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Abstract

A terminal state equality constraint for Model Predictive Control (MPC) laws is investigated, where the terminal state/input
pair is not fixed a priori but it is a free variable in the optimization. The approach, named “generalized” terminal state
constraint, can be used for both tracking MPC (i.e. when the objective is to track a given steady state) and economic MPC
(i.e. when the objective is to minimize a cost function which does not necessarily attains its minimum at a steady state). It is
shown that the proposed technique provides, in general, a larger feasibility set with respect to existing approaches, given the
same prediction horizon. Moreover, a new receding horizon strategy is introduced, exploiting the generalized terminal state
constraint. Under mild assumptions, the new strategy is guaranteed to converge in finite time, with arbitrarily good accuracy,
to an MPC law with an optimally-chosen terminal state constraint, while still enjoying a larger feasibility set. The features of
the new technique are illustrated by an inverted pendulum example in both the tracking and the economic contexts.

Key words: Model predictive control, Economic model predictive control, Constrained control, Optimal control, Nonlinear
control

1 Introduction

Model Predictive Control (MPC, see e.g. [24,12]) is one
of the few existing techniques that is able to cope, in a
quite straightforward way, with the presence of multiple
inputs and outputs, of nonlinear dynamics and of hard
constraints on the system state, x, and input, u. In MPC,
at each time step t the input is computed by solving a
finite horizon optimal control problem (FHOCP). The
cost function to be minimized in the FHOCP is typically
the average, over a finite horizon of N < ∞ steps, of
the predicted values of a stage cost function, l(x, u). The
latter is chosen by the user, according to the goal to be
achieved in the control problem at hand. In particular,
there are two main classes of problems. In the first class,
typically referred to as tracking MPC, the aim is to drive
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the system state and input to reach a given set point or
reference trajectory. The stage cost l(x, u) employed in
tracking problems is therefore related to the deviation of
the predicted state and input trajectories from the ref-
erence ones. Most of the existing MPC formulations are
concerned with this first class of problems, and a quite
vast literature has been developed in the last decades
[24], addressing nominal stability and recursive feasibil-
ity as well as robustness analysis and robust design (see
e.g. [3,13,14,23]). In tracking MPC, the typical way to
guarantee recursive feasibility of the FHOCP, as well as
asymptotic stability of the target reference trajectory, is
the use of a suitable cost function, of a sufficiently long
horizon N and/or of “stabilizing constraints”, like state
contraction constraints [27,5], Lyapunov-like constraints
[28], terminal state constraints [20] and terminal set con-
straints [25].
The second class of problems is that of economic MPC,
where the stage cost is not directly related to a pre-
scribed set point or trajectory to be tracked, but it ex-
presses a performance to be optimized. Economic MPC
is an attractive approach for control problems where
the “best” performance, from the point of view of the
economic objective, is not attained at any steady state,
and/or one wants to avoid the pre-computation of a tra-
jectory to be stabilized with tracking MPC. Economic
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MPC has been applied in practice in various fields, in-
cluding process control [19,7], renewable energy and en-
ergy efficiency [18,4] and transportation [21,29], and the
literature concerned with the theoretical properties of
economic MPC schemes is all quite recent [6,15,1]. In
most of the existing studies, a fixed point (xs, us) is com-
puted that minimizes the average economic cost among
all the admissible fixed points. Then, sufficient condi-
tions on the FHOCP are derived, in order to make such
a steady state asymptotically stable for the closed-loop
system with an economic MPC law. In particular, in [6,1]
a terminal state constraint is used, to force the predicted
state at time step t + N to be equal to xs, and con-
ditions on the economic cost function are derived, un-
der which asymptotic stability of (xs, us) is guaranteed.
In [1], an asymptotic time-average economic criterion is
also introduced, in order to analyze the performance of
economic MPC schemes. In [15], the same time-average
performance as [1] is considered, but no terminal state
constraint is used, and sufficient conditions on the pre-
diction horizon and on the cost function are derived, un-
der which the asymptotic time-average closed-loop per-
formance is “approximately optimal”, i.e. it converges to
a value close to the minimal one. In [17], a two-mode ap-
proach is adopted, by which up to a given time t’ an eco-
nomic performance is optimized while keeping the state
trajectory within some level set of a suitable Lyapunov
function, then for time t > t’ the controller is switched
to a more standard tracking mode.
In the described context, we investigate here the use of
a terminal state constraint, which we call “generalized”
because it requires the state at time step t + N to be
equal not to a specific fixed point, e.g. a set point to
be tracked or a previously derived optimal fixed point,
but to any fixed point. Given the same prediction hori-
zon, the use of the generalized terminal state constraint
yields in general a larger feasibility set with respect to
a classical terminal state equality constraint. We study
the links between the use of a standard terminal state
equality and a generalized one, in both tracking and eco-
nomic MPC contexts, and we propose a novel receding
horizon algorithm that, under mild assumptions, con-
verges in finite time, with arbitrarily good accuracy, to
an MPC law with an optimally chosen terminal state
constraint, while still retaining a larger feasibility set. To
the best of our knowledge, the idea of using a generalized
terminal state constraint has been proposed for the first
time in [22,10], in the context of linear systems, and in
[9,11], for nonlinear systems, but with different assump-
tions and with an approach aimed to make the state tra-
jectory always converge to a steady state, which could
be not necessarily the best solution in economic MPC
problems. The paper is organized as follows. The prob-
lem settings are described in section 2; the generalized
terminal state constraint, the related FHOCP, its reced-
ing horizon implementation and the recursive feasibility
property are treated in section 3. Section 4 is concerned
with the guaranteed performance of the approach and
the novel receding horizon implementation. Finally, we
apply the approach to an example involving an inverted
pendulum, in both a tracking and an economic problem,
in section 5.

2 Notation and problem formulation

We consider discrete-time system models of the form:

x(t+ 1) = f(x(t), u(t)), (1)

where f : Rn × Rm → Rn, t ∈ Z is the discrete time
variable, x(t) ∈ Rn is the system state and u(t) ∈ Rm is
the input. State constraints are described by a set X ⊆
Rn, and input constraints by a compact set U ⊂ Rm.
Mixed state-input constraints can be also considered,
but they are omitted here for simplicity. The value of
the generic variable y at time t + j, predicted at time
t, is indicated as y(j|t), j ∈ N. Let l : Rn × Rm → R
be a stage cost function, let N ∈ N, 0 < N < ∞ be a
prediction horizon, finally define the cost function Js as:

Js(x(t), U)
.
=

N−1∑
j=0

l(x(j|t), u(j|t)), (2)

where U = {u(0|t), . . . , u(N − 1|t)} is a sequence of
N predicted control inputs. Then, the following Finite
Horizon Optimal Control Problem (FHOCP) Ps(x(t))
can be formulated:

Ps(x(t)) :

min
U

Js(x(t), U) (3a)

subject to

x(j|t) = f(x(j − 1|t), u(j − 1|t)), j = 1, . . . , N (3b)

u(j|t) ∈ U, ∀j = 0, . . . , N − 1 (3c)

x(j|t) ∈ X, ∀j = 1, . . . , N (3d)

x(0|t) = x(t) (3e)

x(N |t) = xs, (3f)

where xs ∈ X is fixed and chosen, together with the
associated control input us ∈ U, among the (possibly
multiple) fixed points (x, u) that minimize the stage cost
l (see e.g. [6]):

Definition 1 (Optimal fixed point)

(xs, us) ∈ arg min
x∈X,u∈U

l(x, u)

subject to

f(x, u)− x = 0.

