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Abstract— An approach to design feedback controllers for
discrete-time, uncertain, linear time-varying systems subject
to constraints is proposed. Building on previous contributions
in the framework of time-invariant systems, in each sampling
period a two-step procedure is carried out. In the first step, a
set of linear models that are consistent with past input-output
data and prior assumptions is built and refined. This set is
guaranteed to contain also the true system dynamics if the
considered working assumptions are valid. The time-varying
nature of the plant is captured by assuming known bounds on
the rate of change of the model parameters in time. In the
second step, a robust finite-horizon optimal control problem is
formulated and solved. The resulting optimal control sequence
guarantees that the outputs of all possible plants inside the
model set satisfy the operational constraints. The approach is
showcased in numerical simulations on a three-tank system.

I. INTRODUCTION

The capability to explicitly account for constraints on
inputs and outputs and to incorporate information on fu-
ture disturbance and reference signals are among the main
reasons for the success of Model Predictive Control (MPC)
in industrial applications [13], [14]. Duall, adaptive and
learning-based MPC, i.e. approaches where the model deriva-
tion/identification step is considered together with the control
computation step and possibly carried out on-line are receiv-
ing increased research attention recently. To date, there are
several contributions that differ in terms of system dynamics
(linear or nonlinear), uncertainty characterization (stochastic
or unknown-but-bounded), and model identification scheme
(off-line or on-line/adaptive), see e.g. [1], [2], [4], [5], [6],
[8], [9], [10], [11], [12], [16], [17], [18], [19]. The main
motivations for these works are the difficulty to derive and
identify models based on physical principles for complex
processes, the increasing widespread availability of measured
data, and the want to derive MPC approaches that can
automatically tune and adapt in presence of uncertain or
time-varying plant dynamics.

In the described context, set-membership (SM) approaches
(see e.g. [3]) are being adopted by several researchers for
the model identification phase, since they can provide, in
addition to a nominal model of the plant, a quantification of
the associated uncertainty, which can be exploited for robust
control design. Examples of contributions exploiting SM
techniques are [5], [10], [11] and [16]. In [16], we proposed
the use of SM identification to derive an adaptive MPC
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approach for uncertain linear time-invariant systems, with
guaranteed constraint satisfaction and tracking performance.
Here, we extend the approach to the case of time-varying
systems. As in [16], a two-step procedure is carried out in
each sampling period. In the first step, a set of linear models
that are consistent with past input-output data and prior
assumptions is built and refined. This set is guaranteed to
contain also the true system dynamics if the considered work-
ing assumptions are valid. The time-varying nature of the
plant is captured by assuming known bounds on the rate of
change of the model parameters in time. In the second step,
a robust finite-horizon optimal control problem is formulated
and solved, where we also predict all possible future changes
of the model set. The procedure is implemented on-line in
a receding horizon fashion. We illustrate the approach in
numerical simulations on a three-tank system. For a detailed
theoretical analysis of the proposed approach, the interested
reader is referred to [15].

II. PROBLEM FORMULATION

We consider a discrete, linear time varying (LTV), multiple
input, multiple output (MIMO) system with nu inputs and
ny outputs. The system is known to be stable, but the
exact dynamics and the way they change over time are
not known. We denote the vector of control inputs at time
step t ∈ Z by u(t) = [u1(t), . . . , unu

(t)]T , where ui(t) ∈
R, i = 1, . . . , nu are the individual plant inputs at the time
step t and T stands for the matrix transpose operator. In
addition, we denote the vector of plant outputs by y(t) =
[y1(t), . . . , yny

(t)]T , where yj(t) ∈ R, j = 1, . . . , ny are
the individual plant outputs. At each time step, the dynamic
relation between the inputs and the outputs can be described
by a finite impulse response model of the following form:

yj(t) = HT
j (t)ϕ(t) + dj(t), j = 1, . . . , ny, (1)

where ϕ(t) ∈ Rnum is the regressor vector formed by the
m past control inputs:

ϕ(t+ 1) = [u(t− 1)Tu(t− 2)T . . . u(t−m)T ], (2)

and each of the vectors Hj , j = 1, . . . , ny contains the
impulse response coefficient that describe the influence of
all of the inputs to the output j.

