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Comparing Internal Model Control and Sliding
Mode Approaches for Vehicle Yaw Control
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Abstract—In this paper the problem of vehicle yaw control
using a rear active differential is investigated. The proposed
control structure employs a reference generator, designed to
improve vehicle handling, a feedforward contribution which
enhances the transient system response and a feedback controller.
Due to system uncertainties and the wide range of operating
situations, which are typical of the automotive context, a ro-
bust control technique is needed to guarantee system stability.
Two different robust feedback controllers, based on Internal
Model Control and Sliding Mode methodologies respectively, are
designed and their performances are compared by means of
extensive simulation tests, performed using a realistic 14 degrees
of freedom model of the considered vehicle. The obtained results
show the effectiveness of the proposed control structure with both
feedback controllers and highlight their respective benefits and
drawbacks. The presented comparative study is a first step to
devise a new mixed control strategy able to exploit the benefits
of both the considered techniques.

Index Terms—Vehicle yaw control, Robust control, Internal
Model Control, Sliding Mode control.

I. INTRODUCTION

Vehicle yaw dynamics may show unexpected dangerous be-
haviour in presence of unusual external conditions and during
emergency maneuvers, such as steering steps needed to avoid
obstacles. Vehicle stability systems aim to ensure stability in
such critical situations; moreover, in normal driving situations
they can be used to improve the vehicle maneuverability. Dif-
ferent approaches to active chassis control have been proposed
in the literature during recent years, see e.g. [1]-[8]. A common
point to all solutions is the fact that the input variable may
saturate due to actuator or tyre limits and this could deteriorate
the control performances or cause vehicle instability. More-
over, the active control system has to guarantee safety (i.e.
stability) performance robustly in presence of the uncertainties
arising from the wide range of speed, load, etc., under which
the vehicle operates. Robustness of active vehicle systems is
a widely studied topic and interesting results have appeared
(see e.g. [2] and [3]).
In this paper, the problem of yaw control is addressed consider-
ing a vehicle equipped with a Rear Active Differential (RAD)
device. The proposed control structure employs a reference
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generator, designed to improve vehicle handling, a feedfor-
ward contribution and a feedback controller. The feedforward
contribution is used to enhance system performances in the
transient phase, while the feedback controller is designed in
order to guarantee robust stability. In particular, the aim of this
paper is to make a comparison between the results obtained
with two different robust control techniques used to design the
feedback controller, based on Internal Model Control (IMC)
and Second Order Sliding Mode (SOSM) methodologies re-
spectively. The choice of these two control methodologies is
motivated by their robustness properties against the wide range
of uncertainties which arise during vehicle operations. Internal
Model Control techniques are well established control method-
ologies able to handle in an effective way both robustness
(see [9]) and saturation (see e.g. [10]) issues. The enhanced
Internal Model Control structure presented in [11], which
guarantees robust stability as well as improved performances
during saturation, will be employed. As for the sliding mode
technique [12], its well-known robustness properties make
this control methodology particularly suitable to deal with
uncertain nonlinear time varying systems like the considered
automotive system. Yet, conventional sliding mode control
laws produce discontinuous control inputs [13] which can
generate high frequency chattering, with the consequent exces-
sive mechanical wear and passengers’ discomfort, due to the
propagation of vibrations throughout the different subsystems
of the controlled vehicle. A possible counteraction to eliminate
or, at least, reduce the vibrations induced by the controller
consists in the approximation of the discontinuous control
signals with continuous ones. However, this kind of solution
makes the controlled system state evolve in a boundary layer
of the ideal sliding subspace and all the appreciable features,
which can induce the controller designer to rely on the sliding
mode control methodology, are lost [13].
In order to circumvent the inconvenience of the vibrations
induced by sliding mode controllers, a second order sliding
mode control scheme [14], based on the so–called sub–
optimal control algorithm [15], is designed. Second order
sliding mode controllers generate continuous control actions,
since the discontinuity is confined to the derivative of the
control signal. Nevertheless, the generated sliding modes are
ideal, in contrast to what happens for solutions which rely on
continuous approximations of the discontinuous control laws.
To compare and to show in a realistic way the effective-
ness of the proposed control approaches, simulations will be
performed using a detailed nonlinear 14 degrees of freedom
vehicle model, which proved to give a good description of the
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vehicle dynamics as compared with real data.