(4)

We note that in (3) we allow values of x(0) outside of
the state constraints. If desired, state constraints can
be considered also on x(0) by changing eq. (3d) to in-
clude also the constraint x(0|t) ∈ X. All of the following
results would remain unchanged in this case.
Problem Ps is, in general, a nonlinear program
(NLP) and, under mild regularity assumptions on f
and l, a (possibly local) minimum can be computed
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by using a numerical solver, indicated as λ. At a
generic time step t, we denote such a solution with
U∗(x(t)), and the corresponding optimal value with
Js∗(x(t))

.
= Js(x(t), U∗(x(t))).

The feasibility set Fs is defined as Fs .
= {x :

Ps(x) admits a solution}.
Let B(r, x)

.
= {y : ‖y − x‖p ≤ r} for some p ∈ [1,∞).

We consider the following assumption on the set Fs:

Assumption 1 (Non-emptiness and boundedness of the
feasibility set)
I) Fs 6= ∅
II) ∃r <∞ : Fs ⊂ B(r, 0).

Assumption 1 is quite general, since I) holds true if and
only if the problem (4) is feasible, i.e. if there exists
at least one fixed point that satisfies state and input
constraints, and II) is either inherently satisfied by the
FHOCP (3), or it can be enforced in most practical
applications, where typically the state values that are
meaningful for the problem at hand are contained in a
bounded set.
In MPC, the FHOCP (3) is solved at each time step by
updating the measure of the state variable x(t) accord-
ing to a receding horizon (RH) strategy:

Algorithm 1 (RH control with terminal state con-
straint)

(1) (initialization) given x(0) ∈ Fs, let t = 0, and
solve the FHOCP Ps(x(0)); let U∗(x(0)) be a solu-
tion. Apply to the system the control input u(0) =
u∗(0|0). Set t = 1;

(2) solve the FHOCP Ps(x(t)) by initializing the solver

λ with Ũ = {u∗(1|t − 1), . . . , u∗(N − 1|t − 1), us};
let U∗(x(t)) be a solution;

(3) apply to the system the control input u(t) = u∗(0|t);
(4) set t = t+ 1 and go to (2).

We denote the state feedback control law, implicitly de-
fined by Algorithm 1, as u(t) = κs(x(t)), κs : Fs → U.
In the absence of noise and model uncertainty, for any
given initial state x(0) ∈ Fs, Algorithm 1 guarantees
recursive feasibility at all time steps t > 0, i.e. x(t) ∈
Fs, ∀t > 0.
The stage cost l(·, ·) is chosen according to the considered
control problem. In particular, in tracking MPC prob-
lems, the function l(x, u) is often chosen as a quadratic
function of the state and input tracking errors:

l(x, u) = ‖x− xs‖2Q + ‖u− us‖2R, (5)

where ‖y‖M
.
= (yTMy)1/2 and Q = Q>, R = R>,

Q, R � 0. With this choice (or, more generally, with any
function l such that l(x, u) ≥ 0, ∀(x, u) ∈ Fs × U, and
l(x, u) = 0 ⇐⇒ (x, u) = (xs, us)), Algorithm 1 guar-
antees asymptotic convergence of the state and input to
the optimal steady state.
In economic MPC problems, the stage cost l is chosen
according to some criterion that has to be minimized

(or maximized), e.g. energy loss/production, fuel sav-
ing, etc.. In these cases, Algorithm 1 still guarantees
recursive feasibility and state and input constraint sat-
isfaction, however convergence and stability properties
are not guaranteed in general, since they depend on the
properties of the stage cost l. Sufficient conditions for
asymptotic stability of the fixed point (xs, us) with an
economic stage cost have been derived in [6,1]. However,
in economic MPC the stability of (xs, us) may be not
relevant with respect to the control objective: in fact,
while in tracking MPC the cost to be minimized attains
its global minimum at the fixed point (xs, us), which can
be regarded as the “best” operating point, in economic
MPC the stage cost may not attain its minimum at any
steady state, and a steady state solution might not be the
most satisfactory operating condition for the system. In
[1], an asymptotic time-average economic performance
criterion, denoted here as J∞, has been introduced, de-
fined as:

J∞
.
= lim
T→∞

sup

T∑
t=0

l(x(t), u(t))

T + 1
. (6)

The asymptotic average J∞ appears to be more suited,
with respect to stabilization of (xs, us), to represent the
control objective in economic MPC problems. Clearly,
in closed-loop operation the value of J∞ is a function of
the employed control law. In [1], it has been proved that:

J∞(κs) ≤ l(xs, us), (7)

thus showing that the use of Algorithm 1 gives an asymp-
totic time-average economic performance that is better
than or equal to that of the stage cost associated to the
“best” steady state.
In both tracking and economic MPC, the use of the
FHOCP (3) in Algorithm 1 represents a straightforward
way to achieve recursive feasibility and constraint satis-
faction, however it is well known that the terminal state
constraint (3f) can be quite restrictive, so that typically
“long” prediction horizons N have to be employed to
achieve a satisfactorily large feasibility set Fs, with a
consequent higher computational complexity with re-
spect to other techniques, like dual-mode MPC [24]. In
this paper, we adopt a particular terminal state con-
straint, similar to the one proposed e.g. in [22], that aims
to reduce this drawback, and we analyze the properties
of the resulting closed-loop system in the case of both
tracking and economic MPC.

3 Generalized terminal state constraint

Let V = {v(0|t), . . . , v(N |t)} ∈ Rm×(N+1) be a sequence
of N + 1 predicted control inputs, up to time t + N ,
let β ∈ R+ and l(t) ≥ l(xs, us) be two scalars, whose
role will be better specified later on, and define the cost
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function J as

J(x(t), V )
.
=

N−1∑
j=0

l(x(j|t), v(j|t)) + βl(x(N |t), v(N |t)).

(8)
Then, we propose to replace the FHOCP (3) with the
following:

P(l(t), x(t)) :

min
V

J(x(t), V ) (9a)

subject to

x(j|t) = f(x(j − 1|t), v(j − 1|t)), j = 1, . . . , N (9b)

v(j|t) ∈ U, ∀j = 0, . . . , N (9c)

x(j|t) ∈ X, ∀j = 1, . . . , N (9d)

x(0|t) = x(t) (9e)

x(N |t)− f(x(N |t), v(N |t)) = 0 (9f)

l(x(N |t), v(N |t)) ≤ l(t). (9g)

We denote a (possibly local) solution of P(l(t), x(t))
as V ∗(l(t), x(t)) = {v∗(0|t), . . . , v∗(N |t)}, and the
corresponding optimal value as J∗(l(t), x(t))

.
=

J(x(t), V ∗(l(t), x(t))). Moreover, we indicate with
x∗(j|t), j ∈ [0, N ] the sequence of predicted state val-
ues, computed by using the model (1), starting from
x∗(0|t) = x(t) and applying the control sequence
V ∗(l(t), x(t)).
The generalized feasibility set F is defined as F .