We further denote the vector of output disturbances by
d(t) = [d1(t), . . . , dny

(t)]T , where dj(t) ∈ R, j = 1, . . . , ny
in (1) accounts for the contribution of the exogenous dis-
turbances and of unmodeled dynamics to the output j at
time step t. By defining the matrix H(t) ∈ Rny×num as
H(t)

.
=
[
H1(t), . . . ,Hny (t)

]T
, the dependence of the plant
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output on the control inputs and the disturbance vectors at
time step t can be written as:

y(t) = H(t)ϕ(t) + d(t). (3)

Not that although a finite impulse response model is used,
systems with infinite impulse response can be treated in this
framework by embedding the contribution of the unmodelled
dynamics due to truncation of the impulse response into
disturbance term d(t).

The measured output available for feedback control is
corrupted by noise. In particular, the vector of measured plant
outputs is denoted by:

ỹ(t) = y(t) + v(t),

where v(t) = [v1(t), . . . , vny
(t)]T and vj(t), j = 1, . . . , ny

are the individual measurement noise terms that affect each
of the measured plant outputs.

We consider the following assumption about the distur-
bance and noise signals.

Assumption 1: (Prior assumption on disturbance and
noise) d and v are bounded as:

|dj(t)| ≤ εdj
|vj(t)| ≤ εvj

, ∀t ∈ Z, ∀j = 1, . . . , ny, (4)

where εdj and εvj are positive scalars.
We also consider two additional assumptions on the sys-

tem to be controlled.
Assumption 2: (Assumption on the bounds on parameter

rate of change)

H(t)−H(t− 1) = ∆H(t) ∈ D,∀t ∈ Z, (5)

where

D .
=
{

∆H ∈ Rny×num : Kj∆Hj ≤ lj , j = 1, . . . , ny
}
,
(6)

and Kj ∈ Rn∆j
×num and lj ∈ Rn∆j , j = 1, . . . , ny are

known matrices and vectors that each define n∆j
linear

inequalities forming nonempty, closed and convex sets, i.e.
polytopes.

Assumption 3: (Assumption on the bounds on parameter
values)

The plant model parameters belong to the following pa-
rameter set at all times: H(t) ∈ Ω,∀t ∈ Z, with

Ω
.
=
{
H∈Rny×num :Aj0Hj ≤ bj0, j = 1, . . . , ny

}
, (7)

where the inequalities in (7) should be interpreted as element-
wise and each matrix Aj0 ∈ Rrj0×num and vector bj0 ∈ Rrj0

define a polytope with rj0 faces.
The control objective is to track a given output reference

and reject disturbances over a (possibly very long) time
horizon T (T � m), while enforcing input and output
constraints. Assuming that the control inputs u(l), l = −m+
1, . . . ,−1 are known, we formalize the described control

objective with the following optimization problem:

min
u(0),...,u(T )

T∑
t=0

(y(t)− ydes(t))
T
Q (y(t)− ydes(t))

+ u(t)TSu(t) + ∆u(t)TR∆u(t)

(8)

Subject to, ∀t ∈ [0, T ]

Cu(t) ≤ g
L∆u(t) ≤ f
Ey(t) ≤ o

(9)

where ydes(t) ∈ Rny is the desired output reference, Q ∈
Rny×ny , S ∈ Rnu×nu and R ∈ Rnu×nu are positive semi-
definite weighting matrices selected by the control designer,
and ∆u(t) = u(t)−u(t−1) is the rate of change of the con-
trol input. The element-wise inequalities in (9) define convex
sets through the matrices C ∈ Rni×nu , L ∈ Rn∆u×nu ,
E ∈ Rno×ny and the vectors g ∈ Rni , f ∈ Rn∆u , o ∈ Rno ,
where ni, n∆u

and no are the number of linear constraints on
the inputs, input rates and outputs, respectively. We assume
that the set defining the constraints on ∆u(t) contains the
origin and that the constraint set of u(t) is compact, which
are assumptions that are satisfied in most practical problems.