II. PROBLEM FORMULATION AND CONTROL
REQUIREMENTS

The main aim of vehicle yaw control is to aid the driver
to keep stability in critical maneuvers and in presence of
unusual external conditions. In such a contribution, in order
to introduce the control requirements, some basic concepts of
lateral vehicle dynamics are now recalled. Vehicle inputs are
the steering angle δ(t), commanded by the driver, and external
forces and moments applied to the vehicle centre of gravity.
The most significant variables describing the behaviour of
the vehicle are its speed v(t), lateral acceleration ay(t), yaw
rate ψ̇(t) and side slip angle β(t). As a first approximation,
considering car and suspension system as a rigid body moving
at constant speed v, the following relationship links ay(t) to
ψ̇(t) and β̇(t):

ay(t) = v(ψ̇(t) + β̇(t)) (1)

In steady state motion (i.e. β̇(t) = 0), lateral acceleration is
proportional to yaw rate through the vehicle speed. In this
situation, let us consider the uncontrolled car behaviour: for
each constant speed value, by means of standard steering pad
maneuvers it is possible to obtain the steady state lateral accel-
eration corresponding to different values of the steering angle.
These values can be graphically represented on the steering
diagram (see Fig. 1, dotted line) where the steering angle
δ(t) is reported with respect to the lateral acceleration. Such
curves are mostly influenced by road friction and depend on
the tyre lateral force-slip characteristics. At low acceleration
the shape of the steering diagram is linear and its slope is
a measure of the readiness of the car: the lower this value,
the higher the lateral acceleration reached by the vehicle with
the same steering angle, the better the maneuverability and
handling quality perceived by the driver (see e.g. [16]). At
high acceleration the behaviour becomes nonlinear showing
a saturation value, that is the highest lateral acceleration the
vehicle can reach. The intervention of an active differential
device can be considered as a yaw moment Mz(t) acting on
the car centre of gravity: such a moment is able to vary,
under the same steering conditions, the behaviour of ay ,
modifying the steering diagram according to some desired
requirements. Thus, a target steering diagram (as shown in
Fig. 1, solid line) can be introduced to take into account
the performance improvements to be obtained by the control
system. In particular, in this work such reference curves are
chosen in order to decrease the steering diagram slope in the
linear tract (which is related to the vehicle understeer gradient,
see [17]), thus improving the vehicle maneuverability, and to
increase the maximum lateral acceleration that can be reached.
More details about the generation of such target steering
diagrams are reported in Section IV-A and in amore extended
form in [8]. Then, reference yaw rate values can be derived
from the target steering diagrams, using equation (1) with
β̇ = 0.
Therefore, the choice of yaw rate as the controlled variable
is justified, also considering its reliability, since the measure
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Fig. 1. Uncontrolled vehicle (dotted), and target (solid) steering diagrams.
Vehicle speed: 100 km/h

of yaw rate is less noisy than lateral acceleration and it is
not subject to disturbances due to e.g. lateral road inclination.
A reference generator will provide the values for ψ̇ needed
to achieve the desired performances by means of a suitably
designed feedback control law.
As for the generation of the required yaw moment Mz(t), in
this paper a full Rear Active Differential (RAD) is used (see
[8], [18] and [19] for details). The main advantage of this
system is the capability of generating yaw moments of every
value within the actuation system saturation limits, regardless
of the input driving torque value and the speed values of
the rear wheels. The considered device has a yaw moment
saturation value of ±2500 Nm, due to the physical limits of
its electro-hydraulic system.
In addition to the objective of improving the steady–state
vehicle maneuverability, the dynamic vehicle behaviour needs
to satisfy good damping and readiness properties, which can
be taken into account by a proper design of the feedback
controller and the use of a feedforward action based on the
driver input (i.e. δ) to increase system readiness. Needless
to say that at least safety (i.e. stability) requirements have
to be guaranteed in presence of the uncertainty arising from
the wide range of the vehicle operating conditions of speed,
load, tyre, friction, etc. This can be achieved using a controller
whose design procedure takes into account the effects of model
uncertainty. In particular, in this paper a SOSM controller and
the enhanced IMC scheme introduced in [11] and proposed
in [8] for vehicle stability control will be employed and their
performances will be compared. Both these controllers are able
to handle robust stability as well as saturation issues, as it will
be described in Sections IV-B and IV-C.

III. MODEL DESCRIPTION

In both the considered control techniques, the controller design
will be worked out on the basis of a single track vehicle model
(see Fig. 2). The model dynamic equations are the following
(see e.g. [17]):

mv(t)β̇(t) + mv(t)ψ̇(t) = Fyf,p(t) + Fyr,p(t)
Jzψ̈(t) = aFyf,p(t) − bFyr,p(t) + Mz(t)

(2)

where m is the vehicle mass, Jz is the moment of inertia
around the vertical axis, l is the wheel base, a and b are
the distances between the centre of gravity and the front and
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Fig. 2. Single track schematic.

rear axles respectively. Fyf,p and Fyr,p are the front and rear
tyre lateral forces. In order to take into account the dynamic
generation mechanism of tyre forces, the following first–order
equations are also added:

Fyf,p(t) + lf/vḞyf,p(t) = −cf (β(t) + aψ̇(t)/v(t) − δ(t))
Fyr,p(t) + lr/vḞyr,p(t) = −cr(β(t) − bψ̇(t)/v(t))

(3)
where lf and lr are the front and rear tyre relaxation lengths
and cf and cr are the front and rear tyre cornering stiffnesses.
As already pointed out, the real vehicle behaviour is influenced
by several different factors that introduce model uncertainty.
Therefore, in order to perform a robust design, uncertainty
intervals are considered for tyre parameters (0% to -20% front,
0% to +20% rear tyre cornering stiffness and ± 10% tyre
relaxation lengths variations with respect to their nominal
values), vehicle speed (± 30% of the nominal value) and
vehicle mass (0% to +25% of the nominal value with conse-
quent geometrical and inertial parameters changes). Suitable
descriptions of system dynamics and related uncertainty will
be introduced in Sections IV-B and IV-C, according to the
considered control design technique.