=
{x : P(l, x) admits a solution for some l}. For a given
x(t) ∈ F , let us define the set X (x(t), N) as follows:

Definition 2 (Set of reachable fixed points)

X (x(t), N)
.
=

{y ∈ X : ∃V ∈ Rm×(N+1) : v(j|t) ∈ U, ∀j ∈ [0, N ];

x(N |t) = y; f(y, v(N |t)) = y;

x(j|t) = f(x(j − 1|t), v(j − 1|t)), ∀j ∈ [1, N ]

x(j|t) ∈ X, ∀j ∈ [1, N ]}.
(10)

The set X (x(t), N) contains all the possible steady state
values that can be reached in at most N steps with
an admissible control sequence V , starting from x(t).
It is straightforward to note that if N1 > N2, then
X (x(t), N1) ⊇ X (x(t), N2). The following result is con-
cerned with the relationship between the setsX (x(t), N)
and Fs.

Proposition 1 Let Assumption 1 hold. Then:

xs ∈ X (x(t), N) ⇐⇒ x(t) ∈ Fs (11)

PROOF. If xs ∈ X (x(t), N), then by how the set
X (x(t), N) is defined, there exists a sequence V of N +1

predicted control moves, such that all of the constraints
(9b)-(9f) are satisfied, with x(N |t) = xs. Therefore,
the first N elements of such a sequence satisfy also
constraints (3a)-(3f), hence x(t) ∈ Fs. Conversely,
if x(t) ∈ Fs, then there exists an optimal solution
U∗(x(t)) satisfying constraints (3a)-(3f). Thus, the se-
quence V = {U∗(x(t)), us} satisfies the constraints in
(10) with x(N |t) = xs, i.e. xs ∈ X (x(t), N). 2

We also define the quantity l(x(t)) as:

Definition 3 (Optimal achievable stage cost) For a
given x(t) ∈ F , the optimal achievable stage cost is:

l(x(t))
.
= min

x∈X (x(t),N),u∈U
l(x, u)

subject to

f(x, u) = x.

(12)

Assumption 2 (Existence of the optimal achievable
cost) For any x ∈ F , the value l(x(t)) of Definition 3
exists.

Assumption 2 holds in most practical cases, considering
that the input constraint set U is compact, the horizon
N is finite and the stage cost l can be chosen by the
designer.
We can now define the set S .

= {(l, x) : l ≥ l(x), x ∈ F},
as well as the following functions:

κ(l(t), x(t))
.
= v∗(0|t)

ζ(l(t), x(t))
.
= l(x∗(N |t), v∗(N |t))

κ : S → U
ζ : S → R+

(13)

The value κ(l(t), x(t)) corresponds to the first con-
trol input in the sequence V ∗(l(t), x(t)) and the value
ζ(l(t), x(t)) is the cost associated to the terminal state-
input pair, obtained by applying to system (1) the se-
quence V ∗(l(t), x(t)), starting from the initial condition
x(t).
The following RH strategy is obtained by recursively
solving the FHOCP (9):

Algorithm 2 (RH control with generalized terminal
state constraint)

(1) (initialization) choose a value of β > 0. Given
x(0) ∈ F , choose a value l(0) such that (l(0), x(0)) ∈
S and let t = 0. Solve the FHOCP P(l(0), x(0));
let V ∗(l(0), x(0)) be a solution. Apply to the system
the control input u(0) = κ(l(0), x(0)). Set t = 1;

(2) set l(t) = ζ(l(t − 1), x(t − 1)) and solve the
FHOCP P(l(t), x(t)) by initializing the solver λ

4



with Ṽ = {v∗(1|t−1), . . . , v∗(N |t−1), v∗(N |t−1)};
let V ∗(l(t), x(t)) be a solution;

(3) apply to the system the control input u(t) =
κ(l(t), x(t));

(4) set t = t+ 1 and go to (2).

Remark 1 From a practical point of view, we note that
the value of l(x(0)) needs not to be known explicitly in the
initialization step of Algorithm 2, when selecting l(0) ∈
S: in fact, by construction any value of l(0) such that the
problem P(l(0), x(0)) is feasible belongs to S.

The application of Algorithm 2 gives rise to the following
closed-loop system (see Fig. 1):

x(t+ 1) = f(x(t), κ(l(t), x(t))) (14a)

l(t+ 1) = ζ(l(t), x(t)) (14b)

We denote with ψ(k, l(t), x(t)) and φ(k, l(t), x(t)) the
( ) ( ) ( )( )

( ) ( ) ( )( )

1 ,

,

l t l t x t

u t l t x t

ς

κ

+ =

=

Fig. 1. Closed-loop system obtained with Algorithms 2 and
3.

values of the bound l(t + k) and of the state x(t + k),
respectively, at the generic time t + k, k ∈ N, obtained
by applying (14) starting from x(t) and l(t).
Our first result is concerned with the existence of F and
its relationship with the set Fs and with the properties
of recursive feasibility of problem P(l(t), x(t)) in Algo-
rithm 2, hence of the capability of the control law κ to
satisfy input and state constraints (see also [9] for a sim-
ilar result under different assumptions and a different
proposed approach).

Theorem 1 Let Assumption 1 hold, and consider the
closed-loop system (14), obtained by applying Algorithm
2 with any β ≥ 0 in the FHOCP P. The following prop-
erties hold:
a) (feasibility set)
F ⊇ Fs.
b) (recursive feasibility)
P(ψ(t, l(0), x(0)), φ(t, l(0), x(0))) is feasible
∀(l(0), x(0)) ∈ S, ∀t > 0
c) (state constraint satisfaction)
φ(t, l(0), x(0)) ∈ X, ∀(l(0), x(0)) ∈ S, ∀t > 0
d) (input constraint satisfaction)
κ(ψ(t, l(0), x(0)), φ(t, l(0), x(0))) ∈ U, ∀(l(0), x(0)) ∈
S, ∀t ≥ 0.

PROOF. a) By Assumption 1, there exists a set
Fs of state values such that problem Ps is feasible.
Then, it is straightforward to note that also problem
P(l(xs, us), x(t)) is feasible for all x(t) ∈ Fs.
Points b)-d) can be proven with the usual argument of
constructing a feasible solution at time t with the tail
of the solution computed at time t − 1, padded with
v∗(N |t− 1) as the last control input, see e.g. [24]. 2

