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Abstract

This paper presents a novel approach to design estimators for nonlinear systems. The approach is based on a combination of linear Moving
Horizon Estimation (MHE) and Direct Virtual Sensor (DVS) techniques, and allows the design of estimators with guaranteed stability,
which can account for convex constraints on the variables to be estimated. It is also shown that the designed estimators are optimal, in the
sense that they give minimal worst-case estimation error, on the basis of the available finite number of noise-corrupted data, with respect
to an ideal MHE filter (obtained by assuming exact knowledge of the system dynamics and of the global solution of the related nonlinear
program). The approach is tested on a nonlinear mass-spring-damper system.
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1 Introduction

In this paper, we study the problem of estimating a variable
of interest v* in a nonlinear discrete-time dynamical system.
The variable v* is assumed to be a nonlinear function of the
system state ¢ and input !, and it can be subject to con-
straints. Estimation problems for nonlinear systems are in
general very difficult [12], [3]. The common approach is to
obtain approximate solutions such as extended Kalman fil-
ters, [10], [8], [14], unscented Kalman filters, [11], ensemble
filters, [7], or particle filters, [21], [6], [13]. However, no op-
timality properties are usually guaranteed by these approx-
imations, even the stability of the estimation error is often
not ensured. One of the few filtering techniques that are able
to effectively cope with this kind of issues is Moving Hori-
zon Estimation (MHE) (see e.g. [20], [1]). In MHE, at each
time step ¢, an estimate ¢ of v? is computed, by solving a
constrained optimization problem, which involves the simu-
lation of a system model and the optimization with respect to
an estimate of the initial state some 7 steps in the past. Such
an optimization procedure is repeated at each time step, in
a moving horizon (or receding horizon) fashion [20]. Inter-
esting features of MHE are the possibility to treat nonlinear
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models, and to include constraints in the formulation. By
suitably designing the cost function of the underlying op-
timization problem, stability of the estimation error can be
also guaranteed [1,20]. However, it has to be noted that MHE
relies heavily on the knowledge of a system model, but this
model may result to be inaccurate, with consequent degra-
dation of the estimation accuracy. Moreover, when nonlin-
ear models are used, the resulting optimization problem is
in general not convex, and finding a global minimum may
thus involve a high computational complexity. On the other
hand, when used with a linearized model, the MHE opti-
mization problem is convex and it can be efficiently solved,
and the resulting filter (named “convex MHE” here) usually
gives very good performance when the system state is close
to the operating point chosen for linearization.

In this paper, we propose a method that allows one to im-
prove the performance of a convex MHE, when the system
operating conditions are different from the ones pertaining
to the linearized model embedded in the MHE filter itself.
At the same time, the method is able to exploit the good
accuracy that the convex MHE achieves when the underly-
ing linearized model is accurate. This new technique can be
applied to any convex MHE and it is based on the concept
of Direct Virtual Sensor (DVS), i.e. a filtering algorithm de-
rived directly from a finite number of measured data, with-
out using a system model [17], [18]. Such data are assumed
to be collected during an initial set of experiments on the
system, in which also the variable to be estimated v is mea-
sured, in addition to the outputs y* and inputs u. It must
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be remarked that, except for particular cases (i.e. when the
function from z! and u! to v? is exactly known), in most
filtering approaches some measurements not only of y* and
ut, but also of v! are necessary in order to identify a system
model, to be used for filter design.

The resulting filtering algorithm, named Improved MHE
(IMHE), is the sum of the convex MHE and of a DVS part,
which compensates the mismatch between the MHE and the
behavior of the real nonlinear system. The IMHE is stable
by construction and it is able to account for bounds on the
variable to be estimated. Moreover, we show that, under mild
assumptions, the IMHE results to be an optimal approxima-
tion of an “ideal” MHE (i.e. a MHE obtained by assuming
that an exact model of the system dynamics is available, and
that the global optimum of the MHE optimization problem
can be computed). In particular, optimality of the IMHE is
established in the sense of minimal worst-case estimation
error with respect to an ideal MHE. The features of this new
technique are illustrated in a simulation example, where the
problem of estimating the state of a nonlinear mass-spring-
damper system is considered.

