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Abstract

The problem of experiment design for constrained linear systems with multiple inputs is addressed. A parametric model of the
system is considered. The presented theoretical results provide a guideline on how to design experiments that minimize the
worst-case identification error, as measured by the radius of information of the set of feasible model parameters, calculated in
any norm. In addition, it is shown that an alternative, simpler approach can be employed when input constraints are symmetric
and the worst-case identification error is minimized in either 1- or∞-norm. For such cases, on the basis of the derived results,
a computationally tractable algorithm for the experiment design is proposed. The presented results are valid for a general
model representation, which admits the commonly used finite impulse response model as a special case. The features of the
presented method are illustrated in a numerical example.

Key words: Design of experiments; System identification; Worst-case identification; Set membership identification;
Parameter estimation; Reduced-complexity models; Impulse response.

1 Introduction

The goal of optimal experiment design in system iden-
tification is to choose the input sequence to be applied
to the plant, in order to maximize the information con-
tained in the collected data and thus minimize the un-
certainty on the estimated model parameters. The liter-
ature on experiment design can be divided in two cat-
egories, i.e. “probabilistic” (see e.g. [11,15,27,29]) and
“worst-case”, on the basis of the considered assumptions
on the noise signal which affects the plant output.

In the worst-case framework, the information available
on the noise is given just by its magnitude bound, thus
moving away from any stochastic characterization. Un-
der this assumption, Set Membership (SM) identifica-
tion approaches (see e.g. [23], [30]) are used to derive the
set, named the Feasible Parameter Set (FPS), contain-
ing all the parameter values such that the correspond-
ing model is able to explain the collected measurements
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within the assumed noise bound. In this framework, the
size of the FPS can be considered as an indicator of
the quality of the plant estimate, and it can be used as
a criterion for optimal experiment design. In particular,
it is of interest to design an experiment that minimizes
the worst-case (i.e. for any possible noise realization)
radius of the FPS (also called radius of information).
In [1], the design of periodic input sequences with con-
strained magnitude that minimize the radius of infor-
mation in 2−norm have been considered for single in-
put, single output (SISO) systems parameterized by a
finite impulse response (FIR) model. For the same class
of models, in [18] it was shown that the input sequence
that minimizes the worst-case radius of information in 1-
norm with input magnitude constraints corresponds to a
Galois sequence. In [2], in the same settings the shortest
input sequences that minimize the worst-case radius of
information in 1-, 2- and∞-norm were derived. In [5], a
way to design input sequences that minimize the worst-
case radius of information in∞-norm for conditional SM
identification was presented. Moreover, the time com-
plexity of the worst-case experiment design in 1-norm
has been considered in [8] and [26]. More recently, exper-
iment design aimed at minimizing the worst-case radius
of information for nonlinear systems has been investi-
gated in [17], [25] and for linear systems with quantized

Preprint submitted to Automatica 22 July 2014

This is the preprint of paper: Marko Tanaskovic, Lorenzo Fagiano, Manfred Morari, "On the optimal worst-case experiment design for 
constrained linear systems", Automatica, vol. 50, pp. 3291-3298, 2014

c 2014 Elsevier DOI: 10.1016/j.automatica.2014.10.058



measurements in [6], [7].

In summary, the existing studies on experiment design
aimed at minimizing the worst-case radius of informa-
tion address mainly the case of SISO systems parame-
terized by FIR models, and only magnitude constraints
on the input are considered. However, many real world
systems have multiple inputs subject to other types of
constraints, like input rate constraints, which often arise
due to physical limitations of the actuators, as well as
constraints that couple different plant inputs. In addi-
tion, in order to reduce the model complexity (and the
number of parameters that need to be identified), it is
often beneficial to use different parameterizations, based
on basis functions, instead of FIR models. The most com-
monly used basis functions are the Laguerre (see [31])
and Kautz (see [32]) ones as well as the generalized or-
thonormal basis functions (see [9], [24]). For the men-
tioned cases that are not covered by the literature, we
provide here new results on the optimal worst-case ex-
periment design. In particular, we consider systems with
multiple inputs subject to general convex constraints, as
well as general basis function parameterizations of the
system’s model. For these settings, our first result pro-
vides the answer to the question of how to design in-
put sequences that can minimize the worst-case radius
of information, computed in any norm. Although the
result is very general, the computational complexity of
the related input design procedure becomes quickly pro-
hibitive. Then, we demonstrate how stronger results can
be obtained when the input constraints are symmetric
and if either the 1- or ∞-norm radius of information is
considered, leading to a computationally tractable algo-
rithm to design the input sequence that actually mini-
mizes the worst-case radius of information that can be
achieved in the experiment. In the specific case of SISO,
FIR models with only input magnitude constraints, our
results correspond to the mentioned previous findings,
hence providing a generalization of the existing theory.

The paper is organized as follows. In section 2 we intro-
duce the notation and problem formulation. The main
results are derived in section 3, while section 4 presents
a numerical example. Finally, conclusions are given in
section 5.