IV. CONTROL DESIGN

The proposed control structure is depicted in Fig. 3. In such
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Fig. 3. Considered control structure.

a structure, the desired yaw rate behaviour is imposed by
the yaw rate reference signal ψ̇ref(t) which is generated by a
static map M using the values of δ(t) and v(t). The feedback
controller C computes the yaw moment contribution needed

to follow the required yaw rate performances described by
ψ̇ref(t). The external input d(t) accounts for disturbances like
lateral wind forces, different road conditions etc.. Controller C
is designed according to either IMC or SOSM methodologies.
To compare the two approaches, the same reference map M
is employed with both controllers. Moreover, to improve the
yaw rate dynamic properties exploiting the knowledge of the
driver input, a feedforward contribution F from δ(t) has been
added too. Note that, due to the different interaction of the
feedforward controller with the considered IMC and SOSM
feedback control laws, two different filters F are designed, in
order to obtain the best performances in each case.

A. Reference generator

The reference yaw rate value is generated using a nonlinear
static map ψ̇ref = M(δ, v) which uses as inputs the steering
angle δ(t) and the vehicle speed v(t). In order to compute
the map values, a single track nonlinear steady state vehicle
model is considered (see [8]). The model equations are the
following:

may = mv ψ̇ = Fyf,p(αf ) + Fyr,p(αr)
aFyf,p(αf ) − bFyr,p(αr) + Mz = 0

(4)

where the front and rear tyre lateral forces Fyf,p and Fyr,p

are computed considering the nonlinear tyre slip-lateral force
relationship introduced in [20]:

Fyf,p(αf ) = Df (Cf arctan(Bf (αf ) − Ef (Bf (αf )
− arctan(Bf (αf )))))

Fyr,p(αr) = Dr(Cr arctan(Br(αr) − Er(Br(αr)
− arctan(Br(αr)))))

(5)

where αf , αr are the front and rear tyre sideslip angles
respectively, which can be approximated as:

αf = β + aψ̇/v − δ

αr = β − bψ̇/v

Coefficients Bf , Cf , Df , Ef , Br, Cr, Dr, Er can be identi-
fied, for a given uncontrolled vehicle, using the experimental
data collected during standard handling maneuvers: the values
employed in this work are reported in Section V. For each con-
stant speed value v, the reference map M(δ, v) is derived with
a two–step procedure. At first, equations (4) are numerically
solved to obtain the uncontrolled vehicle steering diagram, i.e.
the value of ay = ψ̇ v as function of the steering angle δ, with
Mz = 0. Note that, since the tyre equations Fyf,p(·), Fyr,p(·)
are not invertible in general (see e.g. [21]), two solutions
of equations (4) can be found, given the same value of δ.
However, only one of such solutions corresponds to a stable
equilibrium point and it is therefore selected by the numerical
procedure. In the second step, the reference steering diagram
is chosen according to some criteria, like improvement of the
maneuverability with respect to the uncontrolled vehicle, as
already pointed out in Section II (see [8] for more details).
Note that in steady state conditions equation ay = v ψ̇ holds,
thus a reference value of ay , given by the reference steering
diagram, directly corresponds to a value of ψ̇ref. Indeed,
equations (4) are also employed to verify that the chosen
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reference steering diagram corresponds to feasible vehicle
motion conditions, according to the actuator and tyre limits.
A reference steering diagram is designed for each value of v,
so a map of values of ψ̇ref is computed.

B. IMC controller design

The design of the feedback controller in the case of Internal
Model Control approach relies on H∞ methodologies, to
guarantee robust stability in presence of model uncertainty.
In order to exploit this design technique, a linear model
and an unstructured description of the related uncertainty in
the frequency domain are needed. By applying the Laplace
transform and straightforward manipulations to the vehicle
model equations (2)–(3), the following transfer functions are
obtained:

ψ̇(s) = Gδ(s)δ(s) + GM (s)Mz(s) (6)

As the control input is the yaw moment Mz and the controlled
output is the yaw rate ψ̇, transfer function GM (s) is used in
the IMC feedback controller design. In this framework, the
considered model uncertainty is described by means of an
additive linear model set of the form (see e.g. [22], [23]):

GM (GM , Γ(ω)) = {GM (s) + ∆(s) : |∆(jω)| ≤ Γ(ω)} (7)

where ∆(s) is the considered model uncertainty, whose mag-
nitude is bounded by function Γ(ω). In order to derive such
model set, simulation data have been used. Such data have
been generated using an accurate 14 degrees of freedom
nonlinear model and considering the effects of the parameter
uncertainty introduced in Section III. The model set obtained
for the considered vehicle is reported in Fig. 7 of Section V.
IMC techniques (see [9]) based on H∞ optimization are able
to satisfy robust stability requirements in presence of input
saturation (see e.g. [11]). A generic IMC structure is reported
in Fig. 4. However, as discussed in [10], IMC control may
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Fig. 4. IMC scheme with model uncertainty and saturating input.