2 Problem Formulation

Consider a discrete-time nonlinear system described in state-
space form:

2t = F (2, ut, wt)
vt = H, (z*, u*, w') (1)
’Ut — Hv (.%‘t,ﬂt,wt)

where ¢t € N is the discrete time variable, ' € R™= is the
system state, u° € R™ is the measured input, ' € R™ is a
measured output, w® € R™ is an unmeasured disturbance,
and v* € R™ is an unmeasured variable to be estimated.
Note that in (1) the disturbance w is a vector that includes
both process disturbance and measurement noise.
In the following, a sequence of input values starting
from time step £; up to time step to will be denoted by
= {@'}{={?. Likewise, ¥;'* and W/* denote sequences
of outputs and disturbances. The predicted trajectory of
the state of system (1) at time step ¢ obtained by starting
from the state z'~J at time step t — 7 and by applying

given sequences U j and disturbances th_l is indicated
as a(t,t — j,at~7, U}~ Jl,Wt 1), while the disturbance-
free predicted trajectory (i.e. th jl 0) is denoted by
x(t,t — j, ot~ Utt__jl). The predicted output at time step ¢
starting from the state '~/ at time step ¢ — j and applying
given sequences of inputs Utt - and Wt - is denoted by
y(t,t — j,at=7 Uf W), wh1le y(t, t at=1, Ut
denotes the dlsturbance free predicted output Slmllarfy,
o(t,t — §,2'9, U, W/} and w(t,t — j,at=7, UL )
denote the predicted unmeasured variable v in the presence
and in the absence of disturbances, respectively.
Let us consider the following assumptions.

Assumption 1 At any step t the disturbance w' and the
variable v* are contained inside convex compact sets WW €
R™ and V € R™ respectively. Moreover, the set V is of

the formV = {v € R™ : v < v < T}, where T,y € R™
and the symbol < denotes element-wise inequalities. ([

The sets VW and V are usually chosen on the basis of the
available physical insight of the system.

Assumption 2 The system (1) is uniformly observable. That
is, for any two state values x%, x5 there exist a finite num-
ber of time steps N, and a K -function { such that, for

—t+No—

any glven sequence of inputs U, C(||=f — b)) <
—t+j
y(t+jatvx§,Ut

No— —=t+j
Z ly(t+4.t, 28, U, ") —
7=0

norm || - || (see e.g. [20]). d

We recall that a continuous function ¢ : Rt — RT is a
K oo-function if it is strictly monotone increasing, ¢(0) = 0,
¢(z) > 0forany z # 0 and lim = ((z) = occ.

Z—r 00

)|| for some

Within the described framework, the problem we consider
can be stated as follows:

Problem 1: Find a function f (named “estimator”, “estima-
tion algorithm” or “filter”’) that computes, at each time step ¢,
an estimate 0% ~ v’ such that v* € V, whose estimation error
e! = v® — 7! is bounded in some norm and possibly minimal
with respect to a suitable optimization criterion. ]

Obviously, if v* = z! the described problem is equivalent
to a state estimation problem, but in general one could be
interested in estimating also other system variables. Due
to the presence of constraints on v, it is not easy to solve
Problem 1 even in the case of a linear system (i.e. with
linear functions F', H, and H,). Moreover, the presence of
nonlinearities further increases the difficulty of Problem 1.

3 Moving Horizon Estimation
3.1 Nonlinear and convex Moving Horizon Estimators

Most of the design techniques employed in the literature
to address Problem 1 rely on the knowledge of the system
equations (1), of an initial estimate Z'~" of the system state
at a suitable time ¢ — 7 and, finally, of given sequences of
past measured input and output values, ;! _ and U}__ re-
spectively, up to a finite number 7 4 1 of past time steps.
Among such design techniques, Moving Horizon Estimation
(MHE) is one of the most promising due to its capability to
take into account explicitly system nonlinearities and con-
straints [1,20,9,3]. In MHE, a cost function of the following
form is considered:

J(/x\t i Utt 'ertt 'r7Ytt T77t T>:

T . 2
S Ll W) ),
§=0

where the output error et_T“‘-j, j =0,...,7 is defined as:

6577'+j - gtf‘r+j7y(t T4, t—T, gt Ut T+J Wt ‘I'Jr]).
In (2), the initial state guess Et T and the sequences
Yt ., Ut of measured outputs and inputs are known pa-
rameters in the optimization, while the initial state estimate
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Z'77 and the disturbance sequence W/}__ are optimization

variables. The length N =7+ 1 of U/_, and of Y}! _ is a
design parameter, as well as the stage cost function L(,-)
and the initial cost function ®(-, -). Then, Problem 1 is cast
in a numerical optimization framework:

min J(ZT, UL WE L YE T (3a)