2 Problem Statement

We consider a multiple input, single output (MISO),
strictly proper, discrete time, linear time invariant (LTI)
system, with nu inputs. At a generic time step t the
measured output of the system is given by:

y(t) = ϕ(t)T θ0 + e(t), (1)

where T stands for the standard matrix transpose oper-
ator, θ0 ∈ Rm is a vector of m model parameters that
describe the system, e(t) ∈ R is a term that accounts

for any measurement noise, process noise or plant-model
mismatch and ϕ(t) ∈ Rm is a regressor vector that de-
pends on the applied control inputs u(t) ∈ Rnu as:

ϕ(t+ 1) = Aϕ(t) +Bu(t), (2)

where A ∈ Rm×m and B ∈ Rm×nu depend on the se-
lected model parametrization.

Remark 2.1 The results that we derive for MISO sys-
tems are also relevant for the experiment design of mul-
tiple input, multiple output (MIMO) systems, since any
MIMO system can be decomposed into several MISO sys-
tems (one MISO system for each output).

Remark 2.2 Note that the system parametrization in
(1) and (2) is slightly different from the standard regres-
sion form model assumed in the system identification lit-
erature (see e.g. [11,15,27,29]). We use such a model
structure in order to state the results on the worst case
experiment design for a broad range of basis function pa-
rameterizations. In fact the chosen model structure cov-
ers as special cases several commonly used model param-
eterizations. For example, for the case when nu = 1 and
an FIR plant model is used, A and B would have the fol-
lowing structure:

A =


0 0 . . . 0 0

1 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

 , B =


1

0
...

0

 . (3)

For the case when nu > 1, A and B can be obtained by
block diagonalizing the matrices in (3). Moreover, suit-
able A and B matrices can be derived for the case when
the Laguerre (see [10]), Kautz (see [32]) or generalized
basis functions (see [24]) are used.

Remark 2.3 According to the model in (1) and (2), the
regressor vector depends on the past plant inputs only.
The extension of the presented results to a model in which
the regressor would depend on the past values of the plant
output (e.g. ARX models) would not be straightforward.
Such models are treated in the category of errors-in-
variables problems in the SM literature (see e.g [21]).

We consider the following assumption on the matrices A
and B.

Assumption 1 The pair A, B is controllable and A has
all the eigenvalues inside the unit circle.

Note that Assumption 1 holds for all standard basis func-
tion parameterizations. The only knowledge that is as-
sumed on the signal e(t) is that its magnitude is bounded
point-wise in time.
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Assumption 2

|e(t)| ≤ ε,∀t, (4)

where ε ≥ 0 is a known constant.

Note that in practice it might be easier to estimate the
bound on the magnitude of the signal e(t) than to esti-
mate its statistical properties. The magnitude bound of
the measurement noise could for example be obtained
from the sensor technical specifications.

We assume that the plant inputs are subject to con-
straints of the form:

CTu(t) ≤ g, ∀t
LT∆u(t) ≤ f, ∀t,

(5)

where ∆u(t) = u(t)−u(t−1) is the rate of change of the
input. The element-wise inequalities in (5) define convex
sets through the matrices C ∈ Rnu×ng and L ∈ Rnu×nf

and the vectors g ∈ Rng and f ∈ Rnf , where ng and
nf are the number of linear constraints on the input
magnitudes and on their rates, respectively. In addition,
we consider the following assumption on the input con-
straints.

Assumption 3 The set described by the input con-
straints (5) is compact and contains the origin.

Note that just magnitude and rate constraints have been
assumed in order to simplify the notation, however all
the results hold also for additional polytopic input con-
straints satisfying Assumption 3.

Without loss of generality, we take the time step at which
the experiment starts to be t = 1 and make the following
assumption about the control inputs applied before this
time step.

Assumption 4 u(t) = 0, ∀t < 1.

The actual value of the parameter vector θ0 is unknown
and needs to be estimated on the basis of the assump-
tions on the system model and on the magnitude bound
of the signal e(t), together with the information pro-
vided by the sequence of measurement data collected in
the identification experiment. In particular, if we denote
a sequence of M measured plant outputs and its corre-
sponding sequence of applied regressor vectors as:

yM = {y(t)}Mt=1 , ϕM = {ϕ(t)}Mt=1 , (6)

then the set of all the models that are consistent with
the initial assumptions and collected measurements (6),
named the Feasible Parameter Set, is defined as:

FPS
.
=
{
θ ∈ Rm : |y(t)− ϕ(t)T θ| ≤ ε, t = 1, . . . ,M

}
.

