufficient condition of the theorem is
satisfied for a subset of data DLm ⊂ DL with Lm ≈
L but it is not satisfied for another subset DLf ⊂ DL

with Lf ≪ L. Suppose also that f (γ, w̃k) ≪ z̃k − ε for
(w̃k, z̃k) ∈ DLf . Then, it can be concluded that the data
in DLf are outliers, and consequently these outliers can
be eliminated from DL. More specifically, this operation
can be carried out by means of the following algorithm:

(1) For k, l ∈ T L, l > k, compute

γkl =


(z̃k − z̃l − 2ε)/ ∥w̃k − w̃l∥ , z̃k > z̃l + 2ε

(z̃l − z̃k − 2ε)/ ∥w̃k − w̃l∥ , z̃l > z̃k + 2ε

0, otherwise.

(2) For several values of γ̂ ranging in the interval
[mink,l(γkl),maxk,l(γkl)], evaluate the number Nu of
γkl values for which γkl≥ γ̂. For increasing γ̂, the num-
ber Nu drastically decreases until γ̂ reaches a certain
critical value γ∗, then it decreases with a significantly
slower slope.
(3) Choose as the estimate of γ a value γest slightly
larger than γ∗.
(4) Eliminate from the data set all points (w̃k, z̃k) such
that f (γest, w̃k) < z̃k − ε. �
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