T,
subject to
U(tiTJrj’t Zt—T Utt T+ Wt T+J) eV,
Vi € [0,7]
w'=TH e W, Vj € [0, 7]. (3b)

If a solution (z'~7*, W}*_) to (3) is found, the estimate

oMHE i5 computed as:
6t MHE _ (t t—T ~t—Tx* Ut T’thjT). (4)

Finally, problem (3) is solved at each time step after having
updated the sequences Yt and Utt with new measure-
ments and taking the 1n1t1a1 state guess as 7' 7 = x(t—7,t—
T — 1,37 UTT | WITT*)), according to a moving
hOI‘lZOIl strategy [20]

The resulting MHE, when the system (1) is nonlinear, is
named here “nonlinear MHE”. If the dynamical system un-
derlying the optimization problem (3) is linear and the func-
tions L(-,-) and ®(-,-) are chosen to be convex, the opti-
mization problem to be solved results to be convex with re-
spect both to the optimization variables Z¢~7, W/}__ and to

the parameters z'~7, U}__, Y,! . In this case, the resulting
MHE is named here “convex MHE”.

Although nonlinear MHE is potentially a powerful approach
whose use is increasing, some issues are still open. One of
these issues is that the nonlinear program (NLP) (3) is in
general non-convex. In this case, finding the global mini-
mum of (3) may be extremely hard, whereas local minima
of this function, which are easier to be found, may lead to
poor estimates and/or “jumps” in the estimated variable be-
tween two subsequent time steps.

Another important problem, shared by the MHE approach
with all the other model-based design methods (e.g. Ex-
tended Kalman Filter) is that the system (1) in most prac-
tical situations is not known and a model of it is used
instead, identified from a set of measured data ut,7t, 7",
t=1,2,..., L. However, only approximate models can be
identified from real noise-corrupted data, and an estimator
designed from an approximate model may display very large
estimation errors or even instability when applied to the true
system [17].

On the other hand, in the case of a convex MHE the op-
timization problem (3) can be solved efficiently. In many
practical cases some information on the dynamics of the
system is available, as well as on the values of the related
physical parameters, and a linearized system model, around
some nominal operating condition (%, @, w) of interest, can
be obtained. In these cases, convex MHEs are able to pro-
vide a quite accurate estimate around the operating point

considered for linearization, and to account for constraints
on the variable to be estimated.

The novel idea of this paper is to exploit the advantages of a
convex MHE designed by using a linear system model, thus
obtaining a good estimate 7" HE ~ ¢! in a neighborhood
of the system nominal operating condition (Z, u, w), and
to correct the MHE estimate outside this neighborhood by
means of a so-called Direct Virtual Sensor (DVS) approach
(see e.g. [18]), based on Nonlinear Set Membership (NSM)
function approximation theory. The resulting estimator is
thus able to improve, when necessary, the MHE estimate,
and guarantees in any case suitable stability and optimality
properties. It has to be noted that the features of (nonlinear)
MHE and DVS have been studied in the context of an au-
tomotive application in [4], where a simple comparison has
been carried out, without exploring the idea of actually com-
bining the two approaches. Indeed, in [4] it was highlighted
that a plain DVS approach may need a quite high memory
usage and a large amount of data to be collected in initial
experiments, in order to achieve good accuracy, while the
MHE can be sensitive to model uncertainty and give rise to
computational issues when the resulting optimization prob-
lem is not convex. The combined technique proposed here
aims to overcome these issues, hence obtaining an estima-
tor that needs lower memory usage than a plain DVS, and
avoids non-convexity and uncertainty issues that may arise
in nonlinear MHE.

Before introducing the new approach, it is now useful to
make some more considerations on the structure of a sta-
ble MHE, either nonlinear or convex, and on the regularity
properties of a convex MHE.