(7)

An optimal estimate of the parameter vector θ0 is the
one that minimizes the worst-case estimation error. This
estimate is given by the Chebischev center of the FPS:

θ∗p
.
= arg inf

v
sup

θ∈FPS
‖v − θ‖p, (8)

where p ∈ [1,∞). Clearly the resulting estimate will
depend on the used norm. The worst-case error obtained
by the estimate (8) is called the (p−norm) radius of
information and it is given by:

rp(FPS)
.
= sup
θ∈FPS

‖θ∗p − θ‖p. (9)

Often the estimate (8) is hard to compute; in these cases
interpolatory algorithms represent a valid tractable al-
ternative. These algorithms provide an estimate that is
guaranteed to be contained in the FPS, and its worst-
case error is bounded by twice the radius of informa-
tion (8) (see e.g. [30]). Hence, the radius of information
rp(FPS) is a reasonable measure of the quality of an
estimate and therefore the experiment design should be
aimed at minimizing this quantity. However, the radius
of information achieved after a specific experiment de-
pends on the applied control inputs, on the actual sys-
tem’s dynamics, and on the particular realization of the
disturbance signal that occurred. Since the last two as-
pects are not part of the available prior information, it
is of interest to consider the worst-case radius of infor-
mation with respect to all possible values of the true
system’s parameters and all possible disturbance real-
izations:

rp(ϕM )
.
= sup
θ0,|e(t)|≤ε,t=1,...,M

rp(FPS). (10)

It has been shown in [20] (Theorem 3), [22] (Theorem
2) and [19] (Theorem 1) that the worst-case radius of
information can be computed as:

rp(ϕM ) = sup
θ
||θ||p

Subject to:

|ϕ(t)T θ| ≤ ε,∀t ∈ [0,M ].

(11)

The key to prove that (11) is equivalent to (10) is to
show that the radius of information (9) does not depend
on θ0 and that it is maximized by a realization of e(t)
corresponding to a constant signal. Indeed changing θ0,
for the same sequence of regressor vectors ϕM and the
same realization of the signal e(t) results in a translation
of the FPS in space and hence does not affect the radius
of information (9). The second point is more subtle to
show and its proof can be found in the cited literature.

The worst-case radius of information rp(ϕM ) represents
an upper bound on the value of rp(FPS) that can be ob-
tained in the identification experiment. In addition, from
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(11) it follows that, for given prior information (model
structure and disturbance/noise bounds) the worst-case
radius of information depends only on the applied re-
gressor vectors, and thus, according to (2), on the input
sequence employed in the experiment. Therefore, our
aim is to design an input sequence that minimizes the
value of rp(ϕM ), while at the same time satisfying the
input constraints (5). If such a sequence were found and
used in the identification experiment, the correspond-
ing worst-case radius of information would provide a
guaranteed upper bound on the quality of the identified
model set, no matter what the true system parameters
are and what disturbance and noise realizations occur.
In the next section, we address the problem of construct-
ing input sequences that minimize the worst-case radius
of information (10).

3 Worst-case experiment design

3.1 Preliminaries

We first define the set of admissible regressors as the set
containing all the regressor vectors that can be reached
from the origin (see Assumption 3) in N steps, given the
input constraints (5):

ΦN
.
=
{
ϕ∈Rm :ϕ = [AN−1B,AN−2B, . . . , B]U, U ∈ U

}
,

(12)
where U ⊂ RNnu is the set of all the admissible control
input sequences of length N , defined by

U .
=
{
U ∈ RNnu : WU ≤ Z

}
, (13)

where

W =



C 0 . . . 0 0

0 C . . . 0 0

...
...

. . .
...

...

0 0 . . . C 0

0 0 . . . 0 C︸ ︷︷ ︸
N

L 0 . . . 0 0

−L L . . . 0 0

...
...

. . .
...

...

0 0 . . . L 0

0 0 . . . −L L︸ ︷︷ ︸
N



T

∈RN(ng+nf )×Nnu

Z=

[
gT . . . gT︸ ︷︷ ︸

N

fT . . . fT︸ ︷︷ ︸
N

]T

∈ RN(ng+nf ),

(14)
with 0 denoting zero matrices of appropriate dimension.
Note that, from (13) and (14), it follows that U is a poly-
tope and therefore ΦN is also a polytope, as it is a linear
projection of a polytope. The fact that ΦN is a polytope
is a consequence of the assumption that the regressor
vector depends on the past control inputs only. In the
case of an ARX model, ΦN would not be a polytope,

which prevents the direct extension of the presented re-
sults to a more general ARX model structure (see also
Remark 2.3). Theoretically, the set of admissible regres-
sors is given by Φ∞ = lim

N→∞
ΦN . However, considering

Φ∞ would imply allowing infinite experimentation time,
which is not realistic. Moreover, since by Assumption 1
the matrix A has all the eigenvalues inside the unit cir-
cle, it holds that lim

N→∞
AN−1B = 0, i.e. ΦN is a good

approximation of Φ∞ for N sufficiently large. Therefore,
in our analysis we will make the following assumption
about the set of admissible regressor vectors.

Assumption 5 The set of admissible regressor vectors
is given by ΦN , whereN is a finite, but possibly very large
number.

In practice, a sufficiently large N should be selected by
the experiment designer. We present a suitable proce-
dure to select N in section 3.3.

Remark 3.1 Note that if the matrix A is nilpotent, for
example when an FIR model parametrization is used (see
e.g. (3)), then ∃N ′ : ∀N ≥ N ′,ΦN = ΦN ′ and therefore
Φ∞ = ΦN ′ , i.e. the set of admissible regressors can be
calculated exactly for a finite value of N .