According to Theorem 1, the generalized feasibility set
is no smaller than the feasibility set obtained with a
fixed terminal state constraint; however nothing can
be said, with the assumptions considered so far, about
the performance of the closed-loop system obtained by
applying Algorithm 2. In fact, the performance and sta-
bility guarantees achieved by Algorithm 1, with a fixed
terminal state constraint, are a direct consequence of
the fact that the employed value of (xs, us) has been op-
timally chosen off-line, according to the control problem
at hand. On the contrary, in Algorithm 2, the termi-
nal state and input (x∗(N |t), v∗(N |t)) are different, in
general, from the values (xs, us), and they are allowed
to change at each time step t. Basically, the values of
(x∗(N |t), v∗(N |t)) are implicitly “selected”, among all
the possible steady states that can be reached in at
most N steps from the actual state x(t), by the nu-
merical solver λ, in order to minimize the cost J(x, V )
(8). Therefore, for given control horizon N and con-
straints X, U, the values (x∗(N |t), v∗(N |t)) depend on
the chosen stage cost l(·, ·) and on the scalar weight β.
Moreover, it can be noted that the use of Algorithm 2
gives rise to a sequence of pairs {(x∗(N |t), v∗(N |t))}∞t=0,
and consequently a sequence of terminal cost values
{l(x∗(N |t), v∗(N |t))}∞t=0. The performance achieved by
the system (14) clearly depends on the behavior of such
a sequence. In this regard, we note that the control in-
put u(t) = κ(l(t), x(t)), obtained by using Algorithm 2,
is the output of a dynamical system, with internal state
l(t) and input x(t) (this is in contrast with the typical
MPC control laws, like κs, that are static feedback con-
trollers). The controller’s state l(t) traces the value of
the stage cost associated with the terminal state-input
pair l(x∗(N |t), v∗(N |t)), hence it carries the informa-
tion about how suboptimal is such a terminal cost with
respect to the optimal one, l(xs, us). The inequality
l(x∗(N |t), v∗(N |t)) ≤ l(x∗(N |t− 1), v∗(N |t− 1)) = l(t),
enforced by means of constraint (9g), ensures that the
sequence {l(x∗(N |t), v∗(N |t))}∞t=0 is not increasing,
however, in the general settings considered so far, there
is no guarantee of convergence to the optimal value
l(xs, us), or to a value close to the optimal. One option
to deal with this issue is to use Algorithm 2 as it is, to
set some initial choices of N , l and β and to tune these
parameters following a trial-and-error procedure, in or-
der to obtain a satisfactory closed-loop performance.
Indeed, quite good results can be typically obtained
in this way. Another option is to consider additional
assumptions on the problem, in order to derive guide-
lines on how to choose N , l and β, as well as to adopt
a more sophisticated receding horizon algorithm, in
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order to guarantee a desired behavior of the sequence
{l(x∗(N |t), v∗(N |t))}∞t=0, in terms of convergence to
a value which is arbitrarily close to the optimal one,
l(xs, us). Such a modified algorithm and its properties
are described in the next section.

4 Guaranteed properties of MPC with general-
ized terminal state constraint

We first establish sufficient conditions on β under which
the terminal state and input pair (x∗(N |t), v∗(N |t)),
computed by solving problem P(l(t), x(t)), has an asso-
ciated cost l(x∗(N |t), v∗(N |t)) which is arbitrarily close
to the minimal one, among all the possible steady states
that can be reached from x(t). In order to do so, we con-
sider the next three assumptions. We recall that a contin-
uous, monotonically increasing function α : [0,+∞) →
[0,+∞) is a K∞ function if α(0) = 0 and lim

a→+∞
α(a) =

+∞, and denote such functions as α ∈ K∞.

Assumption 3 (Boundedness of the generalized feasi-
bility set and continuity of f and l)
I) ∃r <∞ : F ⊂ B(r, 0);
II) f and l are continuous on F ×U, where F is the clo-
sure of F , hence ∃αf , αl ∈ K∞ :‖f(x̄, ū) − f(x̂, û)‖ ≤
αf (‖(x̄, ū) − (x̂, û)‖), |l(x̄, ū) − l(x̂, û)| ≤ αl(‖(x̄, ū) −
(x̂, û)‖), ∀(x̄, ū), (x̂, û) ∈ F × U, for some vector norm
‖ · ‖.

Assumption 4 (Solution of the FHOCP P)
For any (l, x) ∈ S, the FHOCP P(l, x) has at least one
global minimum, which is computed by the solver λ inde-
pendently on how it is initialized.

Assumption 4 is quite usual and implicitly considered
in the context of economic MPC and nonlinear MPC.
Moreover, it is satisfied if problem P(l, x) is convex,
which is the important case of MPC for linear systems
with convex constraints X, U and convex stage cost l.

Assumption 5 (Stage cost)
There exists a set M ⊂ F × U where the function l
attains its minimum. Without loss of generality, l(x, u) ≥
0, ∀(x, u) ∈ F × U, and l(x, u) = 0 ⇐⇒ (x, u) ∈M.

Assumption 5 essentially states that the stage cost func-
tion l (which is continuous in virtue of Assumption 3)
must have a global minimum inside the cartesian prod-
uct of the feasibility set (which is bounded) with the in-
put constraints set (which is compact). Such a minimum
can be attained at some point or set of points. This As-
sumption is obviously satisfied for tracking MPC with
stage costs like (5), withM = {(xs, us)}. In the case of
economic MPC, satisfaction of Assumption 5 depends
on the stage cost chosen by the control designer, and the
setM often does not contain any steady state and might
also be not connected. We show an example of the latter
case in section 5.
We can now derive a result related to the optimality of

the pair (x∗(N |t), v∗(N |t)) with respect to the stage cost
function l.

Proposition 2 Let Assumptions 1-4 hold. Then, for
any ε > 0, there exists a finite value β(ε) such that, for

any given x(t) ∈ F and any l(t) ≥ l(x(t))+ε, if β ≥ β(ε)
then

l(x∗(N |t), v∗(N |t)) ≤ l(x(t)) + ε (15)

where (x∗(N |t), v∗(N |t)) are the optimal terminal state
and input computed by solving problem P(l(t), x(t)).

PROOF. Let (x, u) be a state-input pair such that:

(x, u) = arg min
x∈X (x(t),N),u∈U

l(x, u)

subject to

f(x, u) = x,

and let V be a sequence of N + 1 control inputs which
satisfies constraints (9b)-(9f) and such that x(N |t) =
x, v(N |t) = u. This sequence is guaranteed to exist by
Definition 2. Moreover, we have l(x, u) = l(x(t)) < l(t),
hence also constraint (9g) is satisfied and the sequence
V is admissible for problem P(l(t), x(t)). The cost asso-
ciated with V is equal to:

J(x(t), V ) =

N−1∑
j=0

l(x(j|t), v(j|t)) + βl(x(t)),

where x(j|t), j ∈ [0, N ] is the state trajectory obtained
by applying the sequence V . Consider now any other
possible state x̂ ∈ X (x(t), N) and input û ∈ U such
that f(x̂, û) = x̂, l(x̂, û) > l(x(t)) + ε and l(x̂, û) ≤ l(t).
Denote with V̂ a sequence of control inputs which is
feasible for problem P(l(t), x(t)) and such that x(N |t) =

x̂. Then, the cost associated with V̂ is:

J(x(t), V̂ ) =

N−1∑
j=0

l(x̂(j|t), v̂(j|t)) + βl(x̂, û),

where x̂(j|t), j ∈ [0, N ] is the state trajectory ob-

tained by applying the sequence V̂ . Thus, the difference
J(x(t), V )− J(x(t), V̂ ) is given by:

J(x(t), V )− J(x(t), V̂ ) = β[l(x(t))− l(x̂, û)]+
N−1∑
j=0

[l(x(j|t), v(j|t))− l(x̂(j|t), v̂(j|t))],
(16)

and, by exploiting Assumption 3, it holds:

J(x(t), V )− J(x(t), V̂ ) < −βε+ η, (17)
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with (see the Appendix for a complete proof)

η =

N−1∑
i=0

i∑
j=0

αl

(
α
(i−j)
f

(
max
v,v̂∈U

‖v − v̂‖
))

> 0, (18)

where α
(i)
f (a)

.
= αf (αf (. . . αf (a) . . .))︸ ︷︷ ︸

i times

and α(0)(a)
.
= a.