III. ADAPTIVE CONTROL ALGORITHM

In order to approximately minimize the cost function (8)
without the exact knowledge of the system dynamics, while
at the same time satisfying the input and output constraints
(9), we propose the use of a receding horizon control policy
that relies on set membership identification to keep track of
a set of all possible model parameters (feasible parameter
set) that are consistent with the initial assumptions and
the collected measurements. This model set is employed
to predict the plant behavior with the related uncertainty
intervals.

In the next subsections, we first describe the recursive
set membership identification algorithm and then the finite
horizon optimal control problem to be solved at each time
step.

A. Recursive set membership identification algorithm
Each new measurement collected at time step t, defines

a set to which the parameter matrix H(t) is guaranteed to
belong:

St(t)
.
=

{
H ∈ Rny×num :

∣∣HT
j ϕ(t)−ỹj(t)

∣∣ ≤ εdj +εvj ,
j = 1, . . . , ny

}
(10)

The set St(t) is formed by ny slabs that are defined by the
regressor vector ϕ(t) and the output measurements ỹj(t), j =
1, . . . , ny collected at time step t. More generally, we define
the set Sk(t) as the set defined by the regressor and output
measurement vectors at time step k ≤ t, i.e. ϕ(k) and ỹ(k),
that is guaranteed to contain the model parameter matrix
H(t) at time step t as:

Sk(t)
.
=


H ∈ Rny×num :
−εdj−εvj +(t−k)ϑj(k) ≤ HT

j ϕ(k)−ỹj(k),

HT
j ϕ(k)−ỹj(k) ≤ εdj +εvj +(t−k)ϑj(k),

j = 1, . . . ny

,
(11)



where each of the bounds ϑj(k) ∈ R and ϑj(k) ∈ R, j =
1, . . . , ny is given as the solution of the following two linear
programs (LPs):

ϑj(k)
.
= min

x∈Rnum
ϕT (k)x

ϑj(k)
.
= max

x∈Rnum
ϕT (k)x

Subject to:
Kjx ≤ lj .

(12)

Based on the definition of the set Sk(t) in (11) and the
Assumptions 1, 2 and 3, we define the feasible parameter set
at time step t, denoted by F(t), as the set that is guaranteed
to contain all model parameter matrices at time step t, i.e.
H(t), that are consistent with the initial assumptions and the
output measurements collected up to time step t:

F(t)
.
= Ω ∩

 ⋂
k=1,...,t

Sk(t)

 . (13)

According to Assumption 3, the set Ω is defined through
polytopic constraints on the rows of the parameter matrix
H(t). Moreover, the sets Sk(t), k = 1, . . . , t are also defined
through linear inequality constraints on the rows of the
matrix H(t). Therefore, the feasible parameter set F(t),
defined as the intersection of all these sets, is also given
by polytopic constraints on the rows of the model parameter
matrix H(t) and it can be represented as follows:

F(t) =
{
H ∈ Rny×num : Aj(t)Hj ≤ bj(t)

}
, (14)

where each of the matrices and vectors Aj(t) ∈
Rrj(t)×num, bj(t) ∈ Rrj(t), j = 1, . . . , ny define rj(t) linear
inequalities.

In order to use the defined feasible parameter set F(t)
for the real-time computation of control inputs, a recursive
update strategy is needed. To this end, we note that the matrix
Aj(t) can be created from the matrix Aj(t−1), j = 1, . . . , ny
by appending two rows formed by the regressor vector at
time step t, ϕ(t) and that the vector bj(t) can be formed from
the vector bj(t− 1), j = 1, . . . , ny , by first adding the terms
that account for the possible changes of the plant model with
respect to the previous time step and then by appending two
new rows that define the constraints related to the newly
collected output measurement ỹj(t), j = 1, . . . , ny:

Aj(t)=

 Aj(t−1)
−ϕT (t)
ϕT (t)