We next define the minimal worst-case radius of infor-
mation r∗p as:

r∗p
.
= inf
M,ϕ(t)∈ΦN ,t=1,...,M

rp(ϕM ), (15)

i.e. r∗p is the minimal worst-case radius of information
achievable by considering all the admissible regressors
and all possible experiment’s lengths M . From (11) and
(15) it follows that the minimal worst-case radius of in-
formation can be achieved by an infinitely long input
sequence that gives rise to all the vectors in ΦN :

r∗p = sup
θ∈S
||θ||p, (16)

where

S =
{
θ ∈ Rm : |ϕT θ| ≤ ε,∀ϕ ∈ ΦN

}
. (17)

The first question that we address is whether there exists
a finite sequence of inputs that achieves r∗p in any norm.
To this end, we first define the set −ΦN as:

−ΦN
.
= {ϕ ∈ Rm : −ϕ ∈ ΦN} , (18)

and then the set Φ̂N as the convex hull of ΦN and −ΦN :

Φ̂N
.
= conv(ΦN ∪ −ΦN ). (19)

The set Φ̂N is also a polytope, and as such it is uniquely
defined by its vertices. We denote the set of all the
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vertices of Φ̂N by V (Φ̂N ). Note that, by construction,

V (Φ̂N ) can be split into two sets:

V (Φ̂N ) =
{
V +(Φ̂N ) ∪ V −(Φ̂N )

}
, (20)

where ∀v ∈ V +(Φ̂N ), −v ∈ V −(Φ̂N ) and V +(Φ̂N )
⋂

V −(Φ̂N ) = ∅, with the set V +(Φ̂N ) satisfying

V +(Φ̂N ) ⊂ V (ΦN ), where V (ΦN ) is the set of all the
vertices of ΦN . Note that, depending on the shape of
the set ΦN , there might be more than one way to split
the set V (Φ̂N ) into V +(Φ̂N ) and V −(Φ̂N )

We also recall the following definition of polytope’s polar
from [12].

Definition 3.1 A polar of a polytope P ⊂ Rm contain-
ing the origin is defined as:

P ∗
.
= {x ∈ Rm : yTx ≤ 1,∀y ∈ P} (21)

We further recall two theorems related to the polarity of
polytopes that are instrumental for our results.

Theorem 3.1 (Theorem 9.1 in [4])

P ∗ = {x ∈ Rm : vTx ≤ 1,∀v ∈ V (P )}, (22)

where V (P ) denotes the set of all the vertices of the poly-
tope P .

Theorem 3.2 (Theorem 6.4 in [4]) Let bd(P ) denote
the set of all the points on the boundary of a polytope
P . Then ∀v ∈ bd(P ), it holds that max

x∈P∗
vTx = 1, i. e.

the hyperplane F =
{
x ∈ Rm : vTx = 1

}
is a supporting

hyperplane of P ∗.

3.2 Main results

We now have all the ingredients to derive the result on
how to design a finite input sequence that yields the
minimal possible worst-case radius of information in any
norm.

Theorem 3.3 Let the Assumptions 1, 2, 3 and 5 hold.
The minimal worst-case radius of information r∗p, ∀p ∈
[1,∞), is achieved by a finite input sequence that gener-

ates all the regressor vectors in V +(Φ̂N ).

Proof 1 We first note that the set S in (17) can be writ-
ten in a slightly different form:

S =
{
θ ∈ Rm : ϕT θ ≤ ε,∀ϕ ∈ ΦN ∪ −ΦN

}
. (23)

In addition, we consider another set, defined by the ele-
ments of Φ̂N :

Sc =
{
θ ∈ Rm : ϕT θ ≤ ε,∀ϕ ∈ Φ̂N

}
. (24)

Since, by construction, ΦN ∪ −ΦN ⊆ Φ̂N , it holds that
Sc ⊆ S. In addition, we note that, by construction,
Φ̂N contains the origin and therefore, by Definition 3.1,
the polytope Sc is a polar of the polytope 1

ε Φ̂N , where
1
ε Φ̂N =

{
ϕ ∈ Rm : ϕ = 1

ε v,∀v ∈ Φ̂N

}
. Therefore, from

Theorem 3.1 it holds that:

Sc =
{
θ ∈ Rm : vT θ ≤ ε,∀v ∈ V (Φ̂N )

}
. (25)

By using the fact that V (Φ̂N ) can be split into V +(Φ̂N )

and V −(Φ̂N ) as in (20), (25) can be rewritten as:

Sc =
{
θ ∈ Rm : |vT θ| ≤ ε, ∀v ∈ V +(Φ̂N )

}
. (26)

Since, by construction, V +(Φ̂N ) ⊂ ΦN , it has to hold that
S ⊆ Sc, and as also Sc ⊆ S, it follows that Sc = S. Then,
from (16) and (26), the claim of the Theorem follows
directly. �

The result of Theorem 3.3 gives a guideline on how to
design identification experiments to minimize the worst-
case radius of information r∗p in any norm (∀p ∈ [1,∞)).
We note that the input sequence given by Theorem 3.3
also minimizes the volume of FPS (see [28]). Theorem
3.3 implies that in order to design the input sequence
that minimizes the worst-case radius of information in
any norm, the vertices of ΦN need to be computed. How-
ever, finding the vertices of a polytope described by a set
of linear inequalities is in general a computationally hard
problem. Dedicated software tools for finding polytope
vertices exist [14], but can be used only for relatively
low dimensional spaces and for rather simple polytopes.
Moreover, the number of vertices of ΦN would, in gen-
eral, grow more than exponentially with the increase in
the number of the parameters to be identified, implying
impractical experimentation time even for a small num-
ber of unknown coefficients.