Thus, by setting β(ε) = η/ε and β ≥ β(ε), the inequality

J(x(t), V̂ ) > J(x(t), V ) (19)

is obtained. Note that, due to the compactness of U,
the value of η is finite, hence also β(ε) is finite. Now as-
sume, with the purpose of contradiction, that the solu-
tion V ∗ to the FHOCP is such that l(x∗(N |t), v∗(N |t)) >
l(x(t)) + ε. Then, inequality (19) would hold true with

V̂ = V ∗(l(t), x(t)), meaning that the cost associated to
V ∗(l(t), x(t)) would be higher than the one associated
to V . However, this cannot happen, since, by Assump-
tion 4, V ∗(l(t), x(t)) is such that J(x(t), V ∗(l(t), x(t))) =
J∗(l(t), x(t)) ≤ J(x(t), V ) for any V which is feasible for
problem P(l(t), x(t)). Hence, the inequality (15) must
hold. 2

Proposition 2 induces a result pertaining to the perfor-
mance achieved by using Algorithm 2 when the initial
state x(0) belongs to the feasibility set Fs. Before stat-
ing such a result, we consider the following assumption
for tracking MPC schemes.

Assumption 6 (Stage cost in tracking MPC)
In tracking MPC, the stage cost l enjoys the following
properties:
I) (global minimum)

l(x, u) > 0, ∀(x, u) ∈ Fs × U \ {(xs, us)}
l(xs, us) = 0

(20)

II) (lower bound)

∃αl ∈ K∞ :

αl(‖(x, u)− (xs, us)‖) ≤ l(x, u), ∀(x, u) ∈ Fs × U.
(21)

Note that Assumption 6 is typically satisfied by the stage
cost functions used in tracking MPC, like (5).

Theorem 2 Let Assumptions 1-5 hold, let a value of
ε > 0 be chosen, and let β ≥ β(ε). For any x(0) ∈ Fs,
apply Algorithm 2. Then, the following properties hold:
a) (sub-optimality of the terminal stage cost)

l(x∗(N |t), v∗(N |t))− l(xs, us) ≤ ε, ∀t ≥ 0, (22)

b) (tracking MPC) if Assumption 6 also holds, then:

‖(x∗(N |t), v∗(N |t))− (xs, us)‖ ≤ α−1l (ε), ∀t ≥ 0, (23)

c) (economic MPC) the asymptotic average performance
obtained by control law κ is bounded as:

J∞(κ) ≤ l(xs, us) + ε. (24)

PROOF. a) According to Proposition 1, if x(0) ∈ Fs
then xs ∈ X (x(0), N). Moreover, by Definitions 1 and
3, if xs ∈ X (x(0), N) then l(x(0)) = l(xs, us). There-
fore, by Proposition 2 we have l(x∗(N |0), v∗(N |0)) −
l(xs, us) ≤ ε. The use of Algorithm 2 and constraint
(9g) force the values l(x∗(N |t), v∗(N |t)) to be not in-
creasing with t, thus the inequality l(x∗(N |t), v∗(N |t))−
l(xs, us) ≤ ε holds true for all t ≥ 0.
b) From (22), under Assumption 6-I) we have

l(x∗(N |t), v∗(N |t))− l(xs, us)

= l(x∗(N |t), v∗(N |t)) ≤ ε, ∀t ≥ 0.

Then, by Assumption 6-II) it holds ‖(x∗(N |t), v∗(N |t))−
(xs, us)‖ ≤ α−1l (ε), ∀t ≥ 0.
c) The proof of this claim follows that of Theorem 1 in
[1], with little modifications, and it is reported here for
the sake of completeness. First of all, note that, for any
t ≥ 0, it holds:

J∗(l(t), x(t)) = l(x(t), u(t)) +
N−1∑
j=1

l(x∗(j|t), v∗(j|t))+

βl(x∗(N |t), v∗(N |t));

J∗(l(t+ 1), x(t+ 1)) ≤
N−1∑
j=1

l(x∗(j|t), v∗(j|t))

+l(x∗(N |t), v∗(N |t)) + βl(x∗(N |t), v∗(N |t)),
thus, under Assumptions 1-5, by using (22), for any
x(0) ∈ Fs it holds:

J∗(l(t+ 1), x(t+ 1))− J∗(l(t), x(t))

≤ l(xs, us) + ε− l(x(t), u(t))

⇒ lim
T→∞

inf

T∑
t=0

J∗(l(t+1),x(t+1))−J∗(l(t),x(t))

T+1

≤ lim
T→∞

inf

T∑
t=0

l(xs,us)+ε−l(x(t),u(t))

T+1

= l(xs, us) + ε− lim
T→∞

sup

T∑
t=0

l(x(t),u(t))

T+1 .

At the same time, due to Assumption 5,

lim
T→∞

inf

T∑
t=0

J∗(l(t+1),x(t+1))−J∗(l(t),x(t))

T+1

= lim
T→∞

inf J
∗(l(T+1),x(T+1))−J∗(l(0),x(0))

T+1

≥ lim
T→∞

inf −J
∗(l(0),x(0))
T+1 = 0
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hence lim
T→∞

sup

T∑
t=0

l(x(t),u(t))

T+1 = J∞(κ) ≤ l(xs, us) + ε.

This bound establishes the result. 2

According to Theorem 2-a), with a sufficiently large
value of β, for any x(0) ∈ Fs, the generalized terminal
stage cost is always at most ε-suboptimal with respect to
the one related to the optimal pair (xs, us) (4). This re-
sult provides a clear indication on how to tune the scalar
β, which is the only additional design parameter with
respect to a standard approach with fixed terminal state
constraint: as β is increased, the cost associated with the
terminal state/input pair gets closer to the best one. On
the other hand, an overly large value of β might give rise
to numerical problems in the solution of the FHOCP and
cause poor performance during transients, since the cost
function tends to be dominated by the terminal stage
cost. Hence, a possible tuning guideline could be to start
with some value of β, e.g. equal to 1 (i.e. giving to the
terminal stage the same weight as the other predicted
stages), and then to gradually increase it, until a satis-
factory closed-loop behavior is obtained. Note that the
approach will guarantee constraint satisfaction and re-
cursive feasibility with any value of β. More insights on
the role of β, as well as a strategy for self-tuning this
parameter, have been recently proposed in [26].
Theorem 2-b) implies that it is possible to force the gen-
eralized terminal state-input pair to be arbitrarily close,
as ε → 0, to the desired one, for any x(0) ∈ Fs. As a
consequence, the convergence and stability properties of
tracking MPC schemes, with a fixed terminal state con-
straint, can be extended to the case of generalized termi-
nal state constraint, by considering an arbitrarily small
neighborhood of the desired set point (xs, us).
Finally, Theorem 2-c) states that the MPC scheme with
generalized terminal state constraint achieves an asymp-
totic average performance which is better than that of
the optimal fixed point (xs, us), plus an arbitrarily small
tolerance ε.
Practically speaking, Theorem 2 states that the control
law κ(x) can achieve closed-loop properties that are ar-
bitrarily close to those of κs(x), for any x(0) ∈ Fs. For
state values x(0) ∈ F \ Fs, such a comparison can not
be made, since the control law κs is not defined outside
the set Fs, and the optimal fixed point xs is not reach-
able (see Proposition 1). We now focus our attention on
initial state values x(0) ∈ F \Fs, and we present a mod-
ified algorithm that guarantees that the resulting MPC
law enjoys the properties of Theorem 2, under the fol-
lowing additional assumption.