3.2 Structural properties of MHE estimators

Once the design parameters N, L(-,-) and ®(-, -) have been
chosen, the MHE Algorithm can be regarded to as a function
MHE whose arguments are the initial state guess 7'~ " and

V't Tt .
the measured sequences Y;” _ and U;__:

GHMHE — pMUE(YS L OF 7). )

Moreover, from step 2) of the MHE Algorithm, it can be
noted that at each time step ¢ the initial state guess T

is a function of the sequences Yt_T_1 and Ut_T_1 and

of the previous initial state guess Z'~ 7!, ie.: T' T =

g(}/tt 1 Utt 1 71577’71)'

r—1>T
Then, the estimate (5) can be also expressed as

~t,MHE _ (MHE vyt Tt wt—7—1

v — JTr+1 (Y;ffrfh Utf'rfl? €z )7 (6)
MHE (vt 7t Ft—7—1

where 7-+1 (Yt T—1» Ut =1L )

f‘IMHE( t—7> U T’g(}/ft 'r1 1 U —T— 17715 o 1)) Thus, as-
suming that the MHE algonthm (5) is set up at time step
to + 7 with an initial state guess 7o, the estimate vt MHFE
at the generic time ¢ can be expressed as

t MHE fMHE(}/ttO , Ufto ) Eto)’ (7)
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where f}ME is the function given by the recursive application

of (6). We now consider the following assumption on the
filter fMA:

Assumption 3 The estimator ﬁ@f is asymptotically

stable. That is, for any §t0’1~anc{ zt2 it holds that
AR (Y U 7 h) — (Y, U 702l <

M plt=to)||gto-t — Fto:2||,, for some M € (0,00) and
p € (0,1).

Note that this assumption is not restrictive since the
MHE estimator stability can be guaranteed by suitably
choosing the design parameters N, L(-,-), ®(-,-) (see
e.g. [1] and the references therein). If the MHE esti-
mator is asymptotically stable, then for any (arbitrarily
small) ;# > 0 there exists a sufficiently large number of
time steps m such that, for any two initial state guesses
TP, Ty, it holds that || fMHE(Y ot glotm i) —
SMHE(ytostm g7iotm 20)|| < . That is, the effect of the
initial condition Z* tends to fade away [20]. Thus, with
arbitrarily good precision, after a suitable (possibly large)
number m > N + 1 of time steps it can be considered
that the estimate '™ depends only on the sequences
Yot™ U{°*™ and not on the initial state Z*. Therefore,
in general a stable MHE algorithm can be expressed as a
Nonlinear Finite Impulse Response (NFIR) estimator fMHE
plus a “small” truncation error ef,., . :

2 (Vi Uty ) = [V Ui ) + €lrume- (8)
The estimator fMHE (8) can be seen as an “ideal” MHE,
i.e. obtained by assuming that an exact model of the system
dynamics is available, and that the global optimum of the
MHE optimization problem can be computed. Clearly, fMHE
is not known in general, therefore we aim to derive an ap-
proximation of it. This task will be carried out in Section 4.

Furthermore, strictly convex MHEs also enjoy a conti-
nuity property. In fact, problem (3) can be regarded to
as a parametric optimization problem P(s,f), with op-
timization variable s = (277, W/}_) and parameters
6 = (U/_., Yl , T 7). Now, in the context of convex
multi-parametric programming it has been shown that the
optimizer s*(6) = arg min P(s, §) is a continuous (in gen-
eral non-smooth) function of 6 [2]. Thus, being the system
linear, the estimate 2" ¥ (7) results to be a continuous
function of =7, Uf__, Y;! . The parameter Z'~7 is, on
its turn, a continuous function of Zt~7~1, U/7! | vl |
and so on backward in time. Therefore, in the case of con-
vex MHEs, the function fMi5(Y! U} z') and the FIR

~ ~ to?
filter fMHE(Y,EUE_, ) in (8) are continuous with respect

to their arguments.

4 Improved MHE via Direct Virtual Sensor techniques

In this Section, the case v* € R is considered for simplicity
of notation. Multi-dimensional variables can be treated by
deriving an estimator for each component of the vector v*
separately. Suppose that a linear model of the system (1) is

available, of the form:

it = Azt + B, ut + B,w?
gt = Cy 2t + Dy ,ut + D, ,w' 9)
vt = Cy 2t + Dy it + Dy wt