However, it is reasonable to expect that if one would aim
at minimizing the worst-case radius of information for a
specific norm, there could be a different and less complex
way of designing the experiment. In the remainder of this
section, we show that this is indeed the case and that
polytopic geometry can be exploited in order to provide
a tractable way to design experiments if the goal is to
minimize the worst-case radius of information in 1- or
∞-norm, and if the set ΦN is centrally symmetric, such
that ΦN = −ΦN = Φ̂N . Note that this condition is met
if the constraints (5) are symmetric, which is often the
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case in practical problems. The use of 1- and ∞-norm
is quite common in the context of SM identification (see
e.g. [21]).

In order to state the result for 1-norm, we define the
following set of vectors:

V 1 =

{
v ∈ Rm :v = [1, x1, . . . , xm−1]T ,

xi ∈ {−1, 1}, i = 1, . . . ,m− 1

}
.

(27)
Note that, by construction, the set V 1 has 2m−1 ele-
ments. The vectors in V 1 are selected such that they
form a 1-norm ball:

D1 =
{
x ∈ Rm : |vTx| ≤ 1,∀v ∈ V 1

}
. (28)

Note that there is more than one possible way to define
the set V 1 such that the set D1 in (28) corresponds to
the 1-norm ball. In fact, the definition of the set V 1 in
(27) is taken as a notational convention and the result
that we derive holds for any other combination of vectors
such that D1 is a 1-norm ball.

To each of the vectors vi ∈ V 1, i = 1, . . . , 2m−1, we asso-
ciate a scalar αi > 0, i = 1, . . . , 2m−1 that is computed
as the maximal value that guarantees the satisfaction of
αivi ∈ ΦN :

αi = max k

Subject to:

kvi ∈ ΦN .

(29)

Note that by using (12) and (13), the optimization prob-
lem (29) can be rewritten as:

αi = max
k,U

k

Subject to:

kvi = [AN−1B,AN−2B, . . . , B]U

WU ≤ Z,

(30)

which is a linear program (LP) that can be solved effi-
ciently with available software tools. We further denote
the smallest scalar among all αi, i = 1, . . . , 2m−1, with
α1:

α1 .
= min{α1, . . . , α2m−1}. (31)

Note that finding α1 amounts to solving an LP of the
form (30) for each vector in V 1 and then finding the
smallest number among the obtained solutions.
We are now in position to give the result on how to
design the identification experiment in order to achieve
the minimal worst-case radius of information r∗1.

Theorem 3.4 Let the Assumptions 1, 2, 3 and 5 hold.
If ΦN is centrally symmetric (ΦN = −ΦN = Φ̂N ), the
minimal worst-case radius of information r∗1 is achieved

with the input sequence that generates the regressor vec-
tors α1vi, ∀vi ∈ V 1, and its value is r∗1 = ε

α1 .

Proof 2 Let us denote by S1 the set formed by the re-
gressor vectors defined by α1vi, ∀vi ∈ V 1, as:

S1 =
{
θ ∈ Rm : |α1vTi θ| ≤ ε,∀vi ∈ V 1

}
. (32)

From the way V 1 is defined, it follows that S1 = ε
α1D

1,

i.e. S1 is the 1-norm ball with radius ε
α1 . Since, by con-

struction, α1vi ∈ ΦN ,∀vi ∈ V 1, it has to hold that
S ⊆ S1. Moreover, from the assumption that ΦN is
centrally symmetric, it holds that ΦN contains the ori-
gin and therefore, from the definition 3.1, S is a polar
of 1

εΦN , where 1
εΦN =

{
ϕ ∈ Rm : ϕ = 1

ε v,∀v ∈ ΦN
}

.

In addition, from the way α1 is defined in (31), it fol-
lows that ∃v ∈ V 1 : α1v ∈ bd

(
1
εΦN

)
. Moreover, from

the fact that ΦN is symmetric (ΦN = −ΦN = Φ̂N ),
it follows that −α1v ∈ bd( 1

εΦN ). Then, from Theorem

3.2, it holds that the two parallel faces of S1 defined
by α1v and −α1v: F+ =

{
x ∈ Rm : α1vTx = ε

}
and

F− =
{
x ∈ Rm : −α1vTx = ε

}
are the supporting hyper-

planes of S. Since S ⊆ S1 and S1 has at least two parallel
faces that are the supporting hyperplanes of S, S1 is the
tightest possible 1-norm ball containing S. This can be
shown by contradiction. Let us assume (for the sake of
contradiction) that S1 is not the tightest possible 1-norm
ball containing S and that there exists some 1-norm ball
S′ = qD1, q < ε