deteriorate the system performances when saturation is active,
even in absence of model uncertainty. In order to improve
the performances under saturation, an enhanced robust IMC
structure based on the anti-windup solutions presented in [10]
has been proposed in [11]. The control scheme considered in
[11] gives rise to a nonlinear controller Q, which replaces
the linear controller Q(s) in Fig. 4, made up by the cascade
connection of a linear filter Q1(s) and a non linear loop Q2

as shown in Fig. 5. The design procedure can be summarized
in the following steps:
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1) A preliminary robust IMC controller Q(s) is computed
solving the following H∞ optimization problem:

Q (s) = arg min
∥∥W−1

S (s) (1 − GM (s) Q (s))
∥∥
∞

s.t.
∥∥Q (s) Γ̄ (s)

∥∥
∞ < 1

(8)
where Γ̄ (s) is suitable rational function with real co-
efficients, stable, whose magnitude strictly overbounds
the frequency course Γ(ω) and WS(s) is a weighting
function introduced to take into account a desired spec-
ification on the sensitivity function (1 − GM (s)Q(s))

2) Using controller Q(s) computed in the previous step, a
controller Q2(s), via the design of a preliminary filter
Q̄1(s), is obtained according to the criteria introduced
in [10]. It has to be noted that Q2(s) must ensure the
stability of the non linear loop Q2 (see Fig. 5). To this
end, an upper bound γQ2 on the H∞ norm of Q2 has
to be computed (see [11] for details). If γQ2 is finite
then the stability of Q2 is guaranteed. In case that the
stability of Q2 is not assured then a new IMC controller
design has to be performed starting from point 1).

3) Then, the linear controller Q1(s) can be designed by
means of the following H∞ optimization problem:

Q1(s) = arg min
∥∥∥W−1

S (s)
(
1 − GM (s) Q1(s)

1+Q2(s)

)∥∥∥
∞

s.t.‖Q1(s)Γ̄ (s) γQ2‖∞ < 1
(9)

As already pointed out, in order to improve the yaw rate tran-
sient response a further control input is added. Such control
action is generated by a feedforward controller driven by the
steering angle δ(t). The feedforward controller is computed by
means of a linear filter F IMC(s), designed to match the open
loop yaw rate behaviour, given by (6), with the one described
by an objective transfer function T des,IMC

δ (s):

ψ̇(s) = T des,IMC
δ (s)δ(s) (10)

In this way, considering relation (6), where Mz(s) is computed
as Mz(s) = F IMC(s)δ(s) and ψ̇(s) is given by (10), the
feedforward filter F IMC(s) is derived as:

F IMC(s) =
T des,IMC

δ (s) − Gδ(s)
GM (s)

(11)

Transfer function T des,IMC
δ (s) is chosen according to the de-

sired open loop system response. Note that T des,IMC
δ (s) must

be such that the filter F IMC(s) is a proper transfer function.
Moreover, as the feedforward controller aims to enhance the
transient response only, its contribution should be deactivated
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in steady state conditions. This is achieved when the dc-
gains of T des,IMC

δ (s) and Gδ(s) are the same. The proposed
procedure for feedforward design does not take explicitly into
account the presence of the feedback controller. Therefore,
the weighting function WS(s) in (8)–(9), employed in the
IMC design, and T des,IMC

δ (s) in (11), used for the feedforward
design, are adjusted using simulation/experiments, in order to
obtain the best overall performance.
Note that if the feedforward action had been implemented
as shown in Fig. 3, the improvements introduced during
saturation by the structure of Fig. 5 would influence only
the feedback control contribution. This may cause a slight
degradation on the control performance. In order to avoid such
a degradation, in the case of IMC controller the feedforward
contribution is injected at the reference level, obtaining the
control scheme reported in Fig. 6. In such a structure, the
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Fig. 6. The proposed control scheme for IMC control system.

feedforward action is realized by the linear filter Fr(s), whose
expression can be computed by straightforward manipulations
as:

Fr(s) =
(

1 + Q2(s)
Q1(s)

− GM (s)
)

F IMC(s) (12)

C. SOSM controller design

A Second Order Sliding Mode (SOSM) is a movement of
a dynamic system confined to a particular subspace, named
sliding manifold, which can be mathematically described in
Filippovs’ sense [24]. The SOSM is determined by

S(x) = Ṡ(x) = 0 (13)

where S(x), the so–called sliding variable, is a smooth func-
tion of the state x of the considered dynamical system, and
S(x) = 0 identifies the sliding manifold. SOSM control
generalizes the basic sliding mode control idea, acting on the
second order time derivative of the system deviation from the
sliding manifold, instead that on the first deviation derivative,
as it happens in first order sliding mode control design [13].
The main advantage of SOSM control [14], with respect to the
first order case, is that it generates a continuous control action,
while keeping the same robustness with respect to matched
uncertainties.
The chosen sliding variable is the error between the actual
yaw rate and the reference yaw rate, i.e.,