 , bj(t)=

 bj(t−1)+∆bj(t−1)
−ỹj(t)+εdj +εvj
ỹj(t)+εdj +εvj

,
(15)

where the vectors ∆bj(t− 1) ∈ Rrj(t−1), j = 1, . . . , ny are
computed as:

∆bj(t−1)=
[
0rjo ,−ϑj(0), ϑj(0), . . . ,−ϑj(t−1), ϑj(t−1)

]T
(16)

with 0rjo ∈ Rrj0 denoting a vector of rjo zeros.
The use of the recursive equation (15) to update the matri-

ces Aj(t) and vectors bj(t), j = 1, . . . , ny , would generally
result in a continuous increase of their dimension rj(t), j =
1, . . . , ny with each new output measurement, which would
lead to a computationally intractable problem over time. For
this reason, we only keep track of the constraints that are

generated by the last M output measurements, where M ∈
R+ is a control design parameter, plus the rj0 inequalities
given by the bounds (7) (see Assumption 3). The proposed
recursive update of the feasible parameter set is described in
Algorithm 1.

Algorithm 1 Recursive algorithm to update the feasible
parameter set

1) At time step t = 0, for j = 1, . . . , ny , set Aj(0) = Aj0,
bj(0) = bj0;

2) At time step t > 0, calculate the regressor vector ϕ(t)
according to (2) and take the measurement vector ỹ(t);

3) For j = 1, . . . , ny , calculate ϑj(t) and ϑj(t) by solving
linear programs as in (12);

4) For j = 1, . . . , ny form the matrix Aj(t) and the vector
bj(t) from Aj(t− 1) and bj(t− 1) according to (15);

5) For j = 1, . . . , ny , if rj(t) > rj0 + M , remove the
rj0 + 1 and if needed rj0 + 2 row from the matrix
Aj(t) and vector bj(t), such that after removal it holds
that rj(t) ≤ rj0 +M ;

6) Set t = t+ 1, go to 2).

In addition to the feasible parameter set, the proposed
identification algorithm also provides a nominal model of
the plant at each time step. The latter is given by a matrix
Hc(t) ∈ Rny×num, Hc = [Hc,1, . . . Hc,ny

]T , where the
vectors Hc,j(t) ∈ Rnum, j = 1, . . . , ny can be calculated by
solving s convex program that aims to find the point inside
the feasible parameter set F(t) that is closest to the nominal
model at the previous time step (i.e. Hc(t− 1)):

min
Hc,j(t),j=1,...,ny

ny∑
j=1

‖Hc,j(t− 1)−Hc,j(t)‖

Subject to:
Aj(t)Hcj(t) ≤ bj(t), ∀j = 1, . . . , ny.

(17)

Initially, at time step t = 0, the matrix Hc(0) can be taken as
an arbitrary nonzero point inside the set Ω. In (17), typical
employed norms are 1−, ∞− and 2−norms.

B. Finite horizon optimal control problem
Let u(k|t), k ∈ [t, t + N − 1], N ≥ m, be the candidate

future control moves, where the notation k|t indicates the
prediction at step k ≥ t given the information at the current
step t. For brevity, we collect these decision variables in
vector U .

= [u(t|t)T . . . u(t+N−1|t)T ]T . We also define the
vectors of future input increments ∆u(k|t), k ∈ [t, t+N−1]
as:

∆u(k|t)=

{
u(t|t)−u(t− 1) if k = t

u(k|t)−u(k−1|t) otherwise.