α1 such that S ⊆ S′ ⊂ S1. Let us denote
the faces of S′ that are parallel to F+ and F− by F ′+ and

F ′−. Then it holds that: F ′+ ∈ {x ∈ Rm : α1vTx < ε}
and F ′− ∈ {x ∈ Rm : −α1vTx < ε}. Since F+ and F−
are the supporting hyperplanes of S (i.e. max

x∈S
α1vTx = ε

and max
x∈S
−α1vTx = ε), it means that F ′+ and F ′− are

contained in the supporting half-spaces of S and there-
fore intersect S, which is a contradiction. Therefore, S1

is indeed the tightest possible 1-norm ball containing S
and hence it has to hold that:

sup
θ∈S
||θ||1 = sup

θ∈S1

||θ||1 =
ε

α1
, (33)

Which completes the proof. �

Theorem 3.4 provides both a way to design an optimal
experiment and the value of the related minimal worst-
case radius of information r∗1. The latter can be calcu-
lated in advance and is given by r∗1 = ε

α1 . This value
gives a good intuition of the effects of input constraints
and noise on the experiment. In fact, the value of α1 can
be regarded to as a measure of the size of the set of ad-
missible regressors, ΦN , and the ratio ε

α1 as a noise-to-
signal ratio: the smaller this value, the better the worst-
case outcome of the experiment.

Remark 3.2 The fact that the minimal possible worst-

6



case radius of information can be calculated a priori can
be exploited to evaluate the quality of an experiment real-
ization a posteriori. In particular, if the achieved radius
of information is much smaller than the minimal worst-
case value, it would indicate a favorable realization of
measurement error and hence good quality of the param-
eter estimate. Vice versa, if the obtained radius of in-
formation is close to the worst-case, it would mean that
an unfortunate realization of the signal e(t) has occurred
and the experiment could be repeated in hope that a more
fortunate realization might occur.

Note that in the case of ∞-norm, we can define the fol-
lowing set of vectors:

V∞ =




1

0
...

0

 ,


0

1
...

0

 , . . . ,


0

0
...

1




, (34)

where the set V∞ has m elements. In addition, if we
define α∞ analogously to α1 in (31), we can state the
following corollary of Theorem 3.4.

Corollary 3.1 If Assumptions 1, 2, 3 and 5 hold and ΦN
is centrally symmetric, the minimal worst-case radius of
information r∗∞ is achieved with the input sequence that
generates the regressor vectors α∞vi, ∀vi ∈ V∞ and its
value is r∗∞ = ε

α∞ .

It can be easily shown that in the case of SISO, FIR plant
models with only input magnitude constraints, the result
of Theorem 3.4 and Corollary 3.1 become equivalent to
the existing results on the worst-case experiment design
(see e.g. [2], [18]). In these settings, for ∞-norm, the
optimal input sequence is given by an input pulse of
maximal magnitude and for 1-norm, the optimal input
sequence is a Galois sequence. Therefore, Theorem 3.4
and Corollary 3.1 can be considered as a generalization
of the existing results to the case of input constrained
MISO systems, when more general convex constraints
and model parameterizations are used.

3.3 Optimal experiment design

The minimal worst-case radii of information r∗1 and r∗∞
depend on the disturbance and noise bound ε and on the
values of α1 and α∞, which themselves depend on the
assumed model structure, input constraints and chosen
value of N . From the way ΦN is defined in (12), it fol-
lows that the values of α1 and α∞ increase (r∗1 and r∗∞
decrease) with the increase of N . However, as already
mentioned, since by Assumption 1 the matrix A is sta-
ble, the values of α1 and α∞ converge asymptotically as
N increases. This fact can be exploited to determine the
value of N to be used in the experiment design. This can

be done by setting a tolerance bound on the relative de-
crease of the minimal worst-case radius of information
∆r and then increasing N until the relative change in
the resulting minimal worst-case radius of information
becomes smaller than the defined bound ∆r. Note that
the calculated value of N will influence the resulting ex-
periment lengthM , since a larger value ofN would likely
lead to higher M . Algorithm 1 summarizes the proposed
procedure for determining N in the case of 1-norm (for
the ∞-norm the procedure is analogous).

Algorithm 1 Algorithm to determine the value of N

N = 1;
Calculate α1 according to (31), based on ΦN ;
r∗1,old = ε

α1 ;
∆r = 1;
while ∆r ≥ ∆r do

N = N + 1;
Calculate α1 according to (31), based on ΦN ;
r∗1 = ε

α1 ;

∆r =
|r∗1−r

∗
1,old|

r∗
1,old

;

r∗1,old = r∗1;
end while

For a fixed value of N , Theorems 3.3 and 3.4 and Corol-
lary 3.1 also provide the guidelines on how to calculate
the sets of regressor vectors that should be explored in
order to minimize the worst-case radius of information.
In order to design an identification experiment, an input
sequence that visits all such regressor vectors has to be
generated. Usually one would seek for the shortest pos-
sible input sequence that gives rise to all the regressor
vectors of interest, in order to reduce the required exper-
imentation time. However, finding the shortest sequence
would, in general, be a very difficult combinatorial prob-
lem. Therefore, we propose a suboptimal, but compu-
tationally tractable algorithm for finding a sequence of
control inputs starting from the set of regressor vectors
that should be generated. The approach, summarized in
Algorithm 2 below, is such that it guarantees that all
the regressor vectors of interest are visited, but does not
give the guarantee that the computed input sequence is
the shortest possible.