S(t) = ψ̇(t) − ψ̇ref(t) (14)

since the control objective is to make this error vanish in
finite time. The first and second time derivative of the sliding

variable are, respectively{
Ṡ(t) = (aFyf,p(t) − bFyr,p(t) + Mz(t))/Jz − ψ̈ref(t)
S̈(t) = (aḞyf,p(t) − bḞyr,p(t) + Ṁz(t))/Jz −

...
ψref(t)

(15)
Introducing the auxiliary variables y1(t) = S(t) and y2(t) =
Ṡ(t), system (15) can be rewritten as{

ẏ1(t) = y2(t)
ẏ2(t) = λ(t) + τ(t) (16)

where τ(t) = Ṁz(t)/Jz is the auxiliary control and λ(t) =
(aḞyf,p(t)− bḞyr,p(t))/Jz −

...
ψref(t). On the basis of physical

considerations, the quantity λ(t) is bounded. Moreover, to
apply the SOSM algorithm it is not necessary that a precise
evaluation of λ(t) (which can be not easy to compute) is
available. In the sequel, it will be only assumed that a suitable
bound of λ(t) is known, i.e.:

|λ(t)| ≤ Λ (17)

A conservative estimation for Λ can be determined on the
basis of (2)–(3) and of the uncertainty intervals considered for
the vehicle and tyre parameters (see Section III). According to
the SOSM sub–optimal control algorithm [15], the auxiliary
control variable τ is defined as

τ(t) = Ṁz(t)/Jz = −KSL sign(S(t) − 1
2
SM (t)) (18)

where SM (t) is a piece–wise constant function representing
the value of the last singular point of S(t) (i.e. its most recent
value S(tMi) such that Ṡ(tMi) = 0) and KSL is a design
parameter. To ensure robust stability, KSL must satisfy

KSL > 2Λ (19)

The control law (18) is a sub–optimal second order sliding
mode control law. So, by following a theoretical development
as that provided in [15] for the general case, it can be proved
that the trajectories on the y1Oy2 plane are confined within
limit parabolic arcs including the origin. The absolute values of
the coordinates of the trajectory intersections with the y1, and
y2 axis decrease in time. As shown in [15], under condition
(19) the following relationships hold

|y1(t)| ≤ |SM (t)| |y2(t)| ≤
√
|SM (t)|

and the convergence of SM (t) to zero takes place in fi-
nite time [15]. As a consequence, also y1(t) and y2(t)
tend to zero in finite time since they are both bounded by
max(|SM (t)|,

√
|SM (t)|).

As regards the feedforward contribution, such action is com-
puted as:

F SL(s) =
T des,SL

δ (s) − Gδ(s)
GM (s)

(20)

In a way similar to the case of IMC, transfer function
T des,SL

δ (s) is a design parameter describing the desired open
loop system behaviour, chosen such that transfer function
F SL(s) is proper. Moreover, the dc-gains of T des,SL

δ (s) and
Gδ(s) have to be the same, in order to deactivate the feed-
forward contribution in steady state conditions. Equation (20)
is obtained like equation (11) and it does not take explicitly
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into account the presence of the sliding mode controller: thus,
the SOSM design parameter KSL (18) and function T des,SL

δ (s)
(11) are tuned using simulation/experiments, in order to obtain
the best overall performance. Filter F SL(s) is implemented as
shown in Fig. 3.
In order to take into account the saturation of the control input,
in accordance to [25], the actual control law Mz(t) is given
by

Ṁz(t) =
{

−Mz(t) if |Mz(t)| ≥ Mz,sat
Jzτ(t) otherwise (21)

where τ(t) is given by (18) and Mz,sat is the saturation value
of the RAD, i.e., 2500 Nm.

V. SIMULATION RESULTS

The IMC control design has been performed using transfer
functions Gδ(s) and GM (s) defined in (6) computed at a
nominal speed v = 100 km/h = 27.77 m/s and with the
following values of the other involved parameters:
m = 1715 kg Jz = 2700 kgm2 a = 1.07 m b = 1.47 m
lf = 1 m lr = 1 m cf = 95117 Nm/rad cr =
97556 Nm/rad
The tyre slip–force characteristics (5) have been computed
with the following parameters:
Bf = 7.8, Cf = 1.3, Df = 8824.5, Ef = −0.29
Br = 13.0, Cr = 1.3, Dr = 6725.1, Er = −0.16
The computed model set (7) is shown in Fig. 7, where the
nominal transfer function magnitude behaviour is reported and
compared with the obtained uncertainty bounds. The following
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Fig. 7. Model set GM : Nominal transfer function GM (solid) and upper
and lower uncertainty bounds (dashed).

weighting function WS(s) has been used in the optimization
problem (8):

WS(s) =
s

s + 20
(22)

Finally, in the feedforward design, the transfer function
T des,IMC

δ (s) has been chosen as:

T des,IMC
δ (s) =

5.67

1 +
s

6
Transfer function Q2(s), employed in the anti-windup struc-
ture of the IMC controller, is the following:

Q2(s) =
72 (s + 39.13) (s + 1.126) (s2 + 21.85 s + 157)

(s + 54)(s2 + 47.16 s + 562.3)(s2 + 8.392 s + 61.89)

Note that Q2(s) has to be strictly proper due to implementation
issues.