The model (9) can be obtained either by linearization or iden-

tified from experimental data. Let fMHE(Z! ) ! =
(YL, ,Ut_,.) be a stable convex MHE designed on the
basis of this linear model, and let us define the follow-
ing residue function: AMPE(@! ) = fMHE(GL o
]a\’[HE(@i_m), where fMHE s the unknown nonlinear
MHE estimator defined in (8). The approach proposed

here is to identify, directly from a set of data generated

by the system (1), an approximation A of AMHE and to
obtain an Improved Moving Horizon Estimator (IMHE)
PMHE (@5 ) + A(@] ), approximation of fYME () ),
giving accurate estimates even when the system (1) is not
operating in linearity conditions. The following problem is
thus considered:

Problem 2: Suppose that a set of data D of fixed length
L has been generated in an initial set of experiments: D =
{at, gt vt t =1,2,..., L}, where o = v* + ¢ is the mea-
sured value of vt corrupted by the noise ¢'. Then, find an
estimator of the form ¢ = f(@! ) = MEE(G! )+
E(c}i_m), t > L, with estimation error minimal with re-
spect to a suitable criterion. O

The estimator ]?is selected within the following set of func-
tions:

Flym) = {PHE LA |AGL,) — A@_,)

. . . . (10)
< v H‘Pt—m - ‘Pt—mHDo 7vsot—m7 Pt—m S (I)}

where |[|-|| . is the £, norm, v > 0 is the Lipschitz constant,
and the regressor domain ® is a bounded convex subset of

R(m+D(my+7.) The required estimator f is thus given by
the convex MHE FAHE plus a function which is Lipschitz

continuous on ®. Since the term P\’[HE is also continuous,
as discussed in Section 3.2, all the functions belonging to
the set F (-, m) result to be continuous, too. The motivation
for considering the set (10) is to allow the definition of
a reasonable optimality criterion for Problem 2. Ideally,
one would aim at finding the best possible approximation
f of the MHE filter fMHE, However, since no information
is available on fMHE it is impossible even to compute the
approximation error. Yet, by restricting our attention to the
set of continuous estimators (10), we can aim at finding the
“best” approximation f of an optimal estimator f, defined
as follows:

Definition 1 (Optimal continuous estimator)
An estimator fo = argminger(y m) || fHE — f|| . where

| fllo = esssup |f(¥)| is named an optimal continuous
peP
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estimator, and it gives the best approximation, within the set
F(,m), of the MHE estimator fM1E in (8). O

Note that, if fMHE € F(,m), then it obviously holds that
fo = fMHE Otherwise, f, is anyway the best approximation
of the ideal MHE filter within the function set (10).

Since f, € F(v,m), it has a NFIR structure and it is
therefore stable by construction. Then, it can be noted that

the estimation error e! = v’ — f, (Caifm) is bounded as

lef| < &,, Vt, for some &, < oo. Moreover, the measure-
ment noise £’ = #* — vt has to be also taken into account.

To this end, we consider the following assumption:

Assumption 4 The measurement noise on the variable
vt, t € [1, L] is bounded as |¢'| < ¢, Vt € [1,L]. O

An overall bound on the error between the measured values
¢, and the corresponding estimated values f, (CDLm can

be derived:‘f)t — fo (‘F/V’Lm)‘ < |ot — vt|+’vt — fo (cfo;fm)‘
< ¢+ 6, = ¢, ¥t € [m + 1, L]. This bound, combined
with the information that f, € F(y,m) (10), allows us to
define the following Feasible Estimator Set:

Definition 2 (Feasible Estimator Set)
The Feasible Estimator Set FES is:FES = {f €

F(m,v) : ‘ﬁt —f ((,Noffm)’ <eg te[m+1,L)}. O

Remark 1 According to this definition, F'ES is the smallest
set guaranteed to contain f,. Note that the values of the
bound ¢ and of the Lipschitz constant v can be “optimally”
chosen by means of the validation procedure in [15]. The
value of 6, is not required for the design of the optimal
estimator presented in the following. O

For any approximation f ~ f,, the estimation error v* —
f(foi_m) is bounded as: |vt — f(&i_m> |

- ‘Ut - fo (&i—m) + fo (()Aé:—m> - f (&i—m) ‘

= et + fo (@) = F (Bl ) 1 <00+ 1fo (@) —
7 (@110 ) |, where the quantity |f, (#1_,..) = F (%10 )|
is the bias between the estimator fand the optimal contin-

uous estimator f,. Due to the fact that F'ES is the tightest
set guaranteed to contain f, (see Remark 1), the tightest

worst-case bound on the bias ‘ fo—

T ‘f (@ﬁ_m) — f(féﬁ_m)

definition of worst-case estimation error.