Moreover, we define the future regressor vectors ϕ(k|t) ∈
Rnum, k ∈ [t+ 1, t+N ] as:

ϕ(k|t)=

{
[u(k −m)T , . . . , u(k|t)T ] if k < t+m

[u(k −m|t)T , . . . , u(k|t)T ] otherwise.
(18)

In addition, we define the current prediction error d̂(t) ∈
Rny as the difference between the measured plant output and



the one predicted by the nominal model at time step t:

d̂(t)
.
= ỹ(t)−Hc(t)ϕ(t). (19)

Then, we consider the following cost function:

J(U, ỹ(t), ϕ(t))
.
=

t+N−1∑
k=t

(ŷ(k+1|t)−ydes(k+1|t))T Q(ŷ(k+1|t)

−ydes(k+1|t))+u(k|t)TSu(k|t) + ∆u(k|t)TR∆u(k|t),
(20)

where:

ŷ(k + 1|t) = Hc(t)ϕ(k + 1|t) + d̂(t). (21)

In (20), ỹ(t) and ϕ(t) are known parameters and
ydes(k|t), k ∈ [t + 1, t + N ], are the predicted values of
the desired output.

Satisfaction of input constraints can be enforced by the
following set of inequalities:

Cu(k|t) ≤ g

L∆u(k|t) ≤ f
∀k ∈ [t, t+N − 1]. (22)

In order to define the output constraints, we first in-
troduce the notion of the predicted feasible parameter set,
F(k|t), k ∈ [t+ 1, t+N ]:

F(k|t) =
{
H ∈ Rny×num : Aj(k|t)Hj ≤ bj(k|t)

}
, (23)

where the predicted matrices Aj(k|t) and the vectors bj(k|t),
for k ∈ [t+ 1, t+N − 1] and j = 1, . . . , ny are given as:

A(k+1|t)=



A(k|t) if rj(k|t)≤M ′

aj1(k|t)
...

ajrj0(k|t)
ajrj0+3(k|t)

...
ajrj(t)(k|t)


otherwise.

(24)

b(k+1|t)=



b(k|t)+



0rjo

−ϑj

(
t− rj(t)−rj0

2

)
ϑj

(
t− rj(t)−rj0

2

)
...

−ϑj(t)

ϑj(t)


if rj(k|t)≤M ′



bj1(k|t)
...

bjrj0(k|t)
bjrj0+3(k|t)− ϑj

(
k− rj(t)−rj0

2

)
bjrj0+4(k|t) + ϑj

(
k− rj(t)−rj0

2

)
...

bjrj(t)−1(k|t)− ϑj(t)

bjrj(t)(k|t) + ϑj(t)


otherwise.

(25)

where aji(k|t) and bji(k|t) denote the ith row of the matrix
Aj(k|t) and the vector bj(k|t) respectively, rj(k|t) = rj(t)+
2(k − t) represents the predicted dimension of the matrices
Aj(k) and the vectors bj(k) that would be obtained by
using Algorithm 1 if no rows would be removed (i.e. if the
dimension of the matrices and vectors would be allowed to
grow without limit in the future), and M ′ = M + rj0 is a
constant, with rj0 being the constant given by the definition
of the set Ω (see Assumption 3).
The matrices that form the predicted feasible parameter sets
F(k|t), k ∈ [t+ 1, t+N − 1] are formed as if the recursive
identification Algorithm 1 would be applied at each time
step in the future, but without taking into account the future
output measurements, which are unknown at the current time
step (i.e. only the inflating effect due to the time-varying
dynamics is considered).
The initial predicted matrices Aj(t|t) and the vectors
bj(t|t), j = 1, . . . , ny correspond to their actual values at
time step t:

Aj(t|t) = Aj(t), bj(t|t) = bj(t). (26)

The matrices that form the terminal predicted feasible pa-
rameter set are defined just by inequalities that form the
uncertainty set Ω to which the model parameter matrix is
guaranteed to belong ∀t ≥ 0 (see Assumption 3):

Aj(t+N |t) = Aj0, bj(t+N |t) = bj0. (27)

The robust satisfaction of the output constraints is then
guaranteed by enforcing them for all the parameters inside
the predicted feasible parameter sets F(k|t), k ∈ [t+1, t+N ]
and for all disturbance realizations:

EHϕ(k|t)+d ≤ o, ∀H∈F(t), ∀k ∈ [t+1, t+N ], (28)

where d = [d1, . . . , dno
]T , and dl ∈ R, l = 1, . . . , no are

given as:

dl =

ny∑
j=1

|elj |εdj ,

where elj stands for the element of the lth row and jth column
of the matrix E.