As regards the Sliding Mode controller design, the value of
the gain KSL in (18) has been chosen as:

KSL = 5000

while the employed objective function T des,SL
δ (s) is:

T des,SL
δ (s) =

5.67

1 +
s

10

Functions WS(s), T des,IMC
δ (s), KSL and T des,SL

δ (s) have been
chosen through simulations, to obtain the best performance for
each control strategy.
In order to show in a realistic way the performance obtained by
the proposed yaw control approaches, simulations have been
performed using a detailed nonlinear 14 degrees of freedom
Simulink model. The model degrees of freedom correspond
to the standard three chassis translations and yaw, pitch and
roll angles, the four wheel angular speeds and the four wheel
vertical movements with respect to the chassis. Nonlinear
characteristics, obtained on the basis of measurements on the
real vehicle, have been employed to model the tyre, steer and
suspension behaviour. In the following tests, either the nominal
vehicle configuration or a vehicle with increased mass (up to
+300 kg, with consequent inertial and geometrical parameter
variations) have been considered.

A. Constant speed steering pad

The aim of this maneuver is to evaluate the steady–state
vehicle performance: the steering angle is slowly increased
(i.e. 1◦/s handwheel velocity), while the vehicle is moving
at constant speed, until the vehicle lateral acceleration limit
(about 8.6 m/s2) is reached and the vehicle becomes unstable
or the constant speed value cannot be kept. The results of
this test, performed at 90 km/h with an increased mass (+300
kg) vehicle, are shown in Fig. 8, in terms of relative tracking
error (ψ̇ref− ψ̇)/ψ̇ref: it can be noted that a smooth behavior is
obtained for the IMC control, while a chattering phenomenon
occurs in the case of sliding mode controller. The chattering
effect is due to the fact that the presence of the RAD actuator
increases the relative degree of the system. As a consequence,
the transient process converge to a periodic motion in a small
vicinity of the sliding surface [26]. Such a course is typical
for Sliding Mode control and it represents a drawback of this
control strategy. However, in the considered case the oscilla-
tions are too small (± 0.04 %) to be perceived by the driver.
A possible way to reduce chattering is the use of lower values
of the gain KSL in the computation of the auxiliary control
(18): however, the lower KSL the worse the performance and
robustness properties of the SOSM controller [15]. Thus, a
compromise has to be chosen in SOSM controller, between
limited chattering and good performances. The results of a
more complete analysis of the tracking performances obtained
with the considered control strategies, for the steering pad
maneuver, are reported in Tables I–II, in terms of maximum
error Emax and root mean square error Erms:

Emax = max
t∈[t0,tend]

|ψ̇ref(t) − ψ̇(t)| (23)
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Fig. 8. Steering pad test at 90 km/h. Relative tracking error behavior during
the initial part of the test for the IMC (upper) and Sliding Mode (lower)
control systems with increased mass (+300 kg) vehicle.

TABLE I
MAXIMUM REFERENCE TRACKING ERRORS: STEERING PAD MANEUVER AT

100 KM/H

Emax +300 kg +200 kg +100 kg Nominal
IMC 1.6 · 10−4 1.6 · 10−4 1.5 · 10−4 1.4 · 10−4

SOSM 6.0 · 10−4 6.6 · 10−4 6.8 · 10−4 2.3 · 10−4

Erms =

√
1

tend − t0

∫ tend

t0

(ψ̇ref(t) − ψ̇(t))2dt

where t0 and tend are the starting and final test time instants
respectively. It can be noted that both controllers are able to
achieve good tracking performance, with very low values of
Erms and Emax. The best results are obtained with the IMC
controller, which appears to be more suited for the considered
steady–state maneuver. Similar results have been obtained for
different speed values.

B. Steer reversal test

This test aims to evaluate the controlled car transient response
performances: in Fig. 9 the employed steering angle behaviour
is showed, corresponding to a maximum handwheel angle of
50◦, with a handwheel speed of 400◦/s. The maneuver has
been performed at 100 km/h. The obtained yaw rate course
shows that the controlled vehicle dynamic response in nominal
conditions is well damped with both the Sliding Mode and the
IMC controllers. The course of yaw moment Mz is reported
in Fig. 11: again it can be noted that chattering of the control
variable occurs with the Sliding Mode controller, while a
smooth behaviour is obtained with the IMC controller. On
the other hand, the control input issued by the IMC controller
saturates in all the transients during the test, while the Sliding
Mode controller is less aggressive. Both control systems are

TABLE II
RMS REFERENCE TRACKING ERRORS: STEERING PAD MANEUVER AT 100

KM/H

Erms +300 kg +200 kg +100 kg Nominal
IMC 6.0 · 10−10 6.6 · 10−10 8.6 · 10−10 1.2 · 10−9

SOSM 4.0 · 10−8 4.2 · 10−8 4.9 · 10−8 2.8 · 10−7
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Fig. 9. Steering angle reversal test input corresponding to 50◦ handwheel
angle

able to handle saturation effectively, without worsening of
the performance. Table III shows the tracking performance
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Fig. 10. 50◦ steer reversal test at 100 km/h, nominal conditions. Comparison
between the reference yaw rate course (thin solid line) and the ones obtained
with the uncontrolled (dotted) vehicle and the Sliding Mode (solid) and IMC
(dashed) controlled vehicles.