The algorithm is iterative and it employs a greedy ap-
proach. At each iteration, an element from the set of the
regressor vectors that have not been visited and that can
be reached from the current regressor vector ϕ0 in the
smallest number of steps is found, together with the se-
quence of inputs that should be applied in order to make
the transition. This vector is then removed from the set
of the regressor vectors that have not been visited and it
is taken as the current regressor vector. The calculated
input sequence is concatenated with the previously cal-
culated input sequences. Initially, the current regressor
vector ϕ0 is selected as a zero vector (see Assumption 4)
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and the set of the regressor vectors that have not been
visited is populated by all those that have to be visited.

The proposed algorithm relies on the fact that if a given
regressor vector, ϕT , can be reached from the current
one, ϕ0, in k steps, given the input constraints (5), then
the following system of linear equalities and inequalities
must be feasible:

∃ ϕ(t) ∈ Rm, t ∈ [0, k], u(t),∆u(t) ∈ Rnu , t ∈ [1, k]

Such that:

ϕ(0) = ϕ0

ϕ(k) = ϕT

ϕ(t) = Aϕ(t− 1) +Bu(t− 1)

∆u(t) = u(t)− u(t− 1)

CTu(t) ≤ g
LT∆u(t) ≤ f


∀t = 1, . . . , k

(35)
where u(0) is the last element of the input sequence that
was applied in order to achieve the regressor vector ϕ0.
A solution of (35), if it exists, represents the input se-
quence that steers the regressor vector from ϕ0 to ϕT in
k steps. Checking whether a system of linear equalities
and inequalities that form a convex set has a solution,
and finding that solution, is a problem that can be ef-
ficiently solved by using linear programming techniques
[3]. Note that, since ϕT ∈ ΦN and the pair A, B is con-
trollable, the problem (35) will always have a solution
for k large enough. Finding the regressor vector that can
be reached in the smallest number of steps is then done
by consecutively solving problem (35) for all the termi-
nal regressor vectors that have not been visited, with k
initially set to 1 and then incremented until a feasible
solution is found.

Note that the computational complexity of the Algo-
rithm 2 depends on the number of regressor vectors that
have to be visited. This number scales linearly for the
∞- and exponentially for the 1-norm with the number
of unknown parameters m. Note however that the Al-
gorithm 2 relies on linear programs only, which can be
solved very efficiently. Therefore, the Algorithm can be
executed in reasonable time even for large number of re-
gressor vectors that need to be visited.

4 Numerical example

In order to illustrate the derived results and the fea-
tures of the proposed algorithm, we consider a numerical
example in which we compare the identification perfor-
mance for the case when an input sequence that mini-
mizes the worst-case radius of information is used, with
the case when an input signal based on using random
binary sequences is used. We consider a SISO system
model, parameterized by Laguerre basis functions. The

Algorithm 2 Algorithm to compute the input sequence

ϕ0 = 0;
Initialize not visited by the regressor vectors to be
visited;
Initialize U as an empty sequence
while not visited is not empty do

k = 1;
found = 0;
while not found do

for i = 1 : size(not visited) do
ϕT = not visited[i];
if (35) has a solution for k, ϕ0 and ϕT then

U∗ is the solution of (35);
found = 1;
break;

end if
end for
k = k + 1;

end while
ϕ0 = not visited[i];
remove not visited[i] from not visited;
U = [U,U∗];

end while

plant is given as a linear combination of 5 filters:

y(z) =

5∑
k=1

θ0
k

√
1− 0.42

z − 0.4

[
1− 0.4z

z − 0.4

]k−1

u(z) + e(z),

(36)
where z is the time shift operator (zu(t) = u(t+ 1)) and
y(z), u(z) and e(z) are the Z transforms of the plant
input, output and disturbance signals. The coefficients
θ0
k, k = 1, . . . , 5 are considered to be unknown and need

to be estimated from an identification experiment. The
plant model with the structure in (36) can be written
in the regressor form (1)-(2) by taking the vector of the
unknown parameters to be θ0 = [θ0

1, . . . , θ
0
5]T and the

matrices in (2) as (see [10]):

A =



0.4000 0 0 0 0

0.8400 0.4000 0 0 0

−0.3360 0.8400 0.4000 0 0

0.1344 −0.3360 0.8400 0.4000 0

−0.0538 0.1344 −0.3360 0.8400 0.4000


B =

[
0.9165 −0.3666 0.1466 −0.0587 0.0235

]T
(37)

It is assumed that the control input of the system is con-
strained such that |u(t)| ≤ 2 and |∆u(t)| ≤ 1. In addi-
tion, we assume the bound on the disturbance e(t) to be
ε = 0.4 and in the simulations we generated e(t) by tak-
ing a random value from an uniform distribution in the
interval [−ε, ε] at each time step. For the given identifi-
cation problem, we would like to design an experiment
that minimizes the worst-case radius of information in 1-
norm. To this end, by using Algorithm 1, we selected N
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that defines the set of admissible regressors (ΦN ) to be
N = 30, corresponding to the tolerance of ∆r = 10−4.
We created the set of regressor vectors that should be
visited, by solving an LP as in (35) for each element of
the set V 1 and computing the value of the parameter
α1 as in (31). The corresponding sequence of inputs is
then obtained by using the Algorithm 2, it is 108 sam-
ples long and is shown in Fig. 1. For this example it took
0.54 seconds to calculate N and 0.86 seconds to execute
the Algorithm 2 on a laptop with Intel i7-36667U proces-
sor, when using Gurobi [13] for solving the optimization
problems.

10 20 30 40 50 60 70 80 90 100
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

u(
t)

time step t

Fig. 1. Input sequence minimizing the worst-case radius of
information in 1-norm.
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1.5

2

u(
t)

time step t

Fig. 2. Typical example of an input sequence generated by
using a random binary signal.

We performed a series of identification experiments with
two different input sequences and the same measurement
error realization. In one case we use the input sequence
given in Fig.1, which guarantees to achieve the minimal
worst-case radius of information, while in the other case
we use an input sequence of the same length whose gen-
eration is based on a random binary signal.

This sequence is formed by first generating a random
binary sequence with the probability of the sign change
taken as a random variable in the interval [0.2, 0.8] and
then by finding a sequence that is the most similar to it
(it has the smallest 2-norm difference) and that satisfies
the input rate constraints. A typical excitation signal

obtained in this way is shown in Fig. 2. Random binary
sequences are a recommended heuristic for generating
input signals in identification experiments, see e.g. [16].
During the experiments, the values of the model param-
eters were set to: θ0 = [2, 1.6, 1, 0.6, 0.2]T . We repeated
the identification experiment 4000 times. The obtained
values for the radius of information for the first 150 re-
alizations are compared in Fig. 3, while in Fig. 4 we
compare the empirical probability density functions for
the obtained values of the radius of information over all
the realizations. Taking the average over all the experi-
ments, the obtained radius of information is very simi-
lar for both cases. However, when the control input se-
quence of Fig. 1 is used, the radius of information is
never larger than 0.78, which is the theoretical value for
the minimal worst-case radius of information. On the
other hand, when the input sequence based on the ran-
dom binary signal is used, for some unfavorable realiza-
tions of the error signal, the radius of information can be
larger than the theoretically derived value for the mini-
mal worst-case radius of information. In fact, in 13.7% of
the experiment realizations using random input, the ob-
tained radius of information was greater than the max-
imal value guaranteed by our approach. The same kind
of numerical analysis was done for the case of ∞-norm
radius of information. In this case in 16.2% of the ex-
periment realizations the radius of information obtained
when using the random input was larger than the worst
case bound guaranteed by our approach.
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experiment realization

Fig. 3. The upper plot shows the obtained radius of infor-
mation when the optimal input sequence is used. The lower
plot shows the obtained radius of information when the in-
put based on a random binary signal is used. The dashed
line indicates the value of the minimal worst-case radius of
information according to Theorem 3.4.

Hence, as expected from our results, when using the in-
put sequence derived with Theorem 3.4 and Algorithm
2, there is an upper bound (that can be calculated be-
forehand) to the radius of information that can be ob-
tained for any measurement error realization. This is not
the case with a more standard input sequence often used
in system identification experiments, which can result
in quite large radius of information in case the measure-
ment error is unfavorable.
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Fig. 4. Empirical probability density functions of the radius
of information in different identification experiment realiza-
tions for the optimal input (upper plot) and for the input
based on the random binary sequence (lower plot).

5 Conclusion

We have presented a way to compute the set of regressor
vectors that should be visited in order to minimize the
worst-case radius of information in any norm for the case
of input constrained MISO linear systems with a general
parametrization. In addition, we addressed the particu-
lar cases when the radius of information is calculated in
1- and∞-norm and showed that there exists a computa-
tionally tractable way to design an optimal experiment
in such settings, provided that the input constraints are
symmetric. The presented results provide a generaliza-
tion of previous findings, related to the specific case of
SISO systems with FIR models. Finally, we showed with
a numerical example that the bound on the quality of the
resulting model guaranteed by our approach can be vio-
lated with a non-negligible probability by more common
random input sequences, which are suboptimal from the
point of view of minimizing the worst-case radius of in-
formation. At the same time, the average performance
achieved with our approach is similar to the one obtained
with random input sequences.
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[30] J.F. Traub and H. Woźniakowski. A General Theory of
Optimal Algorithms. Academic Press, New York, 1980.

[31] B. Wahlberg. System identification using Laguerre models.
IEEE Transactions on Automatic Control, 36:551–562, 1991.

[32] B. Wahlberg. System identification using Kautz models.
IEEE Transactions on Automatic Control, 39:1276–1282,
1994.

11