Finally, in order to recursively satisfy the input and output
constraints (see e.g. Theorem 4.1 in [15]), we introduce an
additional constraint on the terminal stage:

ϕ(t+N |t) = ϕ(t+N − 1|t). (29)

This means that we require the terminal regressor to corre-
spond to a steady state, in a way similar to the approach
adopted e.g. in [7].

For fixed values of N , Q, S and R, we can now define
the finite horizon optimal control problem (FHOCP) to be
solved at each time step t:

min
U,Λ

J(U, ỹ(t), ϕ(t))

Subject to: (22), (28), (29),
(30)

Optimization problem (30) can be reformulated into a
quadratic program (QP) of moderate size (see e.g. Lemma
3.2 in [16]). Therefore, the proposed algorithm is well
suited for on-line application with processes that have slow



dynamics and for which the computational efficiency of the
control algorithm is not critical.

IV. SIMULATION STUDY

The proposed adaptive control algorithm has been tested in
simulation on a three tank system. Fig. 1 shows the system
layout. This process consists of three water tanks that are
connected in series with narrow pipes attached at the bottom
of the tanks and whose cross section can be controlled by
valves. Water can be directly pumped from a water reservoir
into the two outer tanks, but not into the tank in the middle.
One of the outer tanks has a small opening at the bottom
through which the water is allowed to leak out into the water
reservoir. We assume that all three tanks have the same cross
section S. In addition, we assume that the cross sections of
the connections between the tanks and of the water outlet
have area equal to γiSc, i = 1, 2, 3, where Sc is a constant
term and the gains γi are defined by the positions of the
corresponding valves. We further denote the water levels
in the three tanks with hi, i = 1, 2, 3 and the water flows
entering the tanks 1 and 3 with q1 and q2.

S S S

ℎ1 ℎ2 ℎ3

𝑞𝑞1 𝑞𝑞2

𝛾𝛾1𝑆𝑆𝑐𝑐 𝛾𝛾2𝑆𝑆𝑐𝑐 𝛾𝛾3𝑆𝑆𝑐𝑐

Fig. 1. The three tank system

If we denote the gravity acceleration constant with g, then
the dynamic equations that describe the evolution of the
water levels in the three tanks are:

dh1

dt =
q1−γ1Scsgn(h1−h2)

√
2g(h1−h2)

S

dh2

dt =
γ1Scsgn(h1−h2)

√
2g(h1−h2)−γ2Scsgn(h2−h3)

√
2g(h2−h2)

S

dh3

dt =
q2−γ2Scsgn(h2−h3)

√
2g(h2−h2)−γ3Sc

√
2gh3

S
(31)

In simulation, we modify the values of the parameters γ1

and γ3 over time, while keeping the value of the parameter γ2

fixed. Numerical values for the model parameters are listed
in Table I.

TABLE I
NUMERICAL VALUES OF THE THREE TANK MODEL PARAMETERS.

S [cm2] Sc [cm2] γ1 γ2 γ3
375 3.42 0.5-0.8 0.5 0.75-1.15

We regulate the tank water levels around a steady state
defined by h1 = 8 cm, h2 = 7 cm and h3 = 6 cm. Therefore,
the simulations are carried out with the linearization of the
system (31) around these steady state values, where the plant
outputs are the differences of the tank water levels and the
steady state levels and the control inputs are the differences

of the two water flows with respect to the steady state water
flows. The system is controlled with a sampling time of
0.16 s.