Assumption 7 (Sequences of steady states with de-
creasing stage cost)
For some (eventually very small) ε > 0 there exists a
minimal prediction horizon N ∈ N such that, for any
fixed point (x, u) ∈ F × U : f(x, u) = x, there exists at
least one state-input pair (x̃, ũ) with the following prop-
erties:
I) f(x̃, ũ) = x̃;

II) x̃ ∈ X (x,N);
III) l(x̃, ũ) ≤ max (l(xs, us), l(x, u)− ε).

The practical meaning of Assumption 7 is the follow-
ing: for any fixed point (x, u) in the set F × U, there
exists another fixed point (x̃, ũ) for the dynamics (1)
(property I)), belonging to the set of reachable fixed
points X (x,N) (property II)). The value of the stage
cost l(x̃, ũ) is either equal to the minimal one among all
fixed points, l(xs, us), or it is strictly lower, at least by
ε, than l(x, u) (property III)). We note that, if Assump-
tion 1 holds, Assumption 7 is clearly satisfied at least
for any fixed point (x, u) ∈ Fs × U, with N = N and
(x̃, ũ) = (xs, us).
The modified MPC algorithm with generalized terminal
state constraint is given below.

Algorithm 3 (Modified RH control with generalized
terminal state constraint)

(1) (initialization) Select an arbitrarily small value of
ε > 0 such that 2ε ≤ ε, and select β ≥ β(ε). Given

x(0) ∈ F , choose a value l(0) such that (l(0), x(0)) ∈
S and let t = 0. Solve the FHOCP P(l(0), x(0)); let
V ∗(l(0), x(0)) be a solution. Apply to the system the
control input u(0) = v∗(0|0). Set t = 1;

(2) set l(t) = ζ(l(t − 1), x(t − 1)), solve the FHOCP
P(l(t), x(t)) by initializing the solver λ with

Ṽ = {v∗(1|t− 1), . . . , v∗(N |t− 1), v∗(N |t− 1)}; let
V ∗(l(t), x(t)) be a solution;

(3) if l(x∗(N |t), v∗(N |t)) > l(t)− ε and
l(x∗(N |t), v∗(N |t)) > l(xs, us) + ε, then set

V ∗(l(t), x(t)) = Ṽ and, consequently,
(x∗(N |t), v∗(N |t)) = (x∗(N |t− 1), v∗(N |t− 1));

(4) apply the control input u(t) = κ(l(t), x(t));
(5) set t = t+ 1 and go to (2).

The next Theorem shows that the use of Algo-
rithm 3 produces a sequence of terminal stage costs
{l(x∗(N |t), v∗(N |t))}∞t=0 that converges in finite time,
within the arbitrarily small tolerance ε, to the optimal
value l(xs, us).

Theorem 3 Let Assumptions 1-5 and 7 hold, and con-
sider the closed-loop system obtained by applying Algo-
rithm 3 with N ≥ N . Then, for any value of x(0) ∈ F
there exists a finite number of time steps T (x(0)) such
that:

l(x∗(N |T (x(0))), v∗(N |T (x(0)))) ≤ l(xs, us) + ε (25)

PROOF. Consider any x(0) ∈ F . If x(0) ∈ Fs,
then by Theorem 2-a) we have l(x∗(N |0), v∗(N |0)) ≤
l(xs, us) + ε, ∀t ≥ 0, hence (25) also holds with
T (x(0)) = 0. If x(0) ∈ F \Fs, then an optimal terminal
state-input pair, (x∗(N |0), v∗(N |0)), is computed, and
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the control input u(0) = κ(l(0), x(0)) = v∗(0|0) is ap-
plied to the system. Consider now a generic time step
t > 0: assuming that l(x∗(N |t), v∗(N |t)) > l(xs, us) + ε,
the following two cases may occur.
(a) if l(x∗(N |t), v∗(N |t)) ≤ l(x(t)) − ε, then, consid-
ering that l(x(t)) = ζ(l(t − 1), x(t − 1)) = l(x∗(N |t −
1), v∗(N |t − 1)), the optimal terminal stage cost de-
creases at least by the quantity ε:
l(x∗(N |t), v∗(N |t))− l(x∗(N |t− 1), v∗(N |t− 1)) ≤ −ε.
(b) if l(x∗(N |t), v∗(N |t)) > l(x(t))− ε, then at step (3)
of Algorithm 3 the solution V ∗(l(t), x(t)) of P(l(t), x(t))
is replaced by the tail of the previously computed op-
timal solution. Let us denote with τ the last time step
at which the solution V ∗(l(τ), x(τ)) of P(l(τ), x(τ))
was retained. Therefore, the control input at time t is
u(t) = v∗(t − τ |τ), and the trajectory of the system
evolves according to the optimal one predicted at time
step τ . The same procedure is carried out as long as
case (b) holds true, until the state x(τ +N) = x∗(N |τ)
is eventually reached, which happens at most in N time
steps. In virtue of Assumption 7, since N ≥ N , once the
fixed point (x(τ + N), u(τ + N)) = (x∗(N |τ), v∗(N |τ))
has been reached, there exists at least one fixed
point (x̃, ũ), such that x̃ ∈ X (x(τ + N), N) and
l(x̃, ũ) ≤ max (l(xs, us), l(x∗(N |τ), v∗(N |τ))− ε).
Hence, by Definition 3 we have l(x(τ + N)) ≤
l(x̃, ũ) ≤ max (l(xs, us), l(x∗(N |τ), v∗(N |τ))− ε). Now,
if max (l(xs, us), l(x∗(N |τ), v∗(N |τ))− ε) = l(xs, us),
then l(x(τ + N)) = l(xs, us) and, by Proposi-
tion 2, we have l(x∗(N |τ + N), v∗(N |τ + N)) ≤
l(xs, us) + ε, thus the result (25) holds true. If, on
the contrary, max (l(xs, us), l(x∗(N |τ), v∗(N |τ))− ε) =
l(x∗(N |τ), v∗(N |τ))− ε, then
l(x(τ + N)) ≤ l(x∗(N |τ), v∗(N |τ)) − ε and, again by
Proposition 2, we have
l(x∗(N |τ + N), v∗(N |τ + N)) ≤ l(x(τ + N)) + ε ≤
l(x∗(N |τ), v∗(N |τ))− ε+ ε. Since 2ε ≤ ε, the inequality
l(x∗(N |τ +N), v∗(N |τ +N)) ≤ l(x∗(N |τ), v∗(N |τ))− ε
holds true, i.e. after at most N time steps, the terminal
stage cost decreases:
l(x∗(N |τ + N), v∗(N |τ + N)) − l(x∗(N |τ), v∗(N |τ)) ≤
−ε.
Summing up, while either cases (a) or (b) occur, i.e.
as long as condition l(x∗(N |t), v∗(N |t)) > l(xs, us) + ε
holds true, the quantity l(x∗(N |t + N), v∗(N |t + N))
generally decreases (not strictly) with t. In particular,
the decrease is guaranteed to be always at least equal
to −ε, and to take place at most every N time steps:

∀j ≥ 1,

l(x∗(N |jN), v∗(N |jN))

− l(x∗(N |(j − 1)N), v∗(N |(j − 1)N)) ≤ −ε.
(26)

Moreover, due to Assumption 3 we have:

l(x∗(N |0), v∗(N |0))− l(xs, us)
≤ αl(‖(x∗(N |0), v∗(N |0))− (xs, us)‖).

