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Real-time Optimization and Adaptation of the
Crosswind Flight of Tethered Wings
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Abstract—Airborne wind energy systems aim to generate
renewable energy by means of the aerodynamic lift produced
by a wing tethered to the ground and controlled to fly crosswind
paths. The problem of maximizing the average power developed
by the generator, in presence of limited information on wind
speed and direction, is considered. At constant tether speed
operation, the power is related to the traction force generated
by the wing. First, a study of the traction force is presented
for a general path parametrization. In particular, the sensitivity
of the traction force on the path parameters is analyzed. Then,
the results of this analysis are exploited to design an algorithm
to maximize the force, hence the power, in real-time. The
algorithm uses only the measured traction force on the tether
and the wing’s position, and it is able to adapt the system’s
operation to maximize the average force with uncertain and
time-varying wind. The influence of inaccurate sensor readings
and turbulent wind are also discussed. The presented algorithm
is not dependent on a specific hardware setup and can act
as an extension of existing control structures. Both numerical
simulations and experimental results are presented to highlight
the effectiveness of the approach.

I. INTRODUCTION

A IRBORNE wind energy (AWE) systems [1], [2] aim to
harness wind energy beyond the altitude of traditional

wind mills, in stronger and more steady winds, using tethered
wings. The tethers are used to transfer the energy down to
the ground. In particular, depending on the system layout, the
traction force applied by the wing on the tethers is used to
drive generators on the ground, or the energy from on-board
generators is transferred via an electrified tether to the ground
unit. To increase the power output, the wings are controlled
to fly roughly perpendicular to the wind direction [3], in
so-called crosswind paths. In the recent past, an increasing
number of research groups in academia and industry started
to develop new concepts of AWE systems, see e.g. [1], [4]–
[15]. The automatic control of the tethered wings plays a
major role for the efficiency and thus also economics of such
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energy generators. The goal is to control the wing in order
to fly a crosswind path under constraints such as actuator
or wing position limitations, while maximizing the generated
power. In order to maximize the power output, the wing
should fly on a path that yields the highest traction force
for the given wind condition. This problem has been studied
by several research groups, see [11]–[13], [16]–[21]. Most of
these approaches employ an optimal path, computed off-line
for specific wind conditions based on a nonlinear point-mass
model. An automatic controller is then designed to follow this
optimal reference trajectory. Yet, the offline generated optimal
trajectories are subject to model-plant mismatch, hence they
may be sub-optimal or even infeasible in practice. Moreover,
when on-line optimization is used, like in Model Predictive
Control approaches, the solution of a complex nonlinear
optimization problem is required in real-time, which can be
difficult and unreliable. Finally, the mentioned approaches
assume that the wind speed and direction at the wing’s location
are known in order to employ the computed optimal path.
However, the wind field changes over distance and time and
it is difficult to estimate with only a few measurement points,
like those available with ground anemometers.

In order to tackle these issues, in this paper we propose
an optimization approach, for the real-time adaptation of
the flown paths, assuming no exact knowledge of the wind
condition. The approach does not employ a dynamical model
of the wing for the optimization, hence avoiding potential
problems due to model uncertainty. The algorithm works as an
extension to an existing controller able to fly a tethered wing
on periodic paths. At first, we analyze the influence of the
crosswind path on the traction force, in order to asses the most
important aspects of the flown trajectory for the sake of power
generation. The results indicate that the location of the path
with respect to the wind direction and vertical profile has much
greater importance than its shape. Then, we introduce a real-
time optimization algorithm aimed to improve and adapt the
location, rather than the shape, of a given flown crosswind path
using only the measurements of the wing’s position relative to
the ground unit and of the traction forces, i.e. no knowledge
of the wind direction or profile. Additionally, we investigate
the effects of erroneous sensor readings and turbulent wind
on the performance of the adaptation, showing that the first
do not affect the algorithm but the latter can slow down the
convergence. We present the results obtained by applying the
approach in numerical simulations as well as in real-world
experiments.

©2015 IEEE. DOI: 10.1109/TCST.2014.2332537 Personal use is permitted, but republication/redistribution requires IEEE 
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. XX, NO. XX, MONTH YEAR 2

The paper is organized as follows. We explain the system
under consideration and elaborate the problem formulation in
Section II. Then, we present a study of the traction force of
a tethered wing for a flown path in Section III. Based on this
analysis, the proposed algorithm to maximize the traction force
is described in Section IV. In Section V the influence of sensor
noise and wind turbulences on the algorithm are discussed. In
Section VI numerical simulations and results from test flights
with a small scale prototype are presented.

II. SYSTEM DESCRIPTION AND PROBLEM FORMULATION

We consider an AWE generator that exploits aerodynamic
lift to produce electrical energy. For an overview of such sys-
tems, see e.g. [1], [2]. The main components of the generator
are the ground unit, the tether, and the wing. The tether is used
to anchor the wing to the ground unit, where realizations with
one or multiple tethers are possible. The wing is flown on a
periodic path, sustained by the aerodynamic lift, which results
in a traction force F on the tether. The electricity is either
generated on-board of the wing, with small propellers and on-
board generators [4], or in the ground unit, by unreeling the
tether from drums connected to generators [6]–[8].

We define a right-handed inertial coordinate system
(ex,ey,ez), fixed to the ground unit (see Fig. 1). The unit
vectors ex and ey are parallel to the ground and ez is vertical
with respect to the ground and pointing upwards. The wing’s
position p is described by spherical coordinates consisting of
the two angles ϕ and ϑ and the tether length r. Assuming a
straight tether, the azimuthal angle ϕ defines the angle between
the projection of the tether on the ground and the ex axis,
while the elevation ϑ represents the angle between the tether
and the ground plane (ex,ey). We assume that the incoming
wind is parallel to the ground, i.e. the (ex,ey)-plane, and its
misalignment with respect to ex is denoted by ϕW , see Fig. 1.
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Fig. 1. The wing’s position p (black dot) is shown on a figure eight path.
Note the arrows on the path, indicating an ”up-loop” flight pattern (i.e. the
wing climbs up on the side of the path and dives in the middle). The wind
window is depicted with dotted lines. The average location of the path (circle)
is denoted by (ϕc,ϑc). The prevalent wind direction forms an angle ϕW with
the fixed axis ex.

Due to boundary layer flow effects of the wind above the
earth’s surface, the magnitude of the wind W is a function
of the altitude z above the ground, the so-called wind shear
effect. Common choices to model such a wind shear are the log
or the power laws [22]. In this paper, we consider the latter,
but the results hold for a general monotonically increasing
wind profile. In our coordinate system, the altitude is given
by z = r sinϑ and the power law is defined as

W (ϑ) =W0

(
r sinϑ

Z0

)α

, (1)

where W0 is the reference wind speed at the reference altitude
Z0 and α is the power law exponent, which depends on the
roughness of the surface [22]. In Fig. 2 an example of such a
wind profile is given.
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Fig. 2. Wind profile defined by the power law with W0 = 5m/s, Z0 = 4m,
and α = 0.1

In AWE systems, during power generation the tethered wing
cannot fly upwind, surpassing its anchor point against the
wind. Thus, its motion is restricted on a quarter sphere defined
by the tether length r, the ground plane (ex,ey), and a vertical
plane perpendicular to the prevalent direction of the wind field
and containing the anchor point of the tether (see Fig. 1, dotted
lines). This quarter sphere is called “wind window”. The wing
is assumed to fly periodic paths in the wind window, under the
action of a feedback controller K. Such a path can be described
by a set of points in the (ϕ,ϑ)-plane. The average position of
the path is denoted by (ϕc,ϑc). The angular distances from
such an average position to each point on the path in ϕ

and ϑ directions are denoted by ϕ∆ and ϑ∆, respectively. By
introducing the continuous time variable t, we can define the
corresponding trajectory as the pair

ϕ(t) = ϕc +ϕ∆(t) , ϑ(t)=ϑc +ϑ∆(t)

with the trajectory period T to complete one closed path, i.e.

ϕ∆(t +T ) = ϕ∆(t) , ϑ∆(t +T )=ϑ∆(t) .

We define the left and right half paths as the points where
ϕ∆(t)≥ 0 and ϕ∆(t)< 0, respectively.

For systems with multiple tethers, the path has to be such
that the tethers do not coil up during one full period and
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therefore we will consider paths shaped like an eight, see e.g.
[12], flying up-loops. This means the wing flies upwards on
the side and down in the center of the figure eight, see Fig. 1.
For the remainder of this paper we will call one closed path
a “loop” or “path” to refer to a single flown figure eight. We
assume that the path is symmetric w.r.t. a line in the (ϕ,ϑ)-
plane. The angle between this symmetry line and the line
ϕ = ϕc is denoted with β , named the “inclination” of the path.
The range of ϕ∆ values is [−ϕmax

∆
,ϕmax

∆
] with ϕmax

∆
> 0. The

maximal ϕ∆(t) value, ϕmax
∆

, defines the lateral span of the path,
since it accounts for half of the total lateral span. Similarly,
the range of ϑ∆ values is [−ϑ max

∆
,ϑ max

∆
] with ϑ max

∆
> 0. The

maximal ϑ∆(t) value, ϑ max
∆

, defines the vertical span of the
path. See Fig. 1 and 3 for a graphical representation.
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Fig. 3. A generic inclined path with average position (ϕc,ϑc) plotted in the
(ϕ-ϑ)-plane. The ϕ and ϑ coordinates are depicted as seen from the ground
unit and looking at the wing, note the orientation of the ϕ axis. A generic
point on the left half path is shown as a black dot. The angle β defines the
inclination of the path, whose symmetry line is shown as dash-dotted line.

The dynamics of the system can generally be described as

ẋ = f (x,u,ϕW ,W0,Z0,α) (2)
y = g(x,u) ,

where x denotes the states, u the control input, and y the
measured output. The wind cannot be easily measured or
estimated, hence we assume that the wind direction ϕW and
parameters W0, Z0, α are not precisely known. The control
input u is computed by the controller K, which is a discrete-
time system with internal state z, input y, and parameters Θ.

K :
{

z(τ +1) = hz(z(τ),y(τ),Θ(τ))
u(t) = hu(z(τ),y(τ),Θ(τ)), ∀t ∈ [τTs,(τ +1)Ts)

,

where τ ∈ N is the discrete sampling instant and Ts the
sampling time. The parameters Θ contain specifications of the
path to be flown by the wing, namely the average position of
the path (ϕc,ϑc), its spans ϕmax

∆
and ϑ max

∆
, and inclination β :

Θ
.
= (ϕc,ϑc,ϕ

max
∆ ,ϑ max

∆ ,β ) , (3)

It is assumed that the controller K is able to attain such
specifications, see e.g. [23].

The average power P̄ produced by an AWE generator with
generators on the ground during one full path with period T
is

P̄ =
1
T

∫ T

0
ṙ(t)F(t)dt ,

where ṙ is the reel-out speed of the tether and F(t) is the
traction force at time t. As it is done in several previous work,
see e.g. [3], [13], we consider power production at a constant
reel-out speed. Hence, we obtain:

P̄ = ṙ F̄ ,

where

F̄ =
1
T

∫ T

0
F(t)dt . (4)

Thus, in this framework the maximization of the average
traction force implies maximization of the average power
produced during the path. This also holds for systems with
on-board generation where turbines are installed on the wing,
since the obtained apparent wind speed is directly related to
the traction force [3].

In the considered settings, F̄ is a function of the controller’s
parameters Θ, i.e. our decision variables, and of the wind field,
described here by its direction ϕW and wind shear parameters
W0, Z0, α , which are uncertain. Our aim is to find the
parameters Θ such that the average traction force (hence the
average power) is maximal. The related optimization problem
can be formulated as

max
Θ

F̄(Θ,ϕW ,W0,Z0,α) . (5)

The exact solution of (5) would require the precise knowl-
edge of the wind profile and direction, which are not assumed
to be available here. Light detection and ranging (LIDAR)
systems could be used to gather information on the wind
profile and direction. However, apart from their relatively high
cost, these systems provide a measurement of the wind along a
single direction, so that three beams should be coordinated to
obtain a measure of the wind vector at a single point in space.
Such information would be valuable to have an approximate
idea of the wind field, but it would be still too scarce to
optimize the flown path. Therefore, we will propose a strategy
where the wind at the wing’s location does not need to be
measured. If available, a LIDAR could then be used to obtain
a first estimate of the wind direction and speed to initialize
our method. In order to tackle this problem, we proceed in
two steps. At first, we analyze the influence of Θ on the
average traction force; then, on the basis of such analysis
we derive a real-time optimization/adaptation algorithm, to be
used on top of controller K, able to solve (5) by dealing with
the uncertainty of the wind direction and profile, exploiting
the measure of the traction force acting on the tethers. For
simplicity, in the following we assume the tether length r to
be constant, which is a special case of a constant reel-out
speed.

III. SENSITIVITY ANALYSIS OF THE
CROSSWIND TRACTION FORCE

In this section, we will first investigate the properties of
the average traction force for a flown path using a simplified
model. The advantage of such a model is that it allows one to
carry out an analytical study of the traction force as a function
of the parameters Θ. The results of this first analysis are then
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compared to simulations of a dynamical non-linear point-mass
model of the system. The latter is derived from first principle
equations and includes effects from gravity and inertial forces.

A. Analysis of the traction force with a simplified model

A simplified model to estimate the traction force of a
tethered wing depending on its location has been introduced
in [3] and subsequently refined in several contributions, for a
detailed derivation see e.g. [3], [24]. According to this model,
for a constant reeling speed and fixed values of W0,Z0,α , the
traction force F is a function of the current location of the
wing and of the wind direction:

F (ϑ ,ϕ,ϕW ) = C v(ϑ)m(ϕ−ϕW ) , (6)

where

C = 1
2

ρACLE2
eq

(
1+

1
E2

eq

) 3
2

(7)

v(ϑ) =W (ϑ)2 cos(ϑ)2

m(ϕ−ϕW ) = cos(ϕ−ϕW )2

and

Eeq =
CL

CD,eq
=

CL

CD +
CD,lAl

4A

. (8)

In (7)-(8), the air density is indicated by ρ , A is the wing
reference area, CL is the wing’s lift coefficient, CD,eq is the
equivalent drag coefficient, accounting for the drag of the
wing and the added drag by the cable. CD,l is the drag
coefficient of the cable and Al = nl r dl is the cable reference
area, where nl is the number of lines holding the wing, r
is the line length, and dl is the line diameter. The values
of CL and CD generally depend on the angle of attack and
its derivative, which influence the aerodynamics of the wing.
However, these coefficients typically do not change much dur-
ing energy generation. Hence, we assume them to be constant
for simplicity, as considered e.g. in [11]. For a given wind
field, the simplified model (6) provides us with a theoretical
value of the traction force as a function of the wing’s location.
Such a theoretical value is obtained by neglecting all forces
except for the aerodynamic ones and the cable tension.

By inspection, function m(ϕ − ϕW ) : (ϕW − π/2,ϕW +
π/2) 7→ (0,1] in (6)-(8) is quasi-concave with its maximum
at ϕ = ϕW . Function v(ϑ) : (0,π/2) 7→ R+ consists of two
parts. The first part, the wind profile W (ϑ), is assumed to
be monotonically increasing, according to the wind shear
model in (1), and the second part, cos(ϑ)2, is also a quasi-
concave function in the domain of v. By using the second-order
condition for quasi-concave functions [25], it can be verified
that the product (see Fig. 4 for a typical example) is still quasi-
concave and that the point (ϕ,ϑ) providing maximal traction
force for (6) is given by (ϕ,ϑ) = (ϕW ,arctan

(√
α
)
).

Equations (6)-(8) allow us to carry out an analysis of the
traction force as a function of the parameters Θ. By introduc-
ing the index k = 1, . . . ,N, which identifies the samples of a
discretized path with sampling time Ts, any sampled position
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Fig. 4. Quasi-concave function v(ϑ) with r = 30m, W0 = 5m/s, Z0 = 4m,
and α = 0.1.

in the path can be expressed as (ϕc +ϕ∆(k),ϑc +ϑ∆(k)). The
discrete form of the average traction force (4) can then be
written as

1
T

∫ T

0
F(t)dt ' 1

NTs

N

∑
k=1

F(k)Ts =
1
N

N

∑
k=1

F(k) .

The average traction force F̄ for one period of the path is thus
given by

F̄(Θ,ϕW ,) =
1
N

N

∑
k=1

C v(ϑ(k))m(ϕ(k)−ϕW ) , (9)

with ϑ(k) = ϑc +ϑ∆(k)
ϕ(k) = ϕc +ϕ∆(k)

.

For the following analysis, we focus on the dependence of
F̄ on ϕc, ϑc, ϕmax

∆
, and ϑ max

∆
only, and fix the inclination β = 0

(see Fig. 3). Since the wing is assumed to fly within the wind
window, we limit the analysis to the following ranges:

ϕc ∈ (ϕW −π/2,ϕW +π/2)
ϑc ∈ (0,π/2)

ϕ
max
∆ ∈ (0,π/2− (ϕc−ϕW )]

ϑ
max
∆ ∈ (0,min(ϑc,π/2−ϑc)]

In Fig. 5, the average traction force (9) as a function of
ϕc−ϕW for three different values of ϑc is shown. Note that
the forces in all the plots have been normalized with the
maximum force value of the sample in order to emphasize the
independence of the qualitative behavior on the wind: stronger
winds influence only the numerical values, but the shape of
the curve remains unchanged. By changing the elevation of the
path, ϑc, the value of F̄ changes according to the value of v(ϑ)
from (7) (see Fig. 5). In particular, as it can be inferred by
the above-reported discussion on the concavity of the force as
a function of ϑ , there is a single value of ϑc that maximizes
the traction force, and this value depends only on the wind
profile and not on the misalignment (ϕW −ϕc).

From (9), we can notice that the contribution of the left
and right half-paths to the average traction force F̄ are not
the same if ϕc 6= ϕW . We therefore derive the average traction
forces for each of the half-paths, and investigate the influence
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Fig. 5. Average traction force computed with the simplified model with the
spans of the path ϕmax

∆
= 0.15rad and ϑ max

∆
= 0.05rad. Solid: ϑc = 0.1rad,

dashed: ϑc = 0.3rad, and dotted: ϑc = 0.5rad.

of the parameters Θ on their difference. The average traction
forces of the left and right half paths are:

F̄L =
1

NL

N

∑
k=1
{Cv(ϑ(k))m(ϕ(k)−ϕW )|ϕ(k)≥ ϕc}

F̄R =
1

NR

N

∑
k=1
{Cv(ϑ(k))m(ϕ(k)−ϕW )|ϕ(k)< ϕc} ,

(10)

where F̄L stands for the average traction force of the left half
and F̄R for the right half. NL and NR are the number of samples
on the left and right half paths, respectively, i.e. N = NL +NR.

The traction force difference between the left and right half-
paths, using (7) and (10), is given, after some manipulations
and assuming a sufficiently small sampling time, by

∆F̄(Θ,ϕW ) = F̄L− F̄R '−
C
2

sin(2(ϕc−ϕW ))B , (11)

where the positive term B is given by

B =
1

NL

N

∑
k=1
{v(ϑ(k))sin(2|ϕ∆(k)|) |ϕ(k)≥ ϕc}

+
1

NR

N

∑
k=1
{v(ϑ(k))sin(2|ϕ∆(k)|) |ϕ(k)< ϕc} .

From (11) it can be seen that the difference in traction force is
zero only if ϕc = ϕW , i.e. the path is centered w.r.t. the wind,
and that it is monotonic for |ϕc−ϕW | ≤ π/4. Moreover, paths
with an average position on the left of the wind direction, as
seen from the anchor point of the tether (i.e. ϕc−ϕW > 0),
have a negative ∆F̄ , and vice-versa, see Fig. 6 where the left-
right difference in average traction force (11) as a function of
ϕc−ϕW for different values of ϑc is shown. This comes from
the fact that the half-path farther away from the wind direction
experiences a smaller fraction of the incoming wind in tether
direction, thus generating less traction force. In Fig. 7, a plot
of ∆F̄ for different values of the half-span ϕmax

∆
is shown. By

changing the span of the path, the magnitude of ∆F̄ changes.
For larger spans, the difference between the average traction
force given by the left and right half-paths gets larger, since the
average wind conditions for the two halves differ more. The
lateral span of the path has also an influence on the average
traction force, see Fig. 8, i.e. wider paths provide smaller
average traction force. Thus, a path which has a higher traction
force due to its small span will also have a smaller magnitude

in ∆F̄ (compare Figs. 7 and 8). Note that the value of ϑc has
an effect on the average traction force difference, too, but this
is not as large as that of the span of the path in ϕ direction
(compare Figs. 6 and 7).

The span ϑ max
∆

also has an influence on the average traction
force F̄ and on the difference of left-right average traction
forces ∆F̄ as shown in Fig. 9 and Fig. 10, respectively.
Comparing Figs. 7-10, it can be seen that the span ϕmax

∆
has

more influence on the difference between left and right average
traction forces whereas ϑ max

∆
has more influence on the total

average traction force.
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∆
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.)

Fig. 6. Difference of average traction force ∆F̄ computed with the simplified
model, with spans of the path ϕmax

∆
= 0.3rad and ϑ max

∆
= 0.05rad. Solid:

ϑc = 0.1rad, dashed: ϑc = 0.3rad, and dotted: ϑc = 0.5rad.
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Fig. 7. Difference of average traction forces ∆F̄ computed with the simplified
model, with ϑc = 0.2, ϑ max

∆
= 0.1rad, and different values of the lateral span.

Solid: ϕmax
∆

= 0.1, dashed: ϕmax
∆

= 0.3, and dotted: ϕmax
∆

= 0.5.
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Fig. 8. Average traction force F̄ computed with the simplified model, with
ϑc = 0.2, ϑ max

∆
= 0.1rad, and different values of the lateral span ϕmax

∆
. Solid:

ϕmax
∆

= 0.1, dashed: ϕmax
∆

= 0.3,and dotted: ϕmax
∆

= 0.5.
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Fig. 9. Difference of average traction force ∆F̄ computed with the simplified
model, with ϑc = 0.5 and a lateral span of the path ϕmax

∆
= 0.15rad. Solid:

ϑ max
∆

= 0.05rad, dashed: ϑ max
∆

= 0.25rad, and dotted: ϑ max
∆

= 0.45rad.
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Fig. 10. Average traction force F̄ computed with the simplified model, with
ϑc = 0.5 and a lateral span of the path ϕmax

∆
= 0.15rad. Solid: ϑ max

∆
= 0.05rad,

dashed: ϑ max
∆

= 0.25rad, and dotted: ϑ max
∆

= 0.45rad.

B. Analysis of the traction force with a dynamic model

In this section, we employ a dynamic model to asses, via
numerical simulations, the considerations derived with the
simplified model, and to analyze also the effects of different
path inclinations β . The dynamics f (x,u,ϕW ,W0,Z0,α) are
modeled here by the widely used nonlinear point-mass model
for a tethered wing, see e.g. [11]–[13], [17], [20], [21]. The
dynamic equations are derived from first principles and the
wing is assumed to be a point with given mass. The tether
is assumed to be straight with a non-zero diameter. The
aerodynamic drag of the tether and half of the tether mass
are added to the wing’s drag and mass, respectively. The
aerodynamic forces are modeled with constant lift and drag
coefficients, and effects from gravity and inertial forces are
included. The wing is assumed to be steered by a change of
the roll angle ψ , which is manipulated by a control system,
and thus, referring to (2), we have u = ψ . The state x of this
system is given by x = (ϕ,ϑ ,r, ϕ̇, ϑ̇ , ṙ).

In order to carry out the simulations, the controller K
is designed using the approach described in [23]. Such a
controller is able to make the wing fly on a symmetric figure
eight path with the required spans and inclination, and with
the average position being a given reference location (ϕc,ϑc).

Consistently with Section III-A, the average traction forces
generated during the full path and the average traction force
generated on the left and right half paths are computed from

the simulation results:

F̄(Θ,ϕW ) =
1
N

N

∑
k=1

F(k) (12)

F̄L =
1

NL

N

∑
k=1
{F(k) |ϕ(k)≥ ϕc}

F̄R =
1

NR

N

∑
k=1
{F(k) |ϕ(k)< ϕc}

(13)

The traction force difference between the left and right half
path is

∆F̄(Θ,ϕW ) = F̄L− F̄R . (14)

As done before, we want to study how the average traction
force and the difference in average traction force between
the left and right half paths change for different values of
Θ, including this time also the inclination β , in the range
β ∈ [−π/2,π/2].

Comparing the traction force for various ϕc and ϑc with
a symmetric horizontal path shape (i.e. β = 0) shows good
qualitative correspondence with the simplified model used in
Section III-A. See Fig. 11 for a comparison of the two models.
The numerical values differ slightly between the two models
due to the assumptions made in the simplified model but
more importantly the qualitative shape stays the same, thus
indicating that gravity and inertial forces do not have a large
impact on the average forces. If the path is inclined, i.e. β 6= 0,
the average traction force does not increase more than 2% for
ϕc around the optimum of F̄ , see Fig. 12, but the values of
∆F̄ change significantly. In fact, when the path is inclined, the
traction force difference is not anymore zero for ϕc−ϕW = 0.
A positive value of β corresponds to a negative value of
ϕc−ϕW such that ∆F̄ = 0 and vice versa, see Fig. 13. The
effect of larger spans in the presence of β 6= 0 is the same
as the one observed in Section III-A, e.g. a larger value of
ϕmax

∆
increases ∆F̄ for fixed values of the other parameters. As

expected from the analysis with the simplified model, stronger
wind or different tether length r do not affect the qualitative
results.
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Fig. 11. Average traction force F̄ , as a function of ϕc−ϕW , computed with the
simplified model (thin lines) and with the point-mass model (thick lines) for
three different values of ϑc: ϑc = 0.3 (solid), ϑc = 0.5 (dashed), and ϑc = 0.7
(dotted).
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Fig. 12. Traction force F̄ computed with the point-mass model, as a
function of ϕc − ϕW , with ϑc = 0.4. There are five lines with values of
β = {0,0.3,0.6,0.9,1.2} rad. The resulting shapes of the path are depicted
underneath the traction force curve; the corresponding y-axis, giving the values
of ϑ for the flown path, is depicted on the right of the plot.
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Fig. 13. Traction force difference ∆F̄ computed with the point-mass model
for ϑc = 0.4, ϕmax

∆
= 0.24, and different inclinations β = 0 (solid), β = 0.3

(dashed), β = 0.6 (dot-dashed), and β = 0.9 (dotted).

C. Discussion

The results of the previous two sections show that there is a
single optimal average location, denoted as (ϕ∗c ,ϑ

∗
c ), yielding

the maximal average traction force for a given path shape. In
particular, we have ϕ∗c = ϕW , while ϑ ∗c depends on the vertical
wind profile. The average traction force is very sensitive on
the average position of the path. A misalignment of ϕc with
respect to ϕ∗c of roughly 20◦ can lead to a decrease of average
traction force of 15%, while 50% decrease of the force is
obtained for a misalignment of roughly 45◦, see Fig. 5. An
average elevation ϑc 6= ϑ ∗c can also reduce the traction force
by a significant amount, in the same order as for ϕc. As an
example, with an error in both ϕc and ϑc of around 20◦ from
the optimum, the traction force will be reduced by almost
30%.

For horizontal paths (i.e. β = 0), the difference in average
traction force, ∆F̄ , is zero for an average position ϕc =ϕW and
it is monotonically increasing for values of ϕc−ϕW between
π/4 and −π/4. Moreover, the sign of ∆F̄ is the opposite w.r.t.
that of ϕc−ϕW , i.e. ϕc−ϕ∗c . Therefore, if β = 0 the value
of ∆F̄ is a good indicator of the alignment of ϕc with the
wind direction ϕW . As seen in Fig. 12, the inclination has
only a small influence on the traction force, changing it less
than 2% in the interval around the optimum. However, the
average traction force difference between the left and right
half paths is sensitive to changes in β . A positive value of β

can decrease the magnitude of ∆F̄ on the right side of the wind
window up to 75%, while increasing it on the left side by only

around 20%. Thus, with β 6= 0 the difference in traction force
∆F̄ is not anymore zero for ϕc = ϕW , and its sign is not the
opposite w.r.t the sign of the misalignment ϕc−ϕW anymore
(see Fig. 13).

As seen in Fig. 8, increasing the lateral span ϕmax
∆

of the path
by a factor of 5 decreases the average traction force roughly by
10%. A larger lateral span of the path scales up ∆F̄ , but also
decreases the average traction force F̄ . This could lead to the
conclusion that the shorter the lateral span, the better it is in
terms of system operation. This is only partially true. First, a
short span implies sharp turns that induce more drag, slowing
the wing down, hence decreasing the average traction force.
However, this effect is not captured by the point-mass model
considered here, thus leading to the result that paths with very
small span do not lose performance in terms of traction force.
Second, for a short span it might be difficult to infer something
about the wind direction, due to the small value of ∆F̄ . As seen
in Fig. 10, increasing the vertical span ϑ max

∆
of the path by

a factor of 5 decreases the average traction force roughly by
15% and also decreases the magnitude of ∆F̄ . This shows that
a small vertical span ϑ max

∆
of the path is favorable. This has

two advantages. First, the wing does not need to overcome
gravity to climb for a long distance and secondly it will stay
closer to the targeted ϑc position.

In conclusion, the analysis above shows that optimizing
the average position (ϕc,ϑc) yields the largest increase of
average traction force (hence generated power). The shape of
the path, in terms of lateral span and inclination, has only
a relatively small influence on the traction force. Moreover,
even an optimal path, in terms of shape, has to be flown
at the optimal location in order not to lose a large fraction
of the traction force. In the next section, we exploit these
considerations to derive an algorithm able to optimize in real-
time the average path location and to adapt it in the presence
of changing wind direction ϕW , using only the measurements
of the traction force on the tethers.

IV. REAL-TIME OPTIMIZATION AND ADAPTATION
ALGORITHM

As seen in the previous section, the average location of a
flown path has the largest influence on the generated traction
force among all of the considered parameters. Thus we aim
to find the best average location in ϕ and ϑ for a given
path shape, in order to maximize the average power output
of the AWE system. Since the inclination of a path has an
adverse effect on ∆F̄ and does not affect F̄ much, we only
consider horizontal paths with β = 0. Moreover, an inclined
path can increase the difference between the maximal and
minimal instantaneous traction force F(t) between the left
and right half-loops, leading to an asymmetric wear of the
system’s components. Enforcing a horizontal path can be done
in practice with a suitable controller as in [23]. Motivated by
these results, in the following we take only (ϕc,ϑc) as free
optimization variables out of the considered parameters Θ in
(3), while we fix the half-span ϕmax

∆
and the vertical span ϑ max

∆

to prescribed values and select β = 0.
Recall that we assume that the underlying controller K

accepts reference values for the average location where the
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path should be flown. The algorithm we present next will then
compute such reference values in order to solve the following
optimization problem:

max
ϑc,ϕc

F̄(ϕc,ϑc,ϕW ,W0,Z0,α) . (15)

In Fig. 14, a block diagram of such a system can be seen.

Fig. 14. A block diagram depicting the control system together with the
optimization and adaptation algorithm.

We assume that the parameters ϕW ,W0,Z0,α , specifying
the wind direction and profile, are not known, hence the
optimization problem (15) is uncertain due to the lack of
information on ϕW and the wind shear profile. On the other
hand, we assume that the traction force F is measured, as well
as the position of the wing w.r.t. the ground unit. Hence the
values of F̄ and ∆F̄ for each flown path are measured.

The analysis presented in the previous section indicates that
we can reformulate the optimization problem (15) as

max
ϑc

[
max

ϕc
F̄(ϕc,ϑc,ϕW ,W0,Z0,α)

]
, (16)

i.e. (16) can be maximized separately in ϕc and ϑc, since the
value of ϕc that maximizes the average traction force, for given
ϑc, depends only on ϕW and not on ϑc itself and, vice-versa,
the optimal value ϑ ∗c does not depend on ϕc. Also, note that
for horizontal paths we have, irrespective of ϑc,

argmax
ϕc

F̄(ϕc,ϑc,ϕW ,W0,Z0,α) = argmin
ϕc
|∆F̄(ϕc,ϑc,ϕW ,W0,Z0,α)|

as it can be derived from (9) and (11) and from the results in
Section III-B. Therefore, the problem (15) can be solved by ad-
dressing two subsequent optimization problems independently.
We will first exploit the measure of ∆F̄ to find the best location
in ϕ , i.e. to compute argminϕc |∆F̄(ϕc,ϑc,ϕW ,W0,Z0,α)|, and
then the measure of F̄ to find the best location in ϑ , i.e. solving
(16) with the previously found optimal ϕc. The advantage of
using the differences in average traction forces to find the
optimal ϕc, instead of using only F̄ , is that a single value of
∆F̄ , i.e. a single flown path, gives already an indication on
the sign of the misalignment ϕc−ϕW , hence on the search
direction for ϕc. By using only F̄ , the values obtained by two
paths with different ϕc would be needed to estimate the search
direction, which would take at least twice as long. Thus, the
adaptation in ϕ direction is sped up by looking at the traction
force difference ∆F̄ instead of the total average traction force
F̄ only.

A. Algorithm Outline

We present a short outline of an algorithm able to adapt
the average position of a path, such that it converges to the

optimum. The algorithm iterates over subsequent complete
paths flown by the wing, and exploits the values of F̄ and
∆F̄ measured in the current and past paths. See Algorithm 1.
A more detailed algorithm that can be used in practice, and

Algorithm 1: Optimization/Adaptation

1 while true do
2 if one complete loop flown then
3 calculate ∆F̄ and F̄
4 if |∆F̄ |> ∆F̄min then
5 min

ϕc
|∆F̄ |

6 update ϕc
7 else
8 max

ϑc
F̄

9 update ϑc
10 end
11 end
12 end

has been tested in experiments, is given in the Appendix. The
algorithm uses a coordinate search approach, see e.g. [26],
to solve the two subsequent optimization problems, since no
gradient information is available. The algorithm first checks
if the absolute value of the traction force difference, ∆F̄ ,
is smaller than some margin, ∆F̄min. The latter is used as
a stopping criterion for the ϕ direction adaptation. If this
condition is not met, the algorithm adapts the value of ϕc
in order to reduce the absolute value of the force difference,
|∆F̄ |. Otherwise, the algorithm searches for the best vertical
position ϑc, without changing ϕc. Apart from the convergence
tolerances (see the Appendix for details), the scalar ∆F̄min
is the only tuning parameter in our real-time optimization
approach. If ∆F̄min is very small, the algorithm will tend to
spend most of the time correcting the azimuthal position of
the loop and the ϑc position would improve slowly. Vice versa,
if ∆F̄min is large, most time is spent in correcting the average
elevation position of the flown path.

V. EFFECTS OF MEASUREMENT ERRORS AND
TURBULENCE

The algorithm introduced in the previous section exploits the
measurements of the tether force and wing position, and its
performance will clearly depend on the accuracy of the related
sensors, as well as on the intensity of wind turbulence. It is
therefore of interest to study the effects of such phenomena.

First, we start with the description of the expected sensor
errors, followed by an analysis of how much these errors
affect the adaptation algorithm. Secondly, we will present the
effects of added turbulence on the wind profile, and introduce
measures to counteract its effects. We carry out these analyzes
mainly with the simplified traction force model used in section
III-A. We will also rely on simulation results employing the
point-mass model of the wing to highlight specific effects,
using a standard turbulence model which is common in wind
turbine analysis.
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A. Sensor Errors

For this analysis we assume that line angle sensors, mea-
suring the orientation of the tethers with respect to the ground
unit, are used to estimate the position of the wing. Moreover,
an on-board inertial measurement unit can additionally be
used to improve position data [27]. The line angle sensors are
assumed to be optical encoders measuring the angle between
the tethers and the ground, for the elevation angle ϑ , and
between the projection of the tethers on the ground and the
symmetry axis of the ground unit, for the azimuthal angle ϕ .
Such encoders have various sources of errors and in general
the accuracy is usually around ±1 count, e.g an encoder with
a 10 bit resolution has an additive error of less than 0.4◦.
Assuming that the error at each time step is i.i.d. with zero
mean, we can expect that the error on the center location of
the path in ϕ and ϑ converges to zero for high sampling rates.
Thus the calculation of the average traction force and average
traction force difference is not influenced by the line angle
measurements.

We next consider errors affecting the force measurements.
Since the tether force is the main feedback variable used by our
algorithm, we expect the related errors to be more critical for
the performance of our adaptation approach. The force sensors
are load cells installed at ground level, see e.g. [28] for details.
The related measurement error is assumed to consist of two
components, an additive term and a multiplicative term:

F̃(k) = F(k)(1+δF)+ εF(k)

δF accounts for a calibration error of the signal gain of the
sensor and εF is an additive bias accounting for noise whose
mean is a calibration offset. It is assumed that |δF |< 1. Thus,
for a sufficiently small sampling time the effects of the additive
term εF on the average force become constant, such that this
error term has no influence on the shapes of the average
traction force and average traction force difference. Similarly,
the multiplicative term δF does not influence the qualitative
behavior of the average forces. While this is quite obvious for
the total force, we show next that also the shape of the force
difference is not affected.

The difference in average traction force can be written as

∆ ˜̄F = ˜̄FL− ˜̄FR (17)

where

˜̄FL =
1

NL

N

∑
k=1
{Cv(ϑ(k))m(ϕ(k)−ϕW )(1+δF )+ εF (k)|ϕ(k)≥ ϕc}

˜̄FR =
1

NR

N

∑
k=1
{Cv(ϑ(k))m(ϕ(k)−ϕW )(1+δF )+ εF (k)|ϕ(k)< ϕc} .

(18)

Equations (17)-(18) can be simplified to

∆ ˜̄F(Θ,ϕW ) = ˜̄FL− ˜̄FR '−
C
2

sin(2(ϕc−ϕW ))B̃ , (19)

where the term B̃ is given by

B̃ =
1

NL

N

∑
k=1
{v(ϑ(k))sin(2|ϕ∆(k)|)(1+δF)|ϕ(k)≥ ϕc}

+
1

NR

N

∑
k=1
{v(ϑ(k))sin(2|ϕ∆(k)|)(1+δF)|ϕ(k)< ϕc}

From (19) we see that the qualitative behavior of ∆ ˜̄F as a
function of ϕ is the same as that of the true values, hence the
alignment in ϕ direction is not affected by the force sensor
errors, see Fig. 15 for a simulation example.
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Fig. 15. Simulation results. Difference in average traction force ∆F̄ as a
function of the misalignment between the average loop location and the wind
direction, computed using the point-mass model with δF = 0.15, εF = 250±
100 N (normally distributed). The true ∆F̄ (dashed) and measured ∆ ˜̄F (solid)
are shown.

For the alignment in ϑ direction, we consider the difference
of the average traction force of two loops at different elevation
angle ϑc, since such a difference is used in our approach
to compute the search direction for ϑc. Also in this case, it
can be shown that the considered force sensor errors do not
affect the alignment algorithm. In fact, the additive error term
cancels out again and the multiplicative error only changes the
magnitude of the difference of the average forces measured
in the two flown loops, but not the sign (which is used
in the optimization/adaptation algorithm), i.e. the qualitative
behavior of the measured force as a function of ϑc is the
same as that of the true force, see Fig. 16 for an example.
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Fig. 16. Simulation results. Average traction force F̄ as a function of the
average loop elevation ϑc, computed using the point-mass model with δF =
0.15, εF = 250±100 N (normally distributed). The true F̄ (dashed) and the
measured ˜̄F (solid) are shown.

B. Turbulences

In a real-world system, the incoming wind will never be
perfectly smooth and some fluctuations, such as wind gusts or
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turbulences, will be present. Using the wind shear profile (1),
this can be expressed as

Wt(k,ϕ,ϑ) =W0

(
r sin(ϑ)

Z0

)α

+W∆(k,ϕ,ϑ)

where Wt stands for the wind profile with added turbulences
and W∆ is the change in wind speed around the nominal
wind value due to turbulences for a given point in time and
space. For the sake of simplicity of notation, we omitted the
sampling time k for the position angles ϕ and ϑ . As it can
be seen from (6), changes in the wind speed influence the
traction force quadratically. Thus, W∆ will significantly affect
the traction force developed by the wing and, consequently, the
performance that can be achieved by the adaptation algorithm.

Turbulences are a very complex phenomena, for which a
theoretical analysis is difficult to carry out. On the other
hand, there exist state-of-the-art turbulence models readily
available in public toolboxes, such as TurbSim [29]. These
can be used to study the effects of turbulences on the system
and on the adaptation algorithm via simulations. The wind
fields generated with TurbSim, which is a tool used for wind
mill analysis, use a measure for the turbulence strength called
intensity I, defined as

I =
u′

U
,

where U is the mean velocity and u′ is the root-mean-square
of the turbulent velocity fluctuations. A turbulence intensity of
10% and more is generally considered as strong and 1% to
5% as medium. The generated wind fields provide us with a
value of W∆ at each sampling time and any point in space. We
used TurbSim with the Kaimal power spectrum to generate the
turbulence values W∆, see Fig. 17 (details about the turbulence
model can be found in [29]).
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Fig. 17. Simulated turbulent wind speed in longitudinal direction over time
for three different turbulence intensities with a average wind speed of 5.4m/s,
1% (solid), 5% (dashed), and 10% (dotted).

Due to the turbulent wind, the traction forces experienced
during flight will unlikely be equal to their nominal values F̄
and ∆F̄ , rather they will lie in an interval around such nominal
values, see Figs. 18 and 19.

Regarding the ϕc alignment, i.e. seeking the optimal az-
imuthal position of the flown path, the presence of turbulence
gives rise to a range, ∆ϕc, of ϕc values for which a measure
of ∆F̄ = 0 is possible:

∆ϕc = max(ϕc|∆F̄ = 0)−min(ϕc|∆F̄ = 0) ,

Thus ∆F̄ = 0 does not imply that the average loop location
is aligned with the nominal wind, i.e. ϕc = ϕW . Within these
azimuthal average positions, the optimization algorithm might
make a step in the wrong direction, see Fig. 18. Estimating
∆ϕc is not straightforward, since it depends on the current wind
situation at the wing’s position. However, we can reduce the
size of ∆ϕc at the expense of convergence speed. In particular,
an intuitive idea to increase the robustness of the approach
against turbulences is to use averaged quantities over more
than a single flown loop. This means, instead of comparing the
values of a single loop, Navg > 1 loops are measured before the
average values of ∆F̄ and F̄ are calculated. With this approach,
equations (12) and (14) become:

F̄(Θ,ϕW ) =
1

NavgN

Navg

∑
j=1

N

∑
k=1

Fj(k)

∆F̄(Θ,ϕW ) =
1

Navg

Navg

∑
j=1

F̄L, j− F̄R, j ,

where Fj(k) stands for the instantaneous traction force during
loop j at time k, and F̄L, j and F̄R, j are the averaged force
values of the left and right half loop measured during the j-th
completed loop, similar as in (13).

This modification can easily be integrated into Algorithm 1,
by changing the first if statement on line 2, which then exploits
the data from Navg loops, instead of just one, to calculate the
average force values.

In Fig. 18, the values of ∆F̄ as a function of ϕc in a turbulent
wind flow are shown, for the case Navg = 1 (gray dots). The
same figure shows the envelope of ∆F obtained with Navg = 5.
It can be noted that in this case the use of Navg = 5 decreases
∆ϕc by almost a factor of two.

An example of the effect that Navg has on ∆ϕc for different
turbulence intensities is shown in Fig. 20. For this analysis,
100 different turbulent wind fields were generated. The point-
mass model controlled by controller K was then simulated for
300s. The collected data was used to estimate the range ∆ϕc.
It can be seen that Navg = 5 gives already a good improvement
for strong turbulences.

Finally, the presence of turbulence gives place to an enve-
lope of uncertain values also for the total traction force. Also
in this case, the use of more loops for the averaging leads to
a reduction of such uncertainty, as shown in Fig. 19.

C. Discussion

We showed that errors in the line angle and force sensors do
not impair the performance of our adaptation algorithm. For
the line angle sensor errors, we only considered an additive
error with zero mean. Systematic constant errors, such as
misalignment of the sensors, do not affect the performance
of the algorithm since they would introduce an offset in the
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Fig. 18. Simulation results. Average traction force differences using the point-
mass model for different values of ϕc, with ϑc = arctan(

√
α), W0 = 5m/s,

I = 5%. ∆F̄ with no turbulences (solid), ∆F̄ for turbulent wind flow (gray
dots), the envelope of ∆F̄ obtained by using Navg = 1 (dash-dot) and Navg = 5
(dotted), and ∆ϕc (horizontal line) for Navg = 1 (between circles) and for
Navg = 5 (between squares).
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Fig. 19. Simulation results. Average traction forces using the point-mass
model for different values of ϑc, with ϕc = ϕW , W0 = 5m/s, I = 5%. F̄ with
no turbulences (solid), F̄ for turbulent wind flow (gray dots), the envelope of
F̄ obtained by using Navg = 1 (dash-dot) and Navg = 5 (dotted).
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Fig. 20. Simulations results. Value of ∆ϕc with different turbulence intensities
for different values of Navg obtained using the point-mass model. Three
different turbulence intensities are shown: 1% (solid), 5% (dashed), 10%
(dotted).

TABLE I
POINT-MASS MODEL PARAMETERS USED

FOR THE NUMERICAL SIMULATIONS

A = 9 m m = 2.45 kg r = 30 m
nl = 3 dl = 0.003 m

CL = 0.8 CD = 0.134 CD,l = 1.2
W0 = 5 m/s Z0 = 4 m α = 0.1

force-position curves without altering their qualitative shape,
which is exploited by our approach.

For the force sensor errors, we considered a constant mul-
tiplicative error and an additive error. Again, these errors do
not affect the adaptation algorithm, since the qualitative system
behavior is unaffected. Note that we assumed in both cases a
fast sampling rate such that errors from high frequency noise
get averaged out over the course of one flown (half-) path.
To this end, in our experience a sampling rate of 50Hz is
sufficiently large to make errors on the computation of the
average traction forces negligible.

As a last point, we analyzed the effect of turbulent wind
on the adaptation algorithm using a dynamical point-mass
model in simulation where the turbulent wind was generated
with TurbSim. We showed that turbulences can cause the
algorithm to make steps in the wrong direction around the
optimal average location. The range of positions where this can
happen increases with the turbulence intensity I, but it can be
reduced in size by using averaged traction forces over multiple
flown loops. Additionally, the stopping criterion ∆F̄min for the
azimuthal position adaptation (see Algorithm 1) can be used
as a tuning parameter to reduce steps in the wrong direction.

VI. NUMERICAL SIMULATIONS AND EXPERIMENTAL
RESULTS

We tested the adaptation approach in simulation using the
same point-mass dynamical model of the system as in [13] and
the controller presented in [23]. The results indicate that the
approach is able to tune in real-time the underlying controller
K in order to follow a changing wind direction and adapt
the paths’ average elevation according to the (unknown) wind
profile. The main parameters of the model are listed in Table I.

According to the simulations, the approach performs well
in a turbulent wind field with an appropriate choice of Navg. A
plot with the time course of the average location of the path
and the wind direction in such conditions with Navg = 3 and
Navg = 5 can be seen in Fig. 21.