ﬂ is clearly given by

, leading to the following

Definition 3 (Worst-case estimation error)
The worst-case estimation error ED of a DVS f is:

£ (i) - F (7). O
(11)

Looking for an estimator that minimizes this error, leads to
the following optimality concept for Problem 2:

ED (f, t) = o+ sup
fEeFES

Definition 4 (Optimal estimator)
An estimator f* is optimal if ED (f*,t) = irflf ED (f,t),

Vt. U

Remark 2 The difference between the optimality concepts
in Definitions 1 and 4 lies in the fact that the former is
concerned with the minimization of the L., norm of the
error in an ideal setting, i.e. if both functions fMHE and
AMHE \ere available, while the latter is concerned with
the minimization of the worst-case L., norm of the error
in a real settings, where function fMHE is not known and
only a finite number of noise-corrupted measurements of the
residue AMPE qre available. Hence, the optimality concept
in Definition 1 defines a quantity that can not be computed
in practice, while the optimality concept in Definition 4 is
actually met by the combined estimator proposed in this
paper. O

Let us now define the estimator 0! = f. (c?:ifm) , t> L,
where

fe Ni_mN o i 12
= P () 43 B (Bo) 2 (7o)
A(@i) = min [0 - PG K (&)
A (@) = max [0 — PUEG). A ()
X (@) ieﬁzlﬁL (7" + ]|t — 2 )
A (@) = s (0= 7l — B )
(13)
and 7" = oF - PMEE(GF )4 ph = gk PMEE(GE )
E.

The evaluation of A () for given ¢ is very simple and
can be performed as follows: 1) compute the value of each
L, at
the given point ¢; 2) obtain A () by taking the minimum
among these L — m values, 3) take the minimum between
the computed value and the quantity v — fMHE(g!

Pr— m) The
evaluation of A (¢) can be performed in a similar way.

. Tk -
function h + 'yHga—gozme ,Ek=m+1,2,..
o0

The amount of memory required by the estimator f. grows
only linearly with L and m. Moreover, it has been shown
in [19] that the accuracy of an asymptotically stable filter
does not significantly deteriorate when the regressor Coifm
has high dimension.

Due to their NFIR structure, both the contributions fMHE
and % m + A] are asymptotically stable by construction. It
follows that f. is also asymptotically stable by construction,
for any regressor length m > 0.

Theorem 1 Let Assumptions 1-4 hold. Then:
i) The filter f. is optimal.

ii) The following bounds on v' hold: J/”MHE(cpt m) T
A@iom) =00 0" < PIH@L_n) + D) + b0
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iii) The worst-case estimation error of f. is given by
ED (fut) =6, + } [B (@) — A (71 -
iv) The constraints are satisfied: v < f, (Zpﬁ_m) <.

Proof. Let us define the following functions: f(@! , ) =
PUELR (B ) o S (@ho) = PUELA (B, ). From
the Lipschitz continuity property in (10), following the same
line of the proof of Theorem 2 in [5], it can be shown that

(0 @) = £ @) < Fol@iom)

— .t 14)

< f(‘iot—m) = sup f(sot—m)
fEFES

for any @, , € ®. That is, f(@._,,) and i(@i_m) are

the tightest upper and lower bound of f,(@._,.), for any

‘TOLm € ®. Clearly, f,. is the mean of these optimal bounds.

It follows that, for any @} , € ®, f.(@._,.) is the central

value of the interval [f(@._, ), F(®! )], and thus

Sup |£(@ ) = fo(@1 )|
fEFES

=il suwp |f@) - [@) ()
f feFES

= [F@l ) — 1@ )], Y& € @

From (11) and (15), it follows: ED(f.,t) = 6, +
sup | F(@}n) = Jol@} )|
fEFES

= 0§, +inf sup ’f(cfoi_m) - f(c?)i_m)‘ . Since 9§, does
7 feFEs

not depend on the estimate f, we have ED(f.,t) =

H}\f (60 + sup ’f(gaztsfm) - f(‘;;m)‘)

7 fEFES

—inf ED (f, t) . which shows that f. is an optimal DVS,
f

proving claim 1).

Claim ii) follows from (14), by considering that v¢ —

fo (L;Bi_m) =e! and |ef] < 4,.