(27)

Equations (26)-(27) lead to the following result:

l(x∗(N |jN), v∗(N |jN))− l(xs, us)
≤ αl(‖(x∗(N |0), v∗(N |0))− (xs, us)‖)− jε,

hence when j > αl(‖(x∗(N |0),v∗(N |0))−(xs,us)‖)
ε the condi-

tion l(x∗(N |jN), v∗(N |jN)) ≤ l(xs, us) + ε is guaran-
teed to be satisfied. Therefore, we have

l(x∗(N |T (x(0))), v∗(N |T (x(0)))) ≤ l(xs, us) + ε,

where

T (x(0)) = N

⌈
αl(‖(x∗(N |0), v∗(N |0))− (xs, us)‖)

ε

⌉
,

and d·e denotes the ceiling operation to the closest inte-
ger. Note that the pair (x∗(N |0), v∗(N |0)) is a function
of the initial state x(0) only, and thus also the quantity
T (x(0)) is. 2

Remark 2 According to Theorem 3, under the consid-
ered Assumptions, for any initial state x(0) inside the
feasibility set F , by using Algorithm 3 the stage cost of
the terminal state-input pair converges to a value that
is arbitrarily close to the optimal one, l(xs, us), after at
most a finite number T (x(0)) of time steps. Then, it can
be noted that all the properties of Theorem 2 hold true
also if Algorithm 3 is used, for all time steps t ≥ T (x(0)).

Remark 3 At step (3) of Algorithm 3, we use the tail of
the previously computed optimal control sequence just for
the sake of simplicity. One other option could be, at any
time step t such that the condition l(x∗(N |t), v∗(N |t)) >
l(t)−ε and l(x∗(N |t), v∗(N |t)) > l(xs, us)+ε is detected,
to use an auxiliary MPC scheme, designed to reach the
terminal state (x∗(N |t − 1), v∗(N |t − 1)) in finite time.
In this case, Theorem 3 would still hold with minor mod-
ifications.

Theorem 3 provides a guideline similar to the one ob-
tained by Proposition 2 for tuning β: with a sufficiently
large value (and with a long enough prediction horizon
as required by Assumption 7) convergence of the cost
associated with the terminal state/iput pair to a value
close to optimal is achieved. This finding is consistent
with the results of related work concerned with MPC
without terminal state constraints and with a weighting
factor on the terminal stage cost, see e.g. [16]. As we an-
ticipated in the introduction, the idea of letting the ter-
minal steady state be a decision variable has been pro-
posed already in [22,10] for linear systems and in [9,11]
for nonlinear ones. However, the results of [9,11] require
more restrictive assumptions on f and l, namely Lips-
chitz continuity, and do not account for cases in which
a large enough value of N has to be used to guarantee
global results, as we consider with our Assumption 7.
This is important e.g. if the set containing the steady-
states is not connected (see section 5.1 for an example).
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Finally, the approach proposed in [11] for economic MPC
renders the best steady state xs asymptotically stable,
hence the resulting asymptotic average economic perfor-
mance is generally worse than the one obtained with the
technique proposed here, which is able to obtain non-
steady-state trajectories in favor of better economic per-
formance (we provide an example of this aspect in sec-
tion 5.2).

5 Numerical examples

We consider an inverted pendulum whose equations of
motion written in normalized variables are (see [2]):

ẋ1(t) = x2(t)

ẋ2(t) = sin (x1(t))− u(t) cos (x1(t)).
(28)

The input constraint set U is U = {u ∈ R : |u| < 0.5}.
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Fig. 2. Inverted pendulum example with tracking MPC: set
of admissible steady states (solid lines) and state trajectory
achievable in N = 141 steps from the initial steady state
x = [π − arctan (.5), 0]T .

The state variables are the pendulum angular position
x1 (modulo 2π) and angular speed x2. The following
discrete time model to be used in the MPC design is
obtained by forward difference approximation of (28):

x1,t+1 = x1,t + Tsx2,t

x2,t+1 = x2,t + Ts (sin (x1,t)− ut cos (x1,t))
(29)

with sampling time Ts = 0.05 s. We choose the following
stage cost:

l(x, u) = [sin (x1/2) , x2]Q

[
sin (x1/2)

x2

]
+ u2R, (30)

with Q =

[
225 0

0 1

]
and R = 1. We present here two ex-

amples that share the same model (29), input constraints
and cost function: the first one pertains to a tracking
problem, the second to an economic one. More examples
are given in [8].

5.1 Tracking MPC

In this first example, we want to track the open-loop un-
stable fixed point [x1, x2, u]T = [0, 0, 0]T , starting from
the downright position [x1, x2, u]T = [π, 0, 0]T . The set
of all admissible fixed points for the system is given by:

{(x, u) : sin (x1)− u cos (x1) = 0, x2 = 0, |u| < 0.5} .

It can be noted that such a set is not connected, in par-
ticular its projection on the state space (depicted in Fig.
2, solid lines) is given by:

{x : x1 ∈ [− arctan(0.5), arctan(0.5)]∪
[π − arctan(0.5), π + arctan(0.5)]; x2 = 0} .

In this situation, the use of a generalized terminal state
constraint might not be able to drive the system state
to the target xs = 0, starting from a steady state x
such that x1 ∈ [π − arctan(0.5), π + arctan(0.5)], un-
less a sufficiently large horizon N is chosen, as stated
in our Assumption 7. A value of N that satisfies this
Assumption is N = 141, as shown in Fig. 2 (dash-dot
line) by the related predicted trajectory starting from
the initial steady state x = [π − arctan (.5), 0]T and in-
put u = −0.5. However, note that since Assumption 7 is
only sufficient for Theorem 3 to hold, also lower values of
N might give the desired results. In particular, we show
here the results with N = 100 and β = 100. The con-
troller is able to swing up the pendulum in about 12.5 s.
The state trajectory in the phase plane is depicted in Fig.
3 (solid black line), together with the trajectories pre-
dicted at each time step and the corresponding terminal
steady states. In particular, it can be noted how the se-
quence of terminal state-input pairs, (x∗(N |t), u∗(N |t)),
is equal to (π + arctan (.5), 0) for t < 3 s, then it jumps
to (π − arctan (.5), 0) for t ∈ [3 s, 6.6 s] and finally con-
verges to the target steady state, after about 132 time
steps (i.e. 6.6 s). These numerical values depend on the
initial state, on the input constraints and on the chosen
stage cost function and prediction horizon.
We also applied a tracking MPC law with a fixed ter-
minal state constraint, i.e. x(N |t) = 0. With the con-
sidered input constraint, the corresponding FHOCP (3)
results to be unfeasible for horizons N < 200, i.e. twice
the one used with the generalized terminal state con-
straint. The state trajectory obtained with the fixed
terminal state constraint is shown in Fig. 3 (dash-dot
black line). This controller is able to swing up the pen-
dulum in about 11 s. Therefore, this example confirms
that 1. given the same prediction horizon, the use of a
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Fig. 3. Inverted pendulum example with tracking MPC:
closed loop state trajectory obtained with the generalized
terminal state constraint (solid black line), with N = 100,
and trajectories predicted at each time step (gray dashed
lines). Predicted terminal states are marked with ‘∗’. Dash–
dot black line: closed loop state trajectory obtained with a
fixed terminal state constraint, and N = 200.