Additionally, simulation results show that wider loops per-
form better in turbulent wind situations. This is due to the
fact that each half-loop takes longer to complete and thus
turbulences get averaged out more than on shorter paths in
time. This goes along the same direction as increasing Navg.

The choice of Navg and the loop period T influence the rate
of convergence of the algorithm for changing wind situations.

Experimental test flights using the presented algorithm have
also been carried out on a small scale prototype (shown in
Fig. 22), built at UC Santa Barbara, with promising results.
The prototype used two different three-line, inflatable kites
with a constant tether length of r = 30m. The employed power
kites were Airush One 6m2 and 9m2 kites. Due to the short
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Fig. 21. Simulation results obtained by applying the proposed algorithm on
the point-mass model with turbulent wind with intensity 5% with Navg = 3
(black) and Navg = 5 (light gray). The solid and dashed lines represent the
average ϕ and ϑ positions of the path, ϕc and ϑc, respectively. The gray
dotted line shows the true, turbulent wind direction.

Fig. 22. Small-scale prototype built at the University of California, Santa
Barbara, to study the control of tethered wings for airborne wind energy.

lines, a measurement of ϕW with good accuracy, to be used
to evaluate the performance of the adaptation approach, was
possible with an anemometer installed at 4m above the ground.
The algorithm was set to use Navg = 3. For more details on
the test setup, see [23] and [28].

A test flight with the 9m2 kite is reported in Figs. 23-26.
The underlying controller was initialized to fly a path with a
misalignment of roughly 20◦ from the wind direction ϕW and
with a overly high elevation. The algorithm was able to correct
the misalignment with the wind direction in the first 150s,
i.e. roughly 30 flown loops, and then to adapt the azimuthal
position according to wind direction changes while improving
the average elevation, see Fig. 23. The initial and final paths of
the wing with the measured trajectory (ϕc,ϑc) can be seen in

Fig. 24. Note that although the paths seem not to differ much
in position, yet the force increase is significant, see Fig. 25,
as expected from the sensitivity analysis presented in section
III. The corresponding wind speed during the test flight can
be seen in Fig. 26, with an average value of 5.3m/s. Note that
due to the alignment with the wind the loop becomes more
symmetric, thus indicating that measures of elapsed time or
speed of the wing in a half path could also potentially be used,
instead or in addition to the force, to detect a misalignment
with the wind direction.

A test flight with the 6m2 kite, which was initially com-
manded to fly a path with a misalignment of roughly 25◦

from the wind direction ϕW and with a overly high elevation,
is reported in Figs. 27-30. Also in this case, the algorithm
was able to first correct the misalignment with the wind and
then to improve the traction force by changing ϑc. A short
movie of the test with the adaptive algorithm and this kite is
also available online [30]. In Fig. 27, the time courses of the
wind direction ϕW and of the average position ϕc and ϑc of
the path, modified in real-time by the proposed algorithm, can
be seen. In Fig. 28, the corresponding average traction force
for each full path is shown. It can be noted that the average
force increases significantly thanks to the adaptive approach.
The time course of the wind speed magnitude is shown in
Fig. 29. Finally, Fig. 30 shows two measured flown paths, at
the beginning and at the end of the test flight, together with
the optimal location in terms of average angle ϕc and with the
measured trajectory of (ϕc,ϑc).
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Fig. 23. Experimental test results using a small-scale prototype with a 9m2

kite. The ϕc position (solid) and ϑc position (dashed) of the paths, and the
wind direction ϕW (dotted) are shown.

VII. CONCLUSIONS

We presented a study of the average traction force generated
by a tethered wing and, based on the results of such analysis,
we proposed an algorithm to adapt and optimize in real-time
the average position of the flown path without exact knowl-
edge of the wind direction and profile. The algorithm is not
dependent on the system configuration, e.g. number of lines
or position of the generator, and it can be used as an extension
of any working controller for a tethered wing, provided that
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Fig. 24. Experimental test results using a small-scale prototype with a 9m2

kite. Initial (dashed) and final (solid) paths flown by the wing corresponding
to the data shown in Figs. 23, 25, and 26. The trajectory of (ϕc,ϑc) (dotted)
and the initial and final (ϕc,ϑc) locations (circles) are shown together with
the optimal ϕ∗c location (dashed-dotted).
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Fig. 25. Experimental test results using a small-scale prototype with a 9m2

kite. Course of the average traction force F̄ .
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Fig. 26. Experimental test results using a small-scale prototype with a 9m2

kite. Course of wind speed measured roughly 4 m above the ground (dotted)
and a moving average over 1 min (solid). The average wind speed was 5.3 m/s.
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Fig. 27. Experimental test results using a small-scale prototype with a 6m2

kite. The ϕc position (solid) and ϑc position (dashed) of the paths, and the
wind direction ϕW (dotted) are shown.
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Fig. 28. Experimental test results using a small-scale prototype with a 6m2

kite. Course of the average traction force F̄ .
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Fig. 29. Experimental test results using a small-scale prototype with a 6m2

kite. Course of wind speed measured roughly 4 m above the ground (dotted)
and a moving average over 1 min (solid). The average wind speed was 4.3 m/s.
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Fig. 30. Experimental test results using a small-scale prototype with a 6m2

kite. Initial (dashed) and final (solid) paths flown by the wing corresponding
to the data shown in Figs. 27-29. The trajectory of (ϕc,ϑc) (dotted) and the
initial and final (ϕc,ϑc) locations (circles) are shown together with the optimal
ϕ∗c location (dashed-dotted).

the controller is able to control the wing in order to fly on a
symmetric horizontal path and to attain a reference position in
terms of average location of the path in the wind window. We
tested the approach both with numerical simulations and real-
world experiments, showing good performance in adapting and
optimizing the system’s operation in the presence of unknown
and changing wind conditions with turbulences. The approach
assumes that a constant line speed is used. If a different
reeling strategy is adopted, like constant torque or speed-
dependent torque, the approach presented here can still be used
with minor modifications, in particular by using the generated
power instead of the traction force as feedback variable.

APPENDIX
DETAILED ADAPTATION ALGORITHM

The outline of the Algorithm 2 below is a more detailed version
of Algorithm 1. Note that this algorithm uses Navg loops to calculate
the average forces. For path-related variables, we use i as the index
standing for the last Navg flown full paths, e.g. F̄(i) is the average
traction force of the last Navg paths and ϑc(i) the average ϑ position
of the last Navg paths. The employed coordinate search method uses
the step sizes δϕ and δϑ for the adaptation of the ϕc and ϑc directions,
respectively. Both step sizes have a defined minimal and maximal
value, denoted by a subscript min or max. At each change in ϕc or
ϑc, the related step size is adapted with a scaling factor c > 1 (if the
step direction is unchanged) or 1/c (if the step direction changes).
Finally, there exists a lower limit for the ϑc value, denoted as ϑ min

c ,
to prevent the wing from flying too close to the ground.
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