0 1 2 3 4 5 6 7 8 9
−2500

−2000

−1500

−1000

−500

0

500

1000

1500

2000

2500

  Time (s)

  Y
aw

 M
om

en
t 

M
z 

(N
m

)

Fig. 11. 50◦ steer reversal test at 100 km/h, nominal conditions. Comparison
between the yaw moment courses obtained with the Sliding Mode (solid) and
IMC (dashed) controllers.

obtained in the 50◦ steer reversal maneuver with varying mass
values, with consequent changes of the other inertial and
geometrical parameters, in terms of root mean square error
Erms (23). Both controllers achieve low values of Erms also
with increased mass, showing good robustness properties. In
this case, the difference between IMC and SOSM tracking
performance is practically negligible.
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TABLE III
RMS REFERENCE TRACKING ERRORS: STEER REVERSAL TEST AT 100

KM/H

Erms +300 kg +200 kg +100 kg Nominal
IMC 3.1 · 10−3 1.8 · 10−3 1.4 · 10−3 1.1 · 10−3

SOSM 3.5 · 10−3 2.1 · 10−3 1.8 · 10−3 1.8 · 10−3

TABLE IV
STEER WHEEL FREQUENCY SWEEP AT 100 KM/H: BANDWIDTH AND

RESONANCE PEAK VALUES

Resonance Peak (dB) Bandwidth (Hz)
Nominal uncontrolled 2.7 2.1
Nominal IMC 1.2 3
Nominal SOSM 0.9 2.3
Uncontrolled +300 kg 3.6 1.8
IMC +300 kg 2 2.5
SOSM +300 kg 2 1.9

C. Steering wheel frequency sweep

The steering wheel frequency sweep has been performed at
100 km/h in the frequency range 0-4 Hz, with a handwheel
angle amplitude of 20◦. The aim is to evaluate the bandwidth
and resonance peak obtained with the considered control sys-
tems. In Table IV the simulated behaviour of the transfer ratio
Tm(ω) = |ψ̇(ω)/| ψ̇ref(ω)| is shown, putting into evidence the
significant reduction of the resonance peak provided by the
Sliding Mode controller. A slightly higher resonance peak,
but also a higher system bandwidth, are obtained with the
IMC controller in the nominal case. With the increased mass
(+300 kg) vehicle, the same resonance peak is obtained. The
controlled vehicle performs better than the uncontrolled one
with both the considered control techniques.

D. Steering step plus lateral wind disturbance

This test aims to evaluate the system performances in presence
of external disturbances. A steering step with handwheel angle
of 40◦ at 110 km/h, with a steering wheel speed of 400◦/s is
performed. Then, at time instant t = 3 s a quite strong lateral
wind (100 km/h) acts on the vehicle. Such a disturbance is
modelled by a lateral force Fy,wind = 800 N plus an external
yaw moment Mz,wind = 500 Nm, both applied on the vehicle
centre of gravity. Fig. 12 shows the obtained results with the
vehicle with increased mass (+300 kg): both control systems
can reject the effects of the wind disturbance in an effective
way, with practically the same behaviour. The obtained rms
errors with changing vehicle mass are reported in Table V,
showing that IMC control law performs slightly better than
SOSM.

TABLE V
RMS REFERENCE TRACKING ERRORS: HANDWHEEL STEP AT 100 KM/H

WITH LATERAL WIND

Erms +300 kg +200 kg +100 kg Nominal
IMC 2.4 · 10−4 2.0 · 10−4 1.9 · 10−4 1.8 · 10−4

SOSM 4.0 · 10−4 3.7 · 10−4 4.2 · 10−4 3.2 · 10−4
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Fig. 12. 40◦ Handwheel step at 110 km/h in presence of lateral wind,
increased mass (+ 300 kg) vehicle. Reference yaw rate course (thin solid line)
and those obtained with the uncontrolled vehicle (dotted) and the controlled
vehicles with Sliding Mode (solid) and IMC (dashed).