generalized terminal state constraint can give a feasibil-
ity set which is larger than that obtained with a fixed,
optimally-chosen terminal state constraint, and 2. that
the performance obtained with the generalized terminal
state constraint, in terms of swing-up time, are very close
to those achieved with a fixed terminal state constraint,
but the required prediction horizon (i.e. computational
effort) is much shorter.

5.2 Economic MPC

In this second example, we consider N = 60 and we
include the following state constraints:

X =

{
x ∈ R2 :

π
3 ≤ x1 ≤

5π
3

−2 ≤ x2 ≤ 2

}
. (31)

In this case, the steady state/input [x1, x2, u]T =
[0, 0, 0]T is outside the constraints (31). The solutions
to problem (4), i.e. the best feasible steady states,
are the values [xs1, x

s
2, u

s]T = [π + arctan (0.5), 0, 0.5]T

and [xs1, x
s
2, u

s]T = [π − arctan (0.5), 0,−0.5]T , which
have the same economic cost of 213.37. We select
xs = [π − arctan (0.5), 0]T and us = −0.5. However,
this steady-state does not minimize the stage cost for
all state/input pairs inside the feasibility set: as an
example, the point [xs1, x

s
2, u

s]T = [2.5, 0, 0]T , which is
not a steady-state but lies within the feasibility set, has
a better stage cost, equal to 202.62. This feature ren-
ders the problem an economic one, since the best stage
cost is not attained at any feasible steady state. We
apply our approach to this example, choosing β = 20.
The obtained results are reported in Figure 4: the
state trajectory of the closed loop system converges
to a periodic orbit, whose asymptotic average cost is
equal to 198.25, i.e. better than that of (xs, us). We

0 1 2 3 4 5 6
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x
1

x
2

Fig. 4. Inverted pendulum example with economic MPC.
Closed-loop state trajectories obtained with the approach
described in this paper (dashed line) and with the technique
of [11] (solid line). The steady state xs to which the system
controlled with the approach of [11] converges is indicated
by ‘∇’. Thick dashed line: periodic trajectory to which the
system controlled by the approach described in this paper
converges. Thick dash-dot line: state constraints. The initial
condition [x1, x2]T = [π, 0] is indicated by ‘∗’, while the
(unfeasible) state value where the economic cost achieves its
minimum is indicated by ‘◦’.

note that the terminal state/input pair does not reach
a fixed value in this case, rather it jumps periodically
between the two fixed points [π + arctan (0.5), 0, 0.5]T

and [π − arctan (0.5), 0,−0.5]T , which have the same
(optimal) associated stage cost. To provide a compari-
son, we apply also the approach of [11] to this example.
Since the stage cost (30) by itself does not satisfy the
strong duality property required in [11], following the
approach of [6] we add a quadratic penalty to it:

lP (x, u) = [sin (x1/2) , x2]Q

[
sin (x1/2)

x2

]
+ u2R+

P (‖x1 − xs1‖22 + |u− us|2),

(32)
with P = 55. Problem (4) with the modified stage
cost (32) enjoys strong duality; the resulting ro-
tated stage cost is obtained with the multiplier
λ = [0 − 900]T . Finally, we choose the same control
horizon N = 60 and the offset function (see [11] for
details) VO = 103‖(x(Nc), u(Nc)) − (xs, us)‖22. The ob-
tained results are shown in Figure 4: as expected, the
state converges to the best achievable steady state xs.
The related asymptotic average economic cost is the one
corresponding to such a steady state, i.e. 213.37. There-
fore, this example shows that our approach is different
from the technique proposed in [11] and that it can give
rise to solutions with better asymptotic average eco-
nomic performance with respect to the best achievable
steady state.
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6 Conclusions

We investigated a generalized terminal state constraint
for Model Predictive Control and proved that, under
reasonable assumptions, the resulting closed-loop sys-
tem has performance similar to those of MPC schemes
with a fixed, optimally chosen terminal state constraint,
while enjoying a larger feasibility set given the same
prediction horizon. The approach introduces only one
additional scalar tuning parameter with respect to a
standard MPC technique with fixed terminal state con-
straint. With respect to previous works in the literature,
which introduced the use of such a generalized terminal
state constraint, the technique proposed here requires
less demanding assumptions, it is able to deal also with
non-connected sets of steady states and it yields in gen-
eral better asymptotic average performance in economic
MPC problems. These features have been highlighted
through an inverted pendulum example.
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Appendix

Proof of equations (17)-(18). Consider equation (16).
The term β[l(x(t))−l(x̂, û)] is less than−βε because β >
0 and the pair (x̂, û) is such that l(x̂, û) > l(x(t))+ε. The
terms [l(x(i|t), v(i|t)) − l(x̂(i|t), v̂(i|t))], i ∈ [0, N − 1]
can be bounded on the basis of Assumption 3, as follows:

case: i = 0;

l(x(0|t), v(0|t))− l(x̂(0|t), v̂(0|t))
≤ |l(x(0|t), v(0|t))− l(x̂(0|t), v̂(0|t))|
≤ αl(‖v(0|t)− v̂(0|t)‖)

=
i∑

j=0

αl

(
α
(i−j)
f (‖v(j|t)− v̂(j|t)‖)

)
;

case: i = 1;

l(x(1|t), v(1|t))− l(x̂(1|t), v̂(1|t))
= l(x(1|t), v(1|t))− l(x̂(1|t), v(1|t))

+l(x̂(1|t), v(1|t))− l(x̂(1|t), v̂(1|t))
≤ |l(x(1|t), v(1|t))− l(x̂(1|t), v(1|t))|

+|l(x̂(1|t), v(1|t))− l(x̂(1|t), v̂(1|t))|
≤ αl(‖x(1|t)− x̂(1|t)‖) + αl(‖v(1|t)− v̂(1|t)‖)
≤ αl(αf (‖v(0|t)− v̂(0|t)‖)) + αl(‖v(1|t)− v̂(1|t)‖)

=
i∑

j=0

αl

(
α
(i−j)
f (‖v(j|t)− v̂(j|t)‖)

)
;

. . .

generic i

l(x(i|t), v(i|t))− l(x̂(i|t), v̂(i|t))

≤
i∑

j=0

αl

(
α
(i−j)
f (‖v(j|t)− v̂(j|t)‖)

)
.

Thus, the second term in (16) can be bounded by

η =
N−1∑
i=0

i∑
j=0

αl

(
α
(i−j)
f

(
max
v,v̂∈U

‖v − v̂‖
))

. 2
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