The described plant has 2 inputs and 3 outputs (i.e. nu = 2
and ny = 3). In the controller, we employ a model given
by impulse responses with 12 coefficients to describe the
influence of each input to each output (i.e. m = 12). The
control objective is to regulate the system such that the water
level in the tank 2 (i.e. h2) follows a given reference profile
and at the same time satisfy the input and output constraints.
The constraints are selected such that the rate and amplitude
of both control inputs are limited, that the water level of the
first tank stays below 12 cm, that the level of the second tank
remains below the level of the first tank and the level of the
third tank remains below the level of the second tank and
finally that the level of the third tank remains above 0 cm.
These input and output constraints yeald the following values
for the matrices and vectors in (9):

C = L =

 1 0
0 1
−1 0
0 −1

 , g =

 9
9
9
9

 , f =

 4
4
4
4


E =

 1 0 0
0 0 −1
−1 1 0
0 −1 1

 , p =

 5
6
1
1

 .

The initial feasible parameter set F0 and the set of con-
strains on the model parameter’s rate of change D (see (6))
have been defined by introducing identical box constraints
on the impulse response coefficients for each input-output
pair. The physics of the considered plant defines the lower
bound on each of the impulse response coefficients to be
zero, and other bounds are suitably selected such that a large
initial uncertainty set F0 and comparably smaller set D are
obtained. Numerical values of other tuning parameters of the
proposed adaptive MPC controller are listed in Table II. In
simulations, additive noise uniformly distributed in the range
defined by the bounds in Table II was used.

TABLE II
NUMERICAL VALUES OF THE CONTROLLER TUNING PARAMETERS.

εd εv Q R S N M[
0.1
0.1
0.1

] [
0.1
0.1
0.1

] [
0 0 0
0 1 0
0 0 0

] [
0.5 0
0 0.5

] [
0 0
0 0

]
22 100

The resulting tank water levels are shown in Fig. 2. In
addition to the resulting plant outputs, Fig. 2 also shows the
upper and the lower bounds for each of the three outputs,
computed considering all possible elements in the feasible
parameter set at each time step. As it can be seen, the
output constraints are robustly enforced for the whole range
of uncertainty.

In order to illustrate the effectiveness of the proposed
adaptive control scheme, we compared its performance with
the performance of the identical MPC controller that uses
least squares with forgetting to cope with the time-varying
system behavior. For the simulations, a forgetting factor of
0.9 was used. Both controllers used the same initial guess
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Fig. 2. Resulting tank water levels obtained when the proposed adaptive
MPC algorithm is used (thick lines) for the first (green dashed), second (blue
solid) and the third (magenta dash-dot) tank, compared with the reference
for the water level in the second tank (thick dotted line). In addition to
the simulated tank water levels, the uncertainty intervals calculated with
respect to the feasible parameter set are also show (thin lines), as well as
the constraint of 12 10−2 m (black dashed line).

for the plant and the controller that uses least squares has
soft enforcement of the output constraints as there are no
theoretic guarantees of recursive feasibility. The tank water
levels obtained with this controller are shown in Fig. 3.
As it can be seen, the use of this controller results in an
output constraint violation during simulation. The certainty
equivalence adaptive controller with least squares is more
aggressive as it does not take the uncertainty into account.
On the other hand, although more cautious, the proposed
adaptive MPC algorithm for time varying systems is capable
of satisfying output constraints and guarantees recursive
feasibility.

0 100 200 300 400 500 600 700 800
Time step

3

4

5

6

7

8

9

10

11

12

13

W
at

er
 le

ve
ls

 (
10

-2
 m

)

Fig. 3. Resulting tank water levels obtained when the adaptive MPC
algorithm that is based on recursive least squares with forgetting is used
for the first (green dashed line), second (blue solid) and the third (magenta
dash-dot) tank compared with the reference signal for the water level in the
second tank (thick dotted line). An example of output constraint violation
is marked with a black ellipsoid.

V. CONCLUSION

This paper proposes a novel adaptive MPC algorithm for
handling constrained, linear, time varying systems. It relies

on a recursive set membership identification algorithm to
keep track of the set of all possible model parameters that
is guaranteed to contain the actual plant parameters at each
time step, also considering the worst-case parameter changes
over time. The MPC formulation results in robust satisfaction
of output constraints and recursive feasibility of the finite
horizon optimal problem. The effectiveness of the proposed
algorithm as been demonstrated in simulation on a tree tank
system.
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