Moreover, from (15) it follows also that the worst-
case estimation error of f. is given by ED(f.,t) =

bot SUD |F(Bh ) = Fol@iom)| = 0o + SF(@i_) -
fEFES

F@)] = 00 + 3 [B@}_0) = A@_)| s VBl €

®, which proves claim iii).

Finally, claim iv) holds since by construction (13) we have

v PG ) < 3B () + A (Blm)| <7

FMHE(S( ), hence v < f. (Coifm) <wv. O

Remark 3 In many practical situations, the set of data D is

fixed and the IMHE estimator has to be designed from this
set. In other situations, experiments on the system whose
variables have to be estimated can be performed. In these
situations, several experiments should be carried out if pos-
sible, considering different initial conditions and different
input sequences, in order to obtain a sufficiently informative
data set D (a method for assessing the degree of informa-
tion of a given data set can be found in [16], which allows
us to evaluate the impact of the filer design data on the es-
timation quality). U

Remark 4 Suppose that L[A(@}_,,.))—A(@;_,,)] < 3, for
all t, see claim iii) of Theorem 1. This condition is met if a
sufficiently informative data set D is available. In this case,
we have that ED (f.,t) = d,, and f. = f,, i.e. the IMHE
estimator is close to an optimal continuous estimator. If in
addition fMHE ¢ F(v,m), then f. = fMHE je. the IMHE
estimator is close to an ideal MHE. O

The Improved Moving Horizon Estimation Algorithm is the
following:

IMHE Algorithm

(1) At time step t, update the sequences Y,! _ and U}__
with the measured variables ¢, @?;

(2) compute the convex MHE estimate by using (4) with
the linear model (9);

(3) update the value of @}, and compute the IMHE es-
timate according to (12);

(4) repeat the procedure from step (1) by setting t = ¢+ 1.

5 Simulation example

Consider the equations of motion of the nonlinear mass-
spring-damper system:

[
!
=

z1(t)x2(t) + k(z1 ()21 () +u(t) (16)

where u(t) is the input force in N, w(t), |w(t)| < 0.025
is a uniformly distributed disturbance acting on the output,
x1(t) is the mass position in m, z3(t) is the speed in m/s,
andk(z1) = ag exp(a; x1) +aq, B(x1) = ap exp(asz1) +
as. The parameter values are ag = 0.7, a3 = —1, a2 =
0.3, a3 = —2. Moreover, the speed z3(t) is mechanically
saturated between £1 m/s:

zo(t) € [-1,1], Vt. (17)

The origin is a globally asymptotically stable fixed point and
the system is input-to-state stable, so that experiments can
be carried out in open-loop.

A first experiment has been performed, assuming that all the
states can be measured, to identify a second-order, discrete
time LTI model of the system (16). This model is of the form
(9), with sampling time ¢; = 0.05s. A uniformly distributed
random input u(t) with amplitude 0.4 N, plus a sequence
of zero-mean square wave signals and sinusoids of increas-
ing amplitudes, from 0.4 N to 0.6 N, has been injected for
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1000 s to the system. A uniform random noise with am-
plitude 0.025 has been added to all of the measured quan-
tities, i.e. Z*, @', y'. The model matrices A, B,,, Cy , and

. . . 0.988 0.043
D, ., identified via least squares, areA = s
) 0.927 —0.48

0.009 .
w = ,Cyz = [1 0 } , Dy w = 1, while the other
0.053

matrices in (9) are equal to zero. It can be noted that the
numerical values of the system’s matrices are close to the
linearized and discretized equations of the system (16) at
x =~ 0. Therefore, a good accuracy of the MHE filter in a
neighborhood of this operating condition is expected. The
cost function used in the MHE has been designed according
to (2), with N = 3 and

L(ey,w) = Qel + Rw?

(18)
(I)(./f,f) = (5';\— E)TQQT('/I\ _T)7
where
1 0
Q:107R:1>Qx:[ 1 (19)
0 0.01

and (7 —7)7 indicates the transpose of (Z — ). Moreover,
the constraint on x5(t) has been included in the optimiza-
tion problem (3), which results to be a quadratic program.

