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Automatic Retraction and Full Cycle Operation for
a Class of Airborne Wind Energy Generators

Aldo U. Zgraggen, Lorenzo Fagiano, Member, IEEE, and Manfred Morari, Fellow, IEEE

Abstract—Airborne wind energy systems aim to harvest the
power of winds blowing at altitudes higher than what con-
ventional wind turbines reach. They employ a tethered flying
structure, usually a wing, and exploit the aerodynamic lift to
produce electrical power. In the case of ground-based systems,
where the traction force on the tether is used to drive a generator
on the ground, a two phase power cycle is carried out: one phase
to produce power, where the tether is reeled out under high
traction force, and a second phase where the tether is recoiled
under lower load. The problem of controlling a tethered wing
in this second phase, the retraction phase, is addressed here, by
proposing two possible control strategies. Theoretical analyses,
numerical simulations, and experimental results are presented
to show the performance of the two approaches. Finally, the
experimental results of complete autonomous power generation
cycles are reported and compared with first-principle models.

Index Terms—Airborne wind energy, control applications,
control of tethered wings, wind energy, high-altitude wind power,
kite power

I. INTRODUCTION

A IRBORNE wind energy (AWE) systems are an emerging
technology to harvest renewable energy from wind. Their

aim is to harness the energy contained in the strong and steady
winds beyond the altitude reached by traditional wind turbines,
see [1], [2] for an overview. These systems consist of a ground
unit (GU), a wing, and one or more tethers connecting them.

During power production, the wing is flown in a “crosswind
pattern”, i.e. roughly perpendicular to the wind flow, exceeding
the speed of the wind and thus exerting high aerodynamic
forces. The generators can either be placed on-board of the
wing or on the ground inside the GU. On-board generation
systems use propellers driven by the high apparent wind speed
and then transfer the produced power to the ground via an
electrified tether, see e.g. [3]. On the other hand, ground-based
generation systems use the traction force on the cable to spin
a drum installed on the GU and connected to a generator, see
e.g. [4]. In this paper we consider the latter approach.

The wing’s path can be influenced by means of different
technical solutions, which typically give rise to a steering
input corresponding to a change of the roll angle of the wing.
Assuming a straight tether, the path of the wing is restricted
to a spherical surface with a radius equal to the tether length,
confined by the ground and a vertical plane perpendicular
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to the wind direction. This spherical surface is commonly
called “wind window”. Depending on the path flown by the
wing, a higher or lower traction force is experienced. During
crosswind paths a high wing speed can be achieved and thus
a high traction force is exerted. On the other hand, if the wing
is flown on the side of the wind window, i.e. with the tether
roughly perpendicular to the wind direction, a low wing speed
results, and a small traction force is exerted.

These two different flying conditions can be exploited in
ground-based generation AWE systems by flying a two phase
power cycle [5], [6]. In the first phase, called traction phase,
power is produced by flying a crosswind pattern and using the
high traction force to unreel the tether from the drum. Once the
maximum tether length has been reached, the second phase,
called retraction phase, is carried out by moving the wing on
the side of the wind window and then recoiling the lines under
low traction forces. In this way only a fraction of the energy
previously produced is consumed. This approach is considered
by various companies and research groups [4], [7]–[18].

The automatic control of tethered wings plays a major role
for the operation of this kind of system and has been studied in
various publications, see [6], [15], [19]–[26]. Several of these
approaches consider only the problem of flying crosswind
trajectories when energy is produced. However, for ground-
based generation systems also the retraction of the tether has
to be done autonomously. In [6] and [19] two controllers
for the retraction phase, using nonlinear Model Predictive
Control strategies, have been proposed. However, these strate-
gies might be difficult to implement and tune due to their
complexity. Additionally, they assume quite a good knowledge
of the wind speed at the wing’s location, which is hard to
obtain in practice, and they have been tested in simulations
only, assuming that the model used for the control calculation
corresponds exactly to the real system.

In this paper, we tackle the problem of autonomous retrac-
tion phase for ground-based AWE systems by presenting two
possible control approaches, which we tested in real-world
experiments with a small-scale prototype. The first one is an
extension of the approach presented in [25] and it is based on
the notion of the velocity angle of the wing, which represents
its flying direction. As we will show in this paper, this notion
can be adapted such that it can also be used for feedback
control during the retraction phase, when the speed of the
wing relative to the GU is low and the original definition of the
velocity angle is not valid anymore. The resulting controller is
dependent on an estimate of the wind direction at the wing’s
location. We will show that with this approach the wing can
be stabilized at the border of the wind window during the
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retraction phase.
Since an estimate of the wind direction at the wing’s loca-

tion is not straightforward to obtain, we propose an alternative
approach by controlling directly the elevation of the wing. In
order to do so, we derive a new model relating the steering
input to the vertical acceleration of the wing, and we use
such a model for control design. Also this control system is
able to stabilize the wing’s trajectory at a constant elevation
angle and it exploits only directly measurable variables, hence
resulting in a more reliable and robust solution with respect
to the previous one. The considerations above are supported
by simulation results used to compare the two approaches.
Real-world experiments are then presented and analyzed to
evaluate both control strategies. There exists evidence in the
literature [1] that other groups and companies have achieved
autonomous power cycles, however there are no publications
explaining the employed control strategy. By achieving an
autonomous retraction phase, we have been able to test fully
automatic power cycles in experiments, whose results we
compare here to the well-known equations [5] that lie at
the very foundations of the concept of airborne wind energy,
showing a promising matching between mathematical models
and real-world data.

Note that in this work we considered as manipulated inputs
only the steering deviation and the force applied by the ground
generators/motors on the lines, i.e. we did not consider an
active control of the pitch of the wing. The latter can be added
on top of the presented control strategies in order to optimize
the power production, as proposed for example in [27].

The paper is structured as follows. In Section II, we describe
the considered system and the models we use. In Section III
we introduce the two different control approaches for the
retraction phase and discuss the tether reeling scheme. In
Section IV, simulation and experimental results are presented
and discussed for both control approaches. Conclusions and
future developments are given in Section V.

II. SYSTEM DESCRIPTION

The system under consideration is related to the Swiss Kite
Power prototype [7], see Fig. 1. It is an AWE system featuring
ground-based steering actuators with the generators placed
inside the GU. It has three drums with a motor connected
to each one, and it can be used with one, two, and three-line
wings or power kites. In three-line systems, the line wound
around the middle drum, called main line, is connected to the
leading edge of the wing and sustains the main portion of
the traction force. The lines on the other two drums are called
steering lines and are connected to the left and right wing tips.
These two lines are used to influence the wing’s trajectory.
By changing the difference, δ , between the length of the two
steering lines, the desired steering deviation can be issued. A
shorter left line induces a counter-clockwise turn of the wing
as seen from the GU, and vice-versa. The system has a total
rated power of 20 kW; the generator of the middle drum has
a power rating of 10 kW and each of the motors connected to
the drums of the steering lines has a power rating of 5 kW. The
system is operated with tether lengths up to 200 m. We first

recall a dynamical model of the described system, followed
by the definition of the velocity angle γ , which acts as one of
the main feedback variables during the traction phase (for the
details on the controller employed in this phase, we refer the
reader to [25]).

Fig. 1: Front view of the Swiss Kite Power prototype built at
Fachhochschule Nordwestschweiz. The two steering lines, left (red)
and right (blue), are wound around drums connected via a belt drive
to motors mounted below the drums. The center line (yellow) wound
around the main drum is behind the two other drums and is partly
visible below the left steering line’s drum. All three lines are guided
separately via pulleys to the lead-out sheaves, visible at the top. On
the lead-out sheave of the main line a line angle sensor is mounted.
A wind sensor, mounted roughly 5 m above the ground, is visible in
the background.

A. Model Equations

The dynamical model we consider has been widely used
in previous works, see e.g. [6] and references therein. We
will recall the model equations shortly, following the same
notation as in [25] and additionally include a further degree
of freedom to account for the reeling capabilities of the
considered prototype. We will denote vector valued variables
in bold, e.g. Gp(t), where the subscript letter in front of vectors
denote the reference system considered to express the vector
components and t denotes the time dependence.

An inertial frame centered at the GU is denoted as G .
=

(ex,ey,ez), where unit vectors are denoted by e with the
corresponding direction indicated by the trailing subscript
letter. The ex axis is assumed to be parallel to the ground,
contained in the longitudinal symmetry plane of the GU, the ez
axis is perpendicular to the ground pointing upwards, and the
ey axis is such that it forms a right hand system. The wing’s
position vector Gp(t) can be expressed in the inertial frame
using spherical coordinates (ϕ(t),ϑ(t),r(t))) as (see Fig. 2):

Gp(t) =

r(t)cos(ϕ(t))cos(ϑ(t))
r(t)sin(ϕ(t))cos(ϑ(t))

r(t)sin(ϑ(t))

 . (1)

Note that all three variables (ϕ(t),ϑ(t),r(t))) can be measured
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directly with good accuracy by devices installed on the ground
such as line angle sensors and motor encoders.
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Fig. 2: The wing’s position p (black dot) is shown on a figure-eight
crosswind path together with the local coordinate frame L and the
inertial coordinate frame G. The wind direction forms the angle ϕW
with respect to ex and defines the wind window (dotted). Note the
arrows on the figure-eight path showing an “up-loop” pattern, i.e the
wing is flying upwards on the side of the path and downwards in the
middle.

The motion of the tethered wing is restricted to the wind
window, a surface with (time-varying) radius r(t) confined by
the ground plane (ex,ey) and by a vertical plane containing the
origin of G and perpendicular to the wind direction, which
forms an angle denoted by ϕW with respect to ex. If r(t)
is kept constant, the wind window corresponds to a quarter
of a sphere. Otherwise, depending on the reeling speed ṙ(t)
of the tether, the wind window contains a larger or smaller
surface area than a quarter sphere. For example with ṙ(t)< 0,
i.e. reeling-in the tether, the wing is able to surpass the GU
against the wind direction, thanks to the additional apparent
wind speed induced by the reeling.

Additionally, we define a non-inertial coordinate system L .
=

(eN ,eE ,eD), centered at the wing’s position (depicted in Fig. 2,
too). The eN axis, or local north, is tangent to the sphere of
radius r(t), on which the wing’s trajectory evolves, and points
towards its zenith. The eD axis, called local down, points to the
center of the sphere (i.e the GU), hence it is perpendicular to
the tangent plane of the sphere at the wing’s position. The eE
axis, named local east, forms a right hand system and spans the
tangent plane together with eN . The system L is a function of
the wing’s position only. The transformation matrix to express
the vectors in the local frame L from the inertial frame G is
denoted by ALG (e.g. Lp(t) = ALG Gp(t)):

ALG =

−cos(ϕ)sin(ϑ) −sin(ϕ)sin(ϑ) cos(ϑ)
−sin(ϕ) cos(ϕ) 0

−cos(ϕ)cos(ϑ) −sin(ϕ)cos(ϑ) −sin(ϑ)

 . (2)

From the differentiation of (1) and using the rotation matrix
(2) we obtain the velocity vector of the wing in local coordi-

nates L with respect to the GU:

LvP(t) =

 r(t)ϑ̇(t)
r cos(ϑ(t)) ϕ̇(t)

−ṙ(t)

 . (3)

A dynamic model of the described system can be derived
from first principles, where the wing is assumed to be a
point with given mass. The tether is assumed to be straight
with a non-zero diameter. The aerodynamic drag of the tether
and the tether mass are added to the wing’s drag and mass,
respectively. The effects of gravity and inertial forces are also
considered. The wing is assumed to be steered by a change of
the roll angle ψ(t), which is manipulated by the control system
via the line length difference δ (t). By applying Newton’s law
of motion to the wing in the reference system L we obtain:∣∣∣∣∣∣∣∣∣∣

ϑ̈ = F·eN
rm − sin(ϑ)cos(ϑ)ϕ̇2− 2

r ϑ̇ ṙ

ϕ̈ = F·eE
rmcos(ϑ) +2tan(ϑ)ϑ̇ ϕ̇− 2

r ϕ̇ ṙ

r̈ = −F·eD
m + rϑ̇ 2 + r cos2 (ϑ)ϕ̇2

∣∣∣∣∣∣∣∣∣∣
, (4)

where m is the mass of the wing. The force F(t) consist of
contributions from gravity Fg(t), aerodynamic force Fa(t), and
the force exerted by the lines Fc(t). Note that for simplicity
of notation we dropped the time dependence of the involved
variables in (2) and (4). The force Fc(t), called traction
force, opposes all other forces along the tether direction and
can be influenced by the motors in the GU to control the
tether reeling. As mentioned above, the aerodynamic force
Fa(t) can be influenced by the line length difference δ (t)
of the two steering lines, which is, as a first approximation,
directly related to the wing’s roll angle ψ(t). In particular,
a change of δ (t) induces a change of roll angle, which in
turn determines a change of orientation of the force vector
Fa(t) acting on the wing. The full details on the derivation
of this model are available e.g. in [6]. Equations (4) give an
analytic expression for the point-mass model of the wing with
six states, (ϕ(t),ϑ(t),r(t), ϕ̇(t), ϑ̇(t), ṙ(t)), two manipulated
inputs (δ (t), |Fc(t)|), and three exogenous inputs given by the
components of the wind vector W(t). Such a model has been
widely used in literature for the control design of airborne
wind energy systems, see e.g. [6], [16], [19], [20].

In a recent contribution [25] concerned with the autonomous
flight along figure-eight paths during the traction phase, the
notion of the velocity angle γ has been introduced:

γ(t) .
= arctan

(
vP(t) · eE(t)
vP(t) · eN(t)

)
(5)

= arctan
(

cos(ϑ(t)) ϕ̇(t)
ϑ̇(t)

)
. (6)

Thus, γ(t) is the angle between the local north eN(t) and the
projection of the wing’s velocity vector vP(t) onto the tangent
plane spanned by the local north and east vectors (see (3)). In
(6) the four-quadrant version of the arc tangent function shall
be used, such that γ(t) ∈ [−π,π].

The velocity angle describes the flight conditions of the
wing with just one scalar: as an example, if γ = 0 the wing is
moving upwards towards the zenith of the wind window, and if
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γ = π/2 the wing is moving parallel to the ground towards the
local east. Additionally, a control-oriented model for tethered
wings, originally proposed in [26] and refined in [25], has
been used for the control design of the traction phase:

γ̇(t)' K(t)δ (t)+T (t) , (7)

where

K(t) =
ρCL(t)A|Wa(t)|

2mds

(
1+

1
E2

eq(t)

)2

(8a)

T (t) =
gcos(ϑ(t)) sin(γ(t))

|Wa(t)|
+ sin(ϑ(t)) ϕ̇(t) (8b)

Equation (7) represents a simpler model, capturing only the
steering behavior of the wing, than the one represented in
(4). In particular, note that the velocity angle (6) is a known
nonlinear function of the states in the point-mass model (4):
from the point of view of control design it can be considered as
an output of the system that can be used as feedback variable.
Equation (4) can be used to derive the model (7) through some
simplifying assumptions and manipulations, as shown in [25]
and omitted here for brevity.

In (7) and (8) the steering input, i.e. the line length dif-
ference of the steering lines, is denoted by δ (t), ρ is the
air density, CL(t) is the aerodynamic lift coefficient, A is
the reference area of the wing, ds is the span of the wing,
Eeq(t) is the equivalent efficiency of the wing, defined as
Eeq(t)

.
= CL(t)/CD,eq(t), where CD,eq(t) represents the drag

coefficient of the wing and lines together, and g is the
gravitational acceleration. The apparent wind Wa(t) is defined
as

Wa(t) = W(t)−vp(t) , (9)

where the incoming wind W(t) in the L frame can be written
as

LW(t) =

−W0 cos(ϕ(t)−ϕW )sin(ϑ(t))
−W0 sin(ϕ(t)−ϕW )

−W0 cos(ϕ(t)−ϕW )cos(ϑ(t))

 (10)

with W0 being the nominal wind speed (which can eventually
also be position dependent, if a wind shear model is considered
[28]).

The model (7) has been validated through experimental
data at constant line length with good correspondence in a
wide range of operating conditions, see [25]. It was derived
assuming crosswind flight conditions as performed during the
traction phase.

During retraction, the tethers have to be recoiled onto the
drums under minimal force, such that only a small fraction of
the previously generated energy is used. To achieve this goal,
the common strategy adopted with flexible wings, like power
kites, is to move the wing at the border of the wind window,
in a static angular position w.r.t. the GU, i.e. with constant
or slowly varying ϕ and ϑ angles. This represents quite a
different flight condition with respect to the one assumed in
(7). However as discussed in the next section, it can been
shown that the model (7) can also, with some modifications,
be used to describe the wing’s steering dynamics during the

retraction phase, employing a slightly modified definition of
the velocity angle (6) called “regularized velocity angle”.

III. AUTOMATIC RETRACTION OF GROUND-BASED
AIRBORNE WIND ENERGY SYSTEMS

The problem of automatically retracting the wing during the
reel-in phase involves two main tasks: reeling the tether on the
drum by controlling the line force and stabilizing the angular
position of the wing at the border of the wind window. One of
our contributions is to show that the dynamical behavior of the
wing’s elevation angle during retraction is almost linear, so that
standard linear control techniques can be applied. Additionally,
the reeling control can be considered as a decoupled problem
which influences the position control system as a disturbance.

We will present two different control strategies for the
problem of stabilizing the wing’s position during the retraction
phase. The first approach, presented in Section III-A, exploits
a regularized version of the velocity angle employed by the
traction phase controller. The resulting controller for the reel-
in phase needs only minor changes with respect to the one
employed in the traction phase. However, the regularized
velocity angle is computed on the basis of an estimate of the
wind direction and speed at the wing’s location. The second
approach, explained in Section III-B, is based on a simplified
model, derived in this paper, of the elevation dynamics of the
tethered wing during the retraction. This approach has the
advantage of employing only directly measurable quantities
(the elevation angle ϑ and its time derivative), hence it does
not need an estimate of the wind direction nor of the velocity
angle. In Section III-C we highlight the connections between
the two approaches and in Section III-D we discuss the reeling
strategy.

A. Retraction Control Based on the Regularized Velocity An-
gle

One of the main differences between the traction and
retraction phases lies in the magnitude of the wing’s velocity
perpendicular to the line direction, denoted by vp

P(t). During
the retraction phase, vP(t) is low and mainly consists of the
reel-in speed ṙ(t). Thus, vp

P(t) is close to zero and the apparent
wind speed is determined only by the wind speed W(t) and
the reel-in speed ṙ(t). In these conditions, the velocity angle
γ as computed in (6) becomes undefined, so that this variable
is not representative of the wing’s orientation anymore and
cannot be used for feedback control.

Recall that we assume for simplicity that the wind flow is
parallel to the ground, i.e. the (ex, ey) plane, and its direction
forms an angle ϕW w.r.t. ex (see Fig. 2). It is also assumed that
the wing is designed so that it orientates itself into the apparent
wind, which means that the wing’s longitudinal symmetry axis
is aligned with the vector Wa(t) (9), i.e. the wind direction
during retraction, projected onto the tangent plane to the wind
window at the wing’s location. This effect can be achieved by a
wing equipped with a rudder or a curved shape, like C-shaped
surf kites. Thus, during retraction the component of Wa(t) in
the tangent plane to the wind window can be assumed to be
equal to the wind velocity projected on the same plane.
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Under this assumption, we can define the orientation β (t)
of the wing using (10), as

β (t) .
= arctan

(
−LW(t) · eE(t)
−LW(t) · eN(t)

)
(11)

= arctan
(

sin(ϕ−ϕW )

sinϑ cos(ϕ−ϕW )

)
, (12)

which is the angle between the local north eN and the
longitudinal symmetry axis of the wing.

From (12) one can see that β converges to ±π/2 if the
wing approaches the border of the wind window, i.e. when
ϕ ≈ ϕW ±π/2. An estimate of the wind direction ϕW , needed
to compute the angle β , can be either obtained by measure-
ments provided by ground based sensors or by processing the
measurements of the line force collected during the traction
phase, see e.g. [29].

The considerations presented so far lead to the idea of
extending the definition of the velocity angle γ by a regulariza-
tion term such that it can well represent the wing’s orientation
also for static positions at the border of the wind window. In
particular, we define the regularized velocity angle as (compare
with (6) and (12)):

γ
r = arctan

(
cos(ϑ)ϕ̇ + csin(ϕ−ϕW )

ϑ̇ + csinϑ cos(ϕ−ϕW )

)
, (13)

where c > 0 is a scalar chosen by the control designer. In
principle, the value of c should reflect the magnitude of
the absolute wind speed at the wing’s position divided by
the tether length, i.e. W0/r, which might be not trivial to
obtain if no onboard wind speed sensors or ground wind
profilers like LIDARs are present. However, in simulations and
experiments the system behavior resulted to be not sensitive
to this quantity, due to the relatively large line length values
(50-200 m) compared to the absolute wind speed (3-6 m/s).

Thus, according to (13), during the traction phase when the
speed of the wing is significantly larger than the wind speed W0
we have γ r ≈ γ , but during the retraction phase, when the wing
speed approaches zero, γ r still provides a reasonable value
whereas the original velocity angle γ (6) becomes undefined.
A comparison between γ(t) and γ r(t) during a flight test is
shown in Fig. 3.
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Fig. 3: Experimental data. Time courses of γ(t) (dashed) and γ r(t)
(solid) during a transition from flying figure-eight paths in crosswind
conditions (up to approximately 282s) to a position at the border of
the wind window.

With the regularized velocity angle (13) we can now adopt
a control approach for the retraction phase similar to the one
used for the traction phase, described in [25].

In particular, we consider a hierarchical control scheme
consisting of three nested loops, shown in Fig. 4. Note that
the regularized velocity angle cannot be directly measured and
needs to be estimated. For this purpose, line angle sensors
installed on the GU can be used to measure the angular
position of the wing. Using a Kalman filter with a linear,
free particle model, the velocity vector of the wing can then
be estimated and expressed in the L frame. By using (5)
the velocity angle can be finally estimated, for details see
[30] where also the additional use of on-board sensors is
considered.

Tethered wing
and actuator

Actuation
Control

Velocity angle
control

Velocity angle
reference

computation

Control System

Actuator position

Wing position
Velocity angle , Wing position

Fig. 4: Overview of the control approach that exploits the regularized
velocity angle as feedback variable.

Besides the use of the regularized velocity angle as feed-
back variable the main difference between the retraction and
the traction phases lies in the computation of the velocity
angle reference γ r

ref. Therefore, we will only recall briefly
the equations describing the inner control loops for the sake
of completeness (see [25] for details) and focus here on the
outer control loop, responsible for providing the velocity angle
controller with a suitable reference.

Neglecting higher-order effects and external disturbances,
the closed loop actuation system can be modeled as a second
order system:

δ̈m = ω
2
clδref−2ζclωclδ̇m−ω

2
clδm , (14)

where δm is the actuator’s position, δref is the actuator’s
position reference, and ωcl and ζcl are the natural frequency
and damping, respectively, of the actuation control loop. The
steering deviation is then obtained as

δ = Kδ δm, (15)

where Kδ is a known constant that depends on the mechanical
setup of the system, which defines the ratio between the
actuator’s position and the effective difference of length of the
steering lines. In the case of the Swiss Kite Power prototype,
for example, Kδ = 1. The velocity angle control loop consists
of a proportional controller given by

δref = Kc (γ
r
ref− γ

r) , (16)

where the gain Kc is chosen by the designer.
As already mentioned, the goal of the retraction controller

is to stabilize the wing at a static position in terms of ϕ and
ϑ at the border of the wind window, e.g. ϕ −ϕW = ±π/2,
and at a given elevation angle ϑref. As seen in the previous
section from (13), we have γ r = π/2 for a static position of
the wing with ϕ − ϕW = π/2. This corresponds to a wing
position on the left of the wind window as seen from the GU.
Similarly, if a position on the right of the wind window is
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considered, i.e. ϕ−ϕW =−π/2, the regularized velocity angle
becomes γ r =−π/2. For simplicity, we will now only consider
positions on the left of the wind window for the retraction
phase, i.e. ϕ−ϕW = π/2 (the application to positions on the
right of the wind direction is straightforward).

Using the point-mass model (4) of the tethered wing, it can
be shown that there exist equilibrium points at the border of
the wind window, whose values are a function (for a given
wing) of the steering input δ and of the absolute wind speed.
These equilibrium points can be computed as usual by setting
all time derivatives of the model states to zero and solving (4)
for a given steering input. Additionally, they can also be found
by numerical simulations of the point-mass model employing
a constant steering input. This suggest that these equilibrium
points are open-loop stable and have a non-empty region of
attraction, as it is revealed also by commonly used analysis
techniques (see e.g. [31]).

Inspired by the above considerations, we propose the fol-
lowing feedback control strategy to compute a reference value
for the velocity angle:

γ
r
ref = Kϑ (ϑref−ϑ)+

π

2
, Kϑ < 0 , (17)

where ϑref is a reference elevation angle chosen by the user,
which should theoretically correspond to an equilibrium point
for the wing at the side of the wind window. From (17), one
can note that, if the elevation of the wing is smaller than the
reference elevation, the velocity angle reference is smaller than
π/2, thus demanding the wing to move towards the zenith of
the wind window. Vice-versa, if the current elevation is larger
than the reference one we have γ r

ref > π/2. This reference is
saturated to γ r

ref ∈ [γmin,γmax] to prevent the wing from turning
away too much from the wind direction. Such situation could
in fact give place to a transient in crosswind conditions, which
would increase the traction force unnecessarily.

The scalar gain Kc for the velocity angle controller and the
scalar gain Kϑ for the reference computation are chosen by
the designer. By using (17) in the outer loop of the control
scheme (see Fig. 4), the resulting control system is linear (time
varying) and the controller gains Kϑ and Kc can be chosen
such that robust stability is achieved in the presence of model
uncertainty and different wind conditions. In particular, we can
rewrite the system dynamics in terms of angle errors

∆γ
r = γ

r
ref− γ

r (18)
∆ϑ = ϑref−ϑ (19)

and of the position and velocity of the actuation system, δm
and δ̇m. In order to formulate the error dynamics, we need
an intermediate step to include the dynamics of the angle
ϑ . To this end, consider the apparent wind velocity vector
projected onto the plane spanned by (eN ,eE). We denote such
projection, which can be computed by taking the first two
components of (9), as Wp

a . At the border of the wind window,
i.e. when ϕ−ϕW =±π/2, the component of Wp

a in the local
north direction eN is given by rϑ̇ only, since the absolute wind
results to be perpendicular to the local north. The quantity rϑ̇

is, by definition of γr (13), also equal to |Wp
a |cosγ r, which

can equivalently be written as |Wp
a |sin(π/2− γ r). Moreover,

since the wing tends to align itself with the wind direction,
π/2− γ r is small, so that we can linearize its trigonometric
functions. Then, the dynamics of the elevation angle ϑ can be
written as:

ϑ̇ =
|Wp

a |
r

(
π

2
− γ

r
)
. (20)

We can now derive the system dynamics pertaining to the
closed-loop system when the regularized velocity angle is used
as feedback variable. In particular, by using (7),(14)-(20), and
setting x = [∆ϑ ,∆γ r,δm, δ̇m]

T (where T stands for the matrix
transpose operation), the following state-space equations are
obtained:

ẋ =


Kϑ
|Wp

a |
r − |W

p
a |

r 0 0
K2

ϑ

|Wp
a |

r −Kϑ
|Wp

a |
r −KKδ 0

0 0 0 1
0 Kcω2

cl −ω2
cl −2ζclωcl


︸ ︷︷ ︸

Acl

x+w .(21)

For the sake of completeness, we briefly outline the deriva-
tion of (21). ∆ϑ̇ is given by the time derivative of (19) and
inserting (20) and (17). ∆γ̇ r is given by the time derivative
of (18) and inserting (17) and (7). By inserting the derivation
of ∆ϑ̇ described just above, and using the static relationship
(15), an expression which is a function of x and T (see (8b))
is obtained. The latter term is then embedded in the external
disturbance w. The derivation of δ̇m is straightforward, finally
δ̈m is given by (14) where δref is replaced with (16).

In (21), the term K corresponds to the uncertain gain in
(8a) and depends on the system’s parameters as well as the
wind and the flight conditions. The term w ∈R4 accounts for
effects of gravity and apparent forces (i.e. the T in (8b), as
mentioned above), as well as for the forces exerted by the
lines on the actuator. System (21) has time-varying, uncertain
linear dynamics characterized by the matrix Acl(Θ), where
Θ = [K, |Wp

a |]. Upper and lower bounds for such parameters
can easily be derived on the basis of the available knowledge
on the system. These bounds can be employed to compute
points Θi, i = 1, . . . ,nv, such that Θ ∈ conv(Θi), where conv
denotes the convex hull. Then, the closed-loop system (21)
results to be robustly stable if there exists a positive definite
matrix P = PT ∈ R4x4 such that (see e.g. [32]):

AT
cl(Θ

i)P+PAcl(Θ
i)≺ 0, i = 1, . . . ,nv , (22)

Condition (22) can be checked by using an LMI solver.
In Section IV we show with simulations and experiments
that indeed a single pair (Kc,Kϑ ) achieves robust stability of
the control system, as predicted by the described theoretical
analysis. The two scalar gains, i.e. the values of Kc and Kϑ ,
can be tuned at first by using the equations (7) and (17), and
then via experiments.

As shown in Section IV, this approach is able to stabilize
the wing at the border of the wind window but is dependent
on an estimate of the wind speed and direction at the wing’s
location. Since these might not be straightforward to obtain,
an alternative approach is presented in the next section, which
relies only on directly measurable quantities.
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B. Retraction Control Based on Elevation Dynamics

As an alternative to the regularized velocity angle, we
propose here to use the elevation angle ϑ and its rate ϑ̇ as
feedback variables. The main advantage of such an approach
is a higher reliability, since the elevation is directly measured
(in our case by means of a line angle sensor installed on
the GU) and there is no need to estimate the wind direction
at the wing’s location. The angular elevation rate ϑ̇ can be
estimated with a Kalman filter using a linear, free particle
model as mentioned above (see e.g. [30]). We will carry out
the controller’s design on the basis of a new model that links
the elevation dynamics to the steering input, which we derive
next.

From (4), we can write the ϑ -dynamics as:

ϑ̈ =
F · eN

rm
− sin(ϑ)cos(ϑ)ϕ̇2− 2

r
ϑ̇ ṙ . (23)

We consider the following assumptions:
Assumption 1: (Steady State) The wing is at a steady state

angular position at the border of the wind window. �
Assumption 2: (Small roll angle) The roll angle ψ of the

wing is sufficiently small, such that its trigonometric functions
can be linearized. �

Assumption 1 implies that the sum of the forces acting on
the wing in the local east direction, eE , is zero and that the
angular velocities of the wing are small. Thus, effects from
apparent forces are small. Moreover, this also implies that
the wing’s longitudinal axis is aligned with the apparent wind
direction. Assumption 2 is also reasonable, since for example
during our test flights the roll angle was within ±18◦. We can
now state our result concerned with the wing’s model:

Proposition 1: Let assumptions 1-2 hold. Then, the ϑ

dynamics (23) can be written as

ϑ̈ =−Cδ − gcos(ϑ)+2ϑ̇ ṙ
r

, (24)

where

C = ρACL

2rmds

(
1+

1
E2

eq

)
W0 sin(ϕ−ϕW )|Wa| . (25)

Proof 1: See the Appendix. �
The model in (24) gives a direct relationship between the

input δ and the elevation of the wing ϑ . We will now elaborate
a bit more on this result and its implications. As we can see
from (24), gravity and apparent forces have less influence with
increasing tether length, since the linear acceleration remains
constant such that the angular one is inversely proportional to
the radius. The term ρACL/(2rmds)(1+1/E2

eq) in (25) remains
roughly constant during the retraction and is specific to the
employed wing. Similarly to what done in the previous section
for the approach based on the regularized velocity angle, the
effects of variations in the aerodynamic coefficients on the
elevation control system, due to e.g. changing wind conditions,
can be evaluated by means of a robustness analysis, as detailed
later on in this section.

Equation (24) implies also that a larger area-to-mass ratio,
A/m, gives in general a higher gain C, and that the steering

gain of wings with similar aerodynamic coefficients but dif-
ferent sizes should not change much, provided that they have
similar A/m.

Finally, as mentioned earlier, there exist equilibrium points
at the border of the wind window, such that the wing angular
position will converge at a constant elevation angle ϑ for a
given constant input δ . This can be now seen by solving (24)
for δ , which results in an explicit link between the steady-state
values of ϑ and δ :

δ =
2mgds cos(ϑ)

ρACL

(
E2

eq

E2
eq +1

)
1

|Wa|W0 sin(ϕ)
. (26)

However, the link given by (26) cannot be used in an open-loop
control approach, due to the presence of model uncertainties
and changing wind conditions which render a feedback con-
troller for the elevation angle necessary.

Exploiting the model (24), such a controller can be designed
by considering again a hierarchical control system, now con-
sisting only of two nested loops, the low-level actuation control
loop and the elevation controller, shown in Fig. 5.

Tethered Wing
and Actuator

Actuation
Control

Elevation
Control

Control System

Actuator Position
Wing Elevation

Fig. 5: Overview of the control approach that exploits the elevation
angle as feedback variable.

To design the controller, equation (24) is first linearized
around an equilibrium point, which serves as reference posi-
tion ϑref. As pointed out in Section III-A, such an equilibrium
point can be found using the point-mass model (4). The
resulting linear system is given by

ẋ′ =
[

0 1
gsin(ϑref)

r − 2ṙ
r

]
x′+

[
0
−C

]
u , (27)

where x′ = [∆ϑ ,∆ϑ̇ ]T and u = δ . The tracking error in ϑ and
ϑ̇ are given as

∆ϑ = ϑref−ϑ (28)
∆ϑ̇ = ϑ̇ref− ϑ̇ , (29)

where the reference values correspond to a static angular
position, i.e. ϑ̇ref = 0.

We use a state feedback controller KSF of the form

z =−KSF x′ , (30)

where z= δref and KSF = [kSF
1 kSF

2 ] is a vector of feedback gains
that can be designed by means of standard techniques like
pole placement ore linear-quadratic (LQ) regulation. Again, it
can be shown that there exists a matrix KSF for which the
system is robustly stabilized in the presence of the uncertain,
time-varying parameters. A robustness analysis can be carried
out similarly to the one in Section III-A; the corresponding
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closed loop dynamics are given, using (14)-(15), (27)-(30),
and x′′ = [∆ϑ ,∆ϑ̇ ,δm, δ̇m], by

ẋ′′ =


0 1 0 0

gsin(ϑref)
r − 2ṙ

r −CKδ 0
0 0 0 1

−ω2
clk

SF
1 −ω2

clk
SF
2 −ω2

cl −2ζclωcl


︸ ︷︷ ︸

Acl

x′′+w .(31)

Here, the uncertain time-varying parameters are given by Θ =
[r, ṙ,C].

C. Discussion

We presented two control approaches for the retraction
phase, one based on a regularized version of the velocity
angle γ and one based on the ϑ -dynamics derived from the
first principle model (4). In the latter, we exploit a direct
link between the input δ and the angular acceleration ϑ̈ ,
while the first approach does not consider explicitly the ϑ

dynamics and relies on the turning rate γ̇ instead. For the
sake of comparison, also in the first approach one can derive
the angular acceleration ϑ̈ , in particular by taking the time
derivative of (20) and combining it with (7), and assuming
that the apparent wind velocity Wa and the value of ϕ are
constant:

ϑ̈ =− ρACL

2rmds

(
1+

1
E2

eq

)
|Wa|2δ − gcos(ϑ)

r
. (32)

Comparing this equation with the one derived from the
model (24), one can see a few differences. First, the second
term in the right-hand side of (32) does not contain the term
related to apparent forces. This comes from the fact that the ϑ -
dynamics in (20) do not consider the influence of the reeling
speed ṙ. The term related to gravity is the same since we
assume γr ≈ π/2 for the retraction. Note that, as one would
expect, for both models the influence of the additive terms
on the angular acceleration become smaller for longer tether
length.

The gain relating the input δ to ϑ̈ , denoted by C in (24), is
quite similar to the corresponding gain in (32). The difference
comes from how the force component in ϑ direction, F ·eN , is
calculated. In (24), this component is computed by considering
the apparent wind in the tangent plane at the wing’s position,
i.e. W0 sin(ϕ−ϕW )+ r cos(ϑ)ϕ̇ where W0 sin(ϕ−ϕW ) is the
dominating factor, see the Appendix. On the other hand,
the corresponding term in (20) is Wp

a which corresponds,
assuming a static angular position at the border of the wind
window and constant line length, to Wa 'W0 sin(ϕ−ϕW ).
In summary, it has to be noted that the structure of the two
models is the same, which explains why the corresponding
controllers have similar qualitative behavior, as it will be
shown in Section IV, but with quite marked performance
differences in tracking the reference elevation ϑref.

D. Reeling

As mentioned above, the reeling can be considered, from the
point of view of the position control system, as an external

disturbance since its main influence is on the magnitude of
the apparent wind speed and all other effects are comparably
small. This is the reason why both the traction and retraction
controllers can be designed independently from the reeling
speed control. For simplicity, we therefore adopt a simple
reeling control scheme for both phases of the power cycle,
by setting a torque reference on the generators.

During the traction phase, the torque reference is chosen
with a feedback strategy that aims to achieve the optimal reel-
out speed [5]. In particular, assuming a steady state reeling,
i.e. constant speed, where the optimal traction force has to be
matched by the motor torque, we have

Tm = F∗c rd (33)

where Tm is the torque applied by the motor, rd is the radius
of the drum, and F∗c is the optimal traction force for maximum
power production for a given wind situation. A simplified
model of the traction force Fc has been first introduced in
[5] and then subsequently refined in several contributions, see
e.g. [33]:

Fc(t) = |Fc(t)|= C (W r
a )

2 (34)

with

C =
1
2

ρACLE2
eq

(
1+

1
E2

eq

) 3
2

, (35)

where ρ is the air density, A is the wing reference area, CL is
the lift coefficient, Eeq is the equivalent efficiency, and W r

a
is the apparent wind vector component in tether direction,
consisting of the contributions of the absolute wind speed
W and of the reeling speed ṙ. More specifically, W r

a can be
derived by using the third entry of (9), given in turn by (3) and
(10), for which the wing’s angular position, the wind speed
and the reeling speed are needed. It can be shown that the
reeling speed that yields the maximum generated power during
the reel-out phase (corresponding to the optimal traction force
F∗c ) is equal to one third of the wind speed in tether direction,
see e.g. [5]. By indicating such an optimal reel-out speed with
r∗, we can then express (W r

a )
2 in (34) as

(W r
a )

2 = (W r− ṙ)2 (36)
= (3ṙ∗− ṙ)2 , (37)

where W r .
= |W|cos(ϕ−ϕW )cos(ϑ) is the wind speed in

tether direction. Thus, the motor torque required to achieve
a given reel-out speed ṙ is

Tm = C rd (3ṙ∗− ṙ)2 . (38)

Then, considering that ṙ can be measured quite accurately by
using the rotary position sensors of the ground generators and
that a reasonably good estimate of C during the traction phase
can be easily obtained from the knowledge available on the
wing, as well as from experimental data (see e.g. [25]), we
can set the motor torque to

Tm = 4C rd ṙ2 , (39)

hence obtaining ṙ = ṙ∗ as unique positive solution of (38).
Furthermore, with a simple analysis of the reeling dynamics
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TABLE I: System Parameters
Name Symbol Value Unit

Wing effective area A 9 m2

Kite span ds 2.7 m
Kite mass m 2.45 kg
Tether length r [50 . . .150] m
Tether diameter dt 0.003 m
Tether density ρt 970 kg/m3

Air density ρ 1.2 kg/m3

TABLE II: Control Parameters
Name Symbol Value Unit

Actuator control loop damping ζcl 0.7 −
Actuator control loop natural frequency ωcl 78 rad/s
Mechanical actuation ratio Kδ 1 −
γ r feedback gain (traction) Kc 0.056 m/rad
γ r feedback gain (retraction) Kc 0.28 m/rad
γ r

ref feedback gain (retraction) Kϑ −2.5 −
State feedback control gain 1 (retraction) kSF

1 −1.4 m/rad
State feedback control gain 2 (retraction) kSF

2 −4.6 m s/rad
Elevation reference (retraction) ϑref 1 rad

(involving the generator’s inertia and viscous friction) it can
be shown that such a solution is an asymptotically stable
steady-state when the feedback reeling strategy (39) is used.
Additionally, we included a lower and an upper bound on the
torque reference to avoid wing stall and mechanical overload
of the system, respectively.

During the retraction, a constant torque reference is chosen
to achieve a high reel-in speed, in order to increase the duty-
cycle of the overall power generation scheme.

Indeed, the interplay between the wing dynamics and reel-
ing speed could be exploited using a multivariable control
technique with the aim to optimize the power output. If an
additional actuator to change the pitch angle of the wing is
also present, i.e. allowing one to change the lift and drag
coefficients of the wing, the efficiency of the system could
be further increased. These topics are not considered in this
paper but they represent further research directions.

IV. RESULTS

We first compