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Abstract— In this paper a novel method for the design of
MPC controllers based on multi-steps ahead external represen-
tation system models is proposed. These models are assumed to
be identified from available data, e.g., using the set-membership
approach, that computes a guaranteed estimate of the model
uncertainty bounds. Exploiting this information, the proposed
algorithm guarantees input and output constraint satisfaction,
recursive feasibility, and robust convergence properties. A
simulation case study is shown to demonstrate the effectiveness
of the proposed approach.

I. INTRODUCTION

The idea to jointly use identification and control design
tools is old-standing, see e.g. [15] and [20], and is moti-
vated by the need to reduce the time and effort required
by the modeling phase, which could be cumbersome or
even impossible if based on physical models. This need
becomes particularly dramatic nowadays, since more and
more complex, large-scale, and heterogeneous systems are
required to be addressed [18], [2], [19], [7], [9], preventing
modelling approaches purely based on physical equations
to be effective. On the other hand, we are now witnessing
considerable technological progresses in electronics, com-
munications (e.g., with sensor networks [3]), and computer
science, giving us the opportunity of transmitting, collecting,
storing, and managing huge quantities of data, extracted from
the systems and plants to be controlled.
In this framework, a very wide literature is nowadays avail-
able on the so-called identification for control approach
referred to linear systems, see for instance [6], [5], or on
the use of nonlinear models based on neural networks,
see for example [16]. In the control design phase, most
of the proposed approaches used so far rely on the so-
called certainty equivalence principle: uncertainties in the
model description are neglected and the nominal model is
used. To overcome the intrinsic limitations of this approach,
different strategies can be adopted. Among them, stochastic
and deterministic (i.e., where the disturbance is unknown
but assumed to be bounded in a known set) robust control
methods have been proposed. In the first case, the inherent
nondeterminism of the model is explicitly considered, while
in the second case a worst-case approach is adopted. For
example, a wide literature is currently devoted to robust
stochastic (see the recent survey [4]) and deterministic (e.g.,
the popular robust ”tube-based” approach described in [13])
algorithms based on Model Predictive Control (MPC), which
is nowadays the largely most popular control design method.
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Motivated by the above considerations, by the recent ad-
vances in Machine Learning techniques, and by the ever
increasing computing power, the research on the combined
use of learning techniques and MPC has recently received an
increasing interest. Two recent notable contributions in this
field have been given in [1] and [10]. In the first paper, linear
models with bounded uncertainties are considered and deter-
ministic guarantees on robustness and safety are provided.
In the second paper, [10], a nonparametric machine learning
algorithm is used together with a robust MPC technique for
control of systems described by nonlinear models.
In this research stream this paper proposes a new algorithm
for MPC control of linear systems described by a multi-steps
ahead external representation. The potential advantages of
using different models for prediction, one for each future
prediction step, has been previously highlighted in [20],
[8], and [12], where however the control design required
the solution to a nonlinear optimization problem. In the
approach described in the following the multistep predictors
are assumed to be built independently from each other
according to the algorithm described in [21], which relies on
the Set Membership theory [22], [14] . As shown in [21], the
adopted learning approach is based on the solution to LP and
QP problems, so that its computational load is limited, and
allows for the computation of different worst case prediction
errors, one for each prediction step, so avoiding the classical
accumulation of prediction errors raising from iteration of
one-step models. Moreover, noise on the output measures is
allowed.
Given the identified set of models and their related worst-
case errors, the proposed robust MPC algorithm is based on
the tube-based approach, suitably modified to cope with the
peculiarities of the adopted model. The fundamental proper-
ties of recursive feasibility and convergence are proven and
a simulation example is reported to witness the performance
of the method.
The paper is organized as follows: in Section II the predictive
control problem is stated and multi-steps ahead external
representation system models are introduced. The complete
MPC algorithm is described in Section III, where the proofs
of recursive feasibility and convergence are also reported.
Section IV reports a benchmark simulation example taken
from the literature, see [20], that witnesses the effectiveness
of the proposed approach. Finally, Section V summarizes
the main results of this paper and presents future work
perspectives.
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II. STATEMENT OF THE PROBLEM

In this paper we consider a SISO system with input
variable u(k) ∈ R and measured output y(k) ∈ R, k ∈ N.
We assume that, from the application of a suitable identifi-
cation/learning method, the following external representation
system models, describing the evolution of the measured
output variable y(k) are available, for all p = 1, . . . , p, p ∈
N, p≥ 1.

y(k+ p) = θ T
p,Yo

 y(k)
...

y(k−o+1)

+θ T
p,Uo

 u(k−1)
...

u(k−o+1)


+θ T

p,Up

 u(k)
...

u(k+ p−1)

+wp(k)

(1)
where θp,Yo , θp,Uo ,θp,Up are vector of known parameters,
and where wp(k) is an unknown, but bounded, disturbance
term, i.e., there exist, for all p = 1, . . . , p, a bounded and
convex set Wp containing the origin in its interior such that
wp(k)∈Wp for all k≥ 0. Note that the magnitude of set Wp
depends on a number of factors, including the number of data
considered in the identification procedure, the considered
class of models, and the noise acting on the system (e.g., the
measurement noise). Therefore, if necessary, the magnitude
of Wp can be reduced by a more accurate choice of the
model class and by considering more data in the learning
phase. However, a lower bound is to be expected, in view of
the fact that the data (and possibly the dynamic system under
control) are in general affected by noise and perturbations.

Equation (1) represents how the output y(k) evolves on a
p-steps ahead basis. The use of these models is assumed to be
beneficial in a predictive control context in view of the fact
that the uncertainty associated to (1) is presumably smaller
than the uncertainty resulting from iterating p times the 1-
step evolution model (i.e., corresponding with (1) where p
is set to 1), and therefore the optimization-based predictive
controller devised based on them results consequently more
precise and effective. In particular, this property is guaranteed
if the model (1) has been derived using set membership
identification methods as described in [21].

The scope of this paper is to devise a theoretically
sound robust predictive optimization-based control method
for regulation that is able to optimally take advantage of the
availability of the models (1) for computing the forecasts
during the whole prediction horizon. The controller must be
able to guarantee the fulfillment of the following input and
output constraints, for all k ≥ 0.

u(k) ∈ U (2a)
y(k) ∈ Y (2b)

where U and Y are suitable convex sets containing the
origin in their interior. Note that, although here the system
is defined in a SISO context, the extension to the multi-input
and multi-output framework is straightforward.

III. FORMULATION OF THE MPC PROBLEM

A. Derivation of the state space representation and system
assumptions

A state space representation of the system evolution is
required, in order to formulate in a sound way the corre-
sponding robust MPC problem. To do so we define X(k) =
(y(k), . . . ,y(k− o + 1),u(k− 1), . . . ,u(k− o + 1))T ∈ R2o−1

and U(k) = (u(k), . . . ,u(k+ p))T ∈Rp+1 as the state and the
input, respectively, variables. Thanks to this, the following
possibly non-minimal representation of the 1-step evolution
model is derived from (1) with p = 1.

X(k+1) = AX(k)+BU(k)+M1w1(k) (3)
= AX(k)+B1u(k)+M1w1(k)

where

A =


θ T

1,Y0
θ T

1,U0
Io−1 0o−1,1 0o−1,o−1

0o−1,o
01,o−1

Io−2 0o−2,1


B =


θ T

1,U1
01,p

0o−1,p+1
1 01,p
0o−2,p+1

 ,B1 =


θ T

1,U1
0o−1,1

1
0o−2,1


M1 =

[
1

02(o−1),1

]
For p = 1, . . . , p, we rewrite the p-steps ahead evolution
models (1) as system output equations as follows.

y(k+ p) =CpX(k)+DpU(k)+wp(k) (4)

where Cp =
[
θ T

p,Y0
θ T

p,U0

]
, Dp =

[
θ T

p,Up
01,p+1−p

]
. Let us

introduce matrices C0 = [1,0,0, . . . ,0] ∈ R1×2o−1 and D0 =
01,p+1 such that we can write y(k) =C0X(k)+D0U(k).
The following assumption will be considered in the remain-
der of the paper.

Assumption 1: The pair (A,B1) is stabilizable. �

B. Structure of the controller

In this paper an MPC controller is devised that, at each
time instant k, uses the p-steps ahead models (1) to predict
in the best possible way the future evolution of the output
variable. Since models (3) and (1) are affected by bounded
disturbances, a tube-based robust control method is used,
inspired by the algorithm proposed in [13]. As a result, the
input u(k), to be applied to the system at time instant k, is
defined as the sum of two components as follows.

u(k) = û(k|k)+K(X(k)− X̂(k|k)) (5)

The component û(k|k) is computed as the result to a suitable
optimization problem, to be defined based on the nominal
(i.e., unperturbed) prediction models derived from (1), while
the second component (i.e., K(X(k)− X̂(k|k))) is defined
using a suitable proportional control law, aiming to reduce
the displacement of the state X̂(k|k) of a suitably defined
nominal dynamic system with respect to the real data X(k)
available at time k.



The nominal dynamic system is defined based on (3), i.e.,

X̂(k+1) = AX̂(k)+B1û(k) (6)

The difference between the real available data vector X(k)
and the state of the nominal system is defined as e(k) =
X(k)− X̂(k). From (3) and (6), it evolves according to:

e(k+1) = (A+B1K)e(k)+M1w1(k) (7)

Let us assume that the gain K is defined in such a way that
the closed-loop transition matrix A+B1K is Schur stable,
which is possible thanks to Assumption 1. Let us denote
with E a (minimal, if possible) robust positively invariant
(RPI) [17] set for the system (7). Similarly to [13], the
constraints and the optimization problem will be defined with
reference to the unperturbed model, and specifically to (6).
This will require to define suitable tightened state and input
constraints, that allow to account for the difference between
X̂(k) and X(k).

C. Constraints

Similarly to [13], it is first necessary to constrain X̂(k) at
time k to lie in the neighborhood of X(k), i.e

X(k)− X̂(k) ∈ E (8a)

As discussed, the constraints will be defined only with
reference to the state-space model (6). Regarding the input
variable, to guarantee that (2a) holds at time k + p, p =
0, . . . , p, it is enough to enforce the following tightened
constraint, for all p = 0, . . . , p.

û(k+ p) ∈ U	KE (8b)

Regarding the output, to guarantee that (2b) holds at time k+
p, p= 0, . . . , p, we enforce the following tightened constraint,
for all p = 0, . . . , p.

C0X̂(k+ p) ∈ Y	C0E (8c)

where X̂(k+ p) = ApX̂(k)+∑
p
j=1 A j−1B1û(k+ p− j).

To guarantee recursive feasibility, we also need to enforce
a terminal constraint of the type

X̂(k+ p+1) ∈ XF (8d)

where XF is defined as a positively invariant set for the
system X̂(k + 1) = (A + B1K)X̂(k) that verifies C0XF ⊆
Y	C0E and KXF ⊆U	KE. For consistency, the following
assumption is required.

Assumption 2: There exists a ball B in space R, centered
at the origin and with radius ε , such that

C0E⊕B ⊆ Y (9a)
KE⊕B ⊆ U (9b)

�
Notably, Assumption 2 can be regarded as a minimal re-
quirement with respect to the uncertainty associated to the
identification procedure. In fact, the magnitude of set E is
directly proportional to the magnitude of set W1 which, as
discussed in Section II, represents the uncertainty resulting

from the identification phase. In case Assumption 2 is not
satisfied it will be necessary to step back to the identification
stage and, if possible, improve it (i.e., reduce the related
uncertainty level). As discussed, this can be done either by
increasing the number of data or even considering a different
class of models.

D. Cost function

The p steps ahead output predictor corresponding to (4)
is computed using the following equation.

ŷp(k) =CpX̂(k)+DpÛ(k) (10)

where Û(k) = (û(k), . . . , û(k+ p)).
The cost function to be minimized at time step k is

J(k)=
p

∑
p=0
‖ŷp(k)‖2

Qp +‖û(k+ p)‖2
Rp +‖X̂(k+ p+1)‖2

P (11)

The terminal state value X̂(k+ p+1) is obtained by iterating
the state equation (3) p+1 times, i.e.,

X̂(k+ p+1) = Ap+1X̂(k)+ΓÛ(k) (12)

where
Γ =

[
ApB1 . . . B1

]
For the definition of the weights Qp, Rp, and P we must
preliminarily define the following matrices.

Ψ =

C0A C0B+D0H1
...

...
CpA CpB+DpH1

 , Ψ̄ =


C1 D1
...

...
Cp Dp

Ap+1 Γ

0 Ip+1

 ,

H1 =

[
0p,1 Ip

0 01,p

]
(13)

Also, we write Q =diag(Q0, . . . ,Qp), and
Q̄ =diag(Q1, . . . ,Qp,TN ,R), where TN is a positive
definite matrix to be used as a further tuning knob and
R =diag(R0/2,R1 − R0, . . . ,Rp − Rp−1). We will assume
that the following conditions are verified:

(A+B1K)T P(A+B1K)−P =−TN−KT RpK (14a)

Ψ
T QΨ≤ Ψ̄

T Q̄Ψ̄ (14b)
TN > 0, R > 0, Q > 0 (14c)

It is worth noting that condition (14a) is a standard Lyapunov
equation with respect to the stable transition matrix (A+
B1K). Overall, the set of inequalities (14) can be cast as
LMIs and solved using standard tools, e.g., YALMIP [11].