A second 1000-s-long experiment has been carried out to
collect the data #t, Z%MHE and the related values of the re-
gressor @ifm, with m = 6. The values of N, Q, R, Q,
m, have been tuned by trial and error procedures in order
to achieve good performance of the MHE filter and of the
related DVS correction. For each state z% and x%, an IMHE
estimator of the form (12) has been designed. The related
parameters 7y, €; and ,, €2 have been estimated accord-
ing to the guidelines given in [15]. In particular, the values
v = 107, = 0.07, Yo = 4.37 and €2 = 0.07 have been

chosen. Moreover, the regressor &i_m has been scaled in
order to adapt to the properties of the collected data (see
[15] for more details). Note that the quite low value of v,
indicates that the estimation errors on this variables have
low variability with respect to c?)i_m. This is reasonable,
since the first variable is directly measured and the related
estimation error is practically negligible and caused by the
measurement noise only. On the other hand, a higher esti-
mation error occurs for the second state variable, so that the
DVS technique presented in this paper can actually provide
a significant improvement.

The designed MHE estimator and its improved version,
IMHE, have been tested in a third experiment, performed by
injecting square waves of varying amplitudes to the system.
Also in this experiment, all the measured quantities have
been corrupted by a uniform random measurement noise
with amplitude 0.025. Note that the considered noise ampli-
tude is quite large, corresponding to a noise-to-signal ratio
of about 10% in average.

A first square wave with amplitude equal to 0.5 N has
been used to test the estimators in linear system operat-

Table 1
Simulation example. Bias of the MHE, IMHE and NMHE filters
with different input square waves.

Input ampl. (N) 0.5 1 2 2.5
MHE, z¢ (10~°m) 10 70 32 40
IMHE, z¢ (10~2m) -1.7 06 08 10

NMHE, z} (10~3m) 0.14 0.16 -0.14 -23
MHE, z5 (10™3m/s) 16 90 450 550
IMHE, z5 (10%m/s) -3.8 20 -16 3.4
NMHE, z5 (10 3m/s) 16 32 -48 -4.0

Table 2
Simulation example. RMSE of the MHE, IMHE and NMHE filters
with different input square waves.

Input ampl. (N) 0.5 1 2 2.5
MHE, z! (10~3m) 80 11 41 50
IMHE, z} (10~%m) 80 85 99 119
NMHE, z{ (1072m) 81 82 122 183
MHE, z} (10~3m/s) 24 100 540 660
IMHE, z5 (10 2m/s) 15 20.1 91 59
NMHE, z4 (107 2m/s) 24.6 249 247 262

ing conditions. Other square waves, with growing ampli-
tudes up to 2.5 N, have been used to test the filters when
nonlinearities are gradually predominant. The results, in
terms of bias and Root Mean Square Error (RMSE, i.e.

Ny—1
ellz}\éISE - \/< 3 (xﬁz —53572)2) /N, where N is the

t=0

number of simulated time steps), are reported in Tables 1
and 2, respectively, where they are also compared to the per-
formance given by an ideal nonlinear MHE filter (NMHE),
obtained by using the exact knowledge of the system’s dy-
namics and by solving the resulting NLP (3) with 7 = 10
and functions £ and & as in (18)-(19). These design param-
eters have been chosen through a trial and error procedure.

The estimate of the first state variable is of little interest,
since it is directly measured and all the estimators achieve
very good accuracy. As regards the second state variable, it
can be noted that the MHE and IMHE filters give quite sim-
ilar results in linear operating conditions (i.e. for “small” in-
put amplitudes), as expected, while in nonlinear conditions,
the IMHE is able to achieve a significant improvement with
respect to the MHE, and its performance are indeed quite
close to those of the NMHE, which exploits full knowledge

of the nonlinear dynamics. As an example, the time course

. . At ~t,IMHE ~t,NMHE
of %, and of its estimates Z5M"F, 75 and 7, pro-

vided by the MHE, IMHE and NMHE filters, respectively,
are shown in Fig. 1 for a input square wave with large am-
plitude, such that the nonlinear dynamics are evidenced. The
quite poor performance of the MHE is evident, as well as
the good behavior of the IMHE and NMHE. Finally, it can
be also noted that the IMHE filter is able to correctly handle
the constraint (17).
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80 90 100 110 120
time (s)

Fig. 1. Simulation example. Courses of the speed x5 (solid line)
and of its estimates EE’MHE (dotted line), f’;’lMHE (dashed line),
%E’NMHE (dash-dot line) with a square wave input with amplitude
equal to 2.5.
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