E. High speed braking in a turn

This test is employed by Mercedes to evaluate the performance
of ESPr systems (see [27]). The maneuver starts at 200 km/h
on a curve with constant radius R=1000 m. A braking action
with constant longitudinal deceleration ax is then performed
and the maximum yaw rate deviation ∆ψ̇, with respect to
the initial steady–state value, within the first second after the
braking is evaluated. The test is performed with increasing
values of longitudinal deceleration and the resulting curves
∆ψ̇(ax) are plotted. Fig. 13 shows the results obtained with
the increased mass (+300 kg) vehicle. Similar results are
obtained with the nominal configuration. It can be noted
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Fig. 13. High speed braking in a turn, yaw rate difference ∆ψ̇(ax) for
the increased mass (+300 kg) uncontrolled vehicle (dotted) and controlled
vehicles with Sliding Mode (solid) and IMC (dashed) controllers.

that the IMC and Sliding Mode controlled vehicles show
practically the same behaviour. Note that before a certain
deceleration level (about 5.5 m/s2 for the nominal vehicle and
4 m/s2 for the increased mass one) the yaw rate deviation
of the controlled vehicles is much lower than that of the
uncontrolled one. Then, a sudden increase in ∆ψ̇ occurs for
both the controlled vehicles, followed by a similar behaviour
of the uncontrolled vehicle for even higher deceleration. This
phenomenon is due to the fact that the particular stability
system considered in this paper, i.e. a rear active differential,
is not well-suited to counterbalance the excessive oversteer
given by this maneuver and leads to worse results than the
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uncontrolled vehicle. In fact, due to the interaction between
tyre longitudinal and lateral forces, the intervention of the
RAD may lead to saturate the lateral force at the rear wheels,
thus exciting an oversteering behaviour instead of correcting
it.

F. ISO double lane change

The aim of this maneuver is to test the effectiveness of the
proposed approaches also in closed loop, i.e. in presence of
the driver’s action. The ISO double lane change maneuver
has been implemented as reported in [28], with constant test
speed vref = 100 km/h. The reference vehicle path in terms of
yaw angle ψref(t) is reported in Figure 14. The simple driver’s
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Fig. 14. Reference yaw angle ψref(t) for the ISO double lane change test
at 100 km/h

model described e.g. in [28] has been used:

δ(s) =
Kd

τd s + 1
(ψref(s) − ψ(s))

More complex driver models could be employed, however
the purpose of the considered closed loop maneuvers is to
simply make a comparison between the handling properties
of the uncontrolled vehicle and the controlled ones, given the
same driver model. The values of the driver gain Kd and of
the driver time constant τd have been chosen as Kd = 0.63
and τd = 0.16 s. Note that the values of τd range from
0.08 s (experienced driver) to 0.25 s (unexperienced driver),
while the higher is the driver gain, the more aggressive is
the driving action which could cause more likely vehicle
instability. Fig. 15 shows the obtained results, considering
the increased mass (+300 kg) vehicle, in terms of handwheel
angle δH(t) = 15.4 δ(t): it can be noted that with both IMC
and SOSM the resulting driver input is less oscillating than the
one obtained in the uncontrolled case, showing again that the
considered control strategies achieve quite good improvements
of the system damping properties. Fig. 16 shows the obtained
courses of the control variable Mz: once more it can be noted
that the SOSM controller is less aggressive than IMC but
it leads to practically the same results. On the other hand,
chattering of the Sliding Mode control input is also evident in
the final part of the maneuver.

VI. CONCLUSIONS AND FUTURE PERSPECTIVES

Control design based on Internal Model Control and Second
Order Sliding Mode techniques has been presented, for the
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Fig. 15. ISO double lane change at 100 km/h, handwheel input δH for
the increased mass (+300 kg) uncontrolled vehicle (dotted) and controlled
vehicles with Sliding Mode (solid) and IMC (dashed)
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Fig. 16. ISO double lane change at 100 km/h, control input Mz for the
increased mass (+300 kg) controlled vehicle with Sliding Mode (solid) and
IMC (dashed)

problem of vehicle yaw control. The performances obtained
by the considered controllers have been compared using a
detailed 14 d.o.f. vehicle model. Small reference tracking
errors have been obtained with both controllers during steering
pad maneuvers and good transient performances have been
achieved in steer reversal tests. A slightly higher system
bandwidth, but also a higher resonance peak, has been ob-
tained by the IMC controller in the handwheel frequency
sweep test. Quite good disturbance rejection properties and
similar behaviours in oversteer contexts and closed loop lane
change maneuvers have been shown. The robustness of the
employed controllers has been also tested, since the considered
maneuvers have been performed with varying vehicle speed
and mass.Moreover, Sliding Mode control proved to be less
aggressive with practically the same performances of the IMC
controller. On the other hand, chattering of the control input is
absent with the enhanced IMC controller, while it could be a
serious issue in SOSM control. With both control techniques,
stability in demanding oversteering conditions, like braking
in a high speed turn, may be worse than the uncontrolled
case, depending on the longitudinal deceleration level. This is
due to the properties of the RAD, which is not well suited to
stabilize the vehicle in such situations. Future works will aim
to test stability and performance with low and non–uniform
road friction coefficients and to compare the implementation
issues of SOSM and IMC control laws, regarding required
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sampling period and computational complexity. Moreover,
the possibility of combining these techniques will be also
investigated, in order to exploit their respective benefits in
vehicle stability control.
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