E. The optimization problem and main result

The optimization problem, to be solved at each time
instant k ≥ 0, reads

J(k|k) = min
X̂(k),Û(k)

J(k) (15)

subject to (8).



If admissible, the solution to the optimization problem (15)
is denoted X̂(k|k),Û(k|k) = (û(k|k), . . . , û(k+ p|k)), and u(k)
in (5) is implemented on the system according to the Reced-
ing Horizon principle. Also, we denote with the notation
X̂(k + p|k) the future nominal state predictions generated
using (6) with input Û(k|k) = (û(k|k), . . . , û(k + p|k)). The
following results can be proved.

Theorem 1: If the optimization problem is feasible at time
step k = 0 then it is feasible at all time steps k > 0. Also, for
all k ≥ 0, the constraints (2) are satisfied and ŷ0(k)→ 0 as
k→ ∞. Finally, d(y(k),C0E)→ 0 as k→ ∞, where d(α,β )
denotes the distance from point α to set β . �

Proof: See the Appendix.

IV. NUMERICAL RESULTS

The proposed approach has been tested on the benchmark
example previously considered in [8], [20] and [12]. More
specifically, we consider the data generated according to the
continuous-time system

z(t) =
458

(s+1)(s2 +30s+229)
u(t)

The output measurements are collected with a sampling time
Ts = 0.2 s according to the output equation

y(k) = z(kTs)+d(kTs)

where d(t) is a bounded noise such that, for all t, d(t) ∈
[−0.2,0.2].
The identification procedure considers a data set composed
of N = 500 input-output data samples. The used identification
algorithm, discussed in [21], allows to identify the discrete-
time models (1) for all p = 1, . . . , p = 7, where the order
is o = 2. Note, in passing, that the real system, of order 3,
does not belong to the selected model class of order 2, and
this makes the simulation tests more realistic, however at the
price of a bigger uncertainty resulting from the identification
phase.

The algorithm proposed in this paper is used to regulate the
output y(t) to zero, starting from a feasible initial condition
and applying (5), where the gain K is computed by means
of a LQ auxiliary control law and the tuning of the MPC
regulator satisfies (14). Constraints are defined such that the
sets for y(k) and u(k) are Y = [−10,10] and U = [−3,3]
respectively, then tightened according to (16c) and (16b) in
the optimization problem (15). By definition of the algorithm
it is necessary to collect at least o samples in order to
properly define the required state X(k) = (y(k), . . . ,y(k−o+
1),u(k−1), . . . ,u(k−o+1))T ∈R2o−1. To initialize the input
variable, we set u(k) = 0 for k = 1, . . . ,4, i.e., the system
is in open loop with null input up to time instant 1 s. An
alternative choice could be to use a pre-stabilizing controller.

To better show the variability of the solution for different
disturbance signals, 20 runs are simulated with different
realizations of d(t).

Figure 1 shows the input û(k|k) resulting from the opti-
mizer. Note that the constraints (16b) (represented with a
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Fig. 1. Trajectories of û(k|k) for any disturbance realizations. Solid lines:
û(k|k); dashed black lines: tightened constraints (16b) applied on û(k|k).

dashed black line) is active at time t = 1 s; as expected
û(k|k)→ 0 as k→+∞ for each disturbance realization.

The corresponding trajectories of u(k) are shown in Figure
2. Note that, in view of the presence of the disturbances,
u(k) does not asymptotically tend to zero but to a bounded
set included in KE, in view of (5), (16a), and of the fact that
û(k|k) and X̂(k|k) tend to zero.
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Fig. 2. Trajectories of u(k) for any disturbance realizations. Solid lines:
u(k); dashed black lines: constraints (2a).

Figure 3 shows the output trajectory, starting from a
feasible initial condition. Consistently with Theorem 1, the
output does not asymptotically converge to zero but, for all
the disturbance realizations, to the bounded set C0E, whose
bounds are indicated in Figure 3 by the black dotted lines.

Finally, Figure 4 shows the nominal output obtained as
ŷ(k|k) = C0X̂(k|k), X̂(k|k) resulting from the optimization
(15). As expected, this signal converges to zero asymptoti-
cally

V. CONCLUSIONS

In this paper a novel method for the design of MPC
controllers with data-based multi-steps ahead external repre-
sentation system models has been described. The use of these
models is motivated by the predictive control scheme adopted
in the paper. Under the condition that the models are affected
by a bounded and known uncertainty, the proposed algorithm
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Fig. 3. Trajectories of y(k) for any disturbance realizations and open loop
response. Grey lines: y(k); solid line with circles: average trajectory of the
realizations; dotted black lines: bounds of set C0E; dashed line: open loop
trajectory.
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Fig. 4. Trajectories of ŷ(k|k) =CoX̂(k|k) for any disturbance realizations.
Solid lines: ŷ(k|k); dashed black lines: tightened constraints (16c) applied
on ŷ(k|k).

guarantees input and output constraint satisfaction, recursive
feasibility, and robust convergence properties. A simulation
case study is shown to demonstrate the effectiveness of the
approach.
This work should be considered as a preliminary step:
research will be devoted to a number of issues. For example,
the extension to MIMO and non-linear models is envisioned.
Also, the control scheme will be extended to address the
tracking problem. Another interesting issue, that will be
deeply investigated in the future, is the interplay between
identification and control: for example, how to steer the
identification procedure in order to develop models that are
particularly prone to the control phase is a still open issue.

APPENDIX

Proof of Theorem 1.
The proof of Theorem 1 is here divided in three steps:

• Proof of recursive feasibility of the optimization prob-
lem (15).

• Proof that constraints (2) are satisfied.
• Proof of convergence.

Recursive feasibility.
The proof is conducted by induction. Assume that, at in-
stant k, a solution to the optimization problem (15) exists.
All constraints (8) are therefore verified by the trajectories
X̂(k+ p|k) and Û(k|k) = (û(k|k), . . . , û(k+ p|k)), and more
specifically

X(k)− X̂(k|k) ∈ E (16a)
û(k+ p|k) ∈ U	KE, p = 0, . . . , p (16b)

C0X̂(k+ p|k) ∈ Y	C0E, p = 0, . . . , p (16c)

X̂(k+ p+1|k) ∈ XF (16d)

Finally, the input u(k) is defined according to (5).
At step k+1, X(k+1) = AX(k)+B1u(k)+M1w1(k). We can
show that a feasible, although possibly suboptimal, solution
to (15) at step k+1 can be defined, i.e., as X̂(k+1|k),Û(k+
1|k) =

(
û(k+1|k), . . . , û(k+ p|k),KX̂(k+ p+1|k)

)
. First of

all, we compute that X(k + 1) − X̂(k + 1|k) = (A +
B1K)(X(k)− X̂(k|k))+M1w1(k) ∈ E in view of (16a) and
of the fact that E is RPI.
Also, û(k + p|k) ∈ U	KE in view of (16b), for all p =
1, . . . , p; also, KX̂(k+ p+1|k) ∈ KXF ⊆ U	KE in view of
(16d) and of the definition of XF .
Thirdly, C0X̂(k+ p|k) ∈Y	C0E for all p = 1, . . . , p in view
of (16c) and C0X̂(k+ p+ 1|k) ∈ C0XF ⊆ Y	C0E in view
of (16d) and of the definition of XF . Finally, it holds that
X̂(k+ p+ 2|k) = (A+B1K)X̂(k+ p+ 1|k) ∈ XF in view of
(16d) and of the positive invariance of XF . Since feasibility
holds by assumption at time k = 0 then, by induction, it is
guaranteed also for all k > 0.

Constraint satisfaction.
In view of the feasibility of the problem (15) at any time
instant k ≥ 0, it results that constraints (16) are verified.
Therefore, from (5), (16a), and (16b), u(k) = û(k + p|k)+
K(X(k)− X̂(k|k))∈ (U	KE)⊕KE=U, proving (2a). Also,
from (16a) and (16c), y(k)=C0X(k)=C0X̂(k|k)+C0(X(k)−
X̂(k|k)) ∈ (Y	C0E)⊕C0E= Y, proving (2b).

Convergence.
We compute, from (11), that

J(k|k) = ∑
p
p=0 ‖

[
Cp Dp

][X̂(k|k)
Û(k|k)

]
‖2

Qp

+‖û(k+ p|k)‖2
Rp

+‖X̂(k+ p+1|k)‖2
P

(17)

At step k+1, in view of optimality the optimal cost function
J(k+1|k+1) verifies J(k+1|k+1)≤ J(k+1|k), where J(k+
1|k) is the cost function obtained at step k+1 if the feasible
solution X̂(k+1|k),Û(k+1|k) is applied. More specifically

J(k+1|k) = ∑
p
p=0 ‖

[
Cp Dp

][X̂(k+1|k)
Û(k+1|k)

]
‖2

Qp

+‖û(k+1+ p|k)‖2
Rp

+‖X̂(k+ p+2|k)‖2
P

(18)

where û(k + p + 1|k) = KX̂(k + p + 1|k). We
compute, from (17) and (18), that J(k + 1|k +
1) − J(k|k) ≤ J(k + 1|k) − J(k|k) ≤ −(‖ŷ0(k|k)‖2

Q0
+

‖û(k|k)‖2
R0
) + ∑

p−1
p=0(‖

[
Cp Dp

][X̂(k+1|k)
Û(k+1|k)

]
‖2

Qp
−



‖
[
Cp+1 Dp+1

][X̂(k|k)
Û(k|k)

]
‖2

Qp+1
+ ‖û(k + 1 + p|k)‖2

Rp
−

‖û(k + 1 + p|k)‖2
Rp+1

) + ‖
[
Cp Dp

][X̂(k+1|k)
Û(k+1|k)

]
‖2

Qp
+

‖KX̂(k+1+ p|k)‖2
Rp
−‖X̂(k+1+ p|k)‖2

P +‖(A+B1KX̂(k+
1+ p|k)‖2

P.
Also, Û(k + 1|k) = H1Û(k|k) + H2KauxX̂(k + p + 1|k),
where X̂(k + p + 1|k) = Ap+1X̂(k|k) + ΓÛ(k|k), being
H2 =

[
01,p 1

]T , and so we can write[
X̂(k+1|k)
Û(k+1|k)

]
=

[
A B

H2KauxAp+1 H1 +H2KauxΓ

][
X̂(k|k)
Û(k|k)

]
(19)

For notational simplicity, let

ξ̂ (k|k) =
[

X̂(k|k)
Û(k|k)

]
We define for p ≥ 1, ∆Rp = Rp − Rp−1, in such a
way that it is possible to write −‖û(k|k)‖2

R0/2 +

∑
p−1
p=0

(
‖û(k+1+ p|k)‖2

−∆Rp+1

)
= −‖Û(k|k)‖2

R =

−‖
[
0 Ip+1

]
ξ̂ (k|k)‖2

R .

Recalling that DpH2 = 0, for all p= 1, . . . , p, we can even-
tually write that J(k + 1|k + 1)− J(k|k) ≤ −(‖y(k|k)‖2

Q0
+

‖û(k|k)‖2
R0/2) + ∑

p−1
p=0(‖

[
CpA CpB+DpH1

]
ξ̂ (k|k)‖2

Qp
−

‖
[
Cp+1 Dp+1

]
ξ̂ (k|k)‖2

Qp+1
)−‖

[
0 Ip+1

]
ξ̂ (k|k)‖2

R

+‖
[
CpA CpB+DpH1

]
ξ̂ (k|k)‖2

Qp
+‖KX̂(k+ p+1|k)‖2

Rp
−

‖X̂(k+ p+1|k)‖2
P +‖(A+B1K)X̂(k+ p+1|k)‖2

P.
Then, using (14a) we obtain that J(k + 1|k +

1) − J(k|k) ≤ −(‖ŷ0(k|k)‖2
Q0

+ ‖û(k|k)‖2
R0/2) +

∑
p−1
p=0(‖

[
CpA CpB+DpH1

]
ξ̂ (k|k)‖2

Qp
−

‖
[
Cp+1 Dp+1

]
ξ̂ (k|k)‖2

Qp+1
) − ‖

[
0 Ip+1

]
ξ̂ (k|k)‖2

R +

‖
[
CpA CpB+DpH1

]
ξ̂ (k|k)‖2

Qp
− ‖

[
Ap+1 Γ

]
ξ̂ (k|k)‖2

TN
and, in a more compact form,

J(k+1|k+1)− J(k|k)≤−‖ŷ0(k|k)‖2
Q0

+‖ξ̂ (k|k)‖2
Ω

(20)

where Ω = ΨT QΨ− Ψ̄T Q̄Ψ̄.
Finally, if (14b) is satisfied, then

J(k+1|k+1)− J(k|k)≤−‖ŷ(k|k)‖2
Q0

(21)

In view of (21), then ŷ0(k|k) → 0 as k → +∞. Also,
recalling (16a), C0(X(k)− X̂(k|k)) = y(k)− ŷ0(k|k) ∈ C0E,
for all k which allows to conclude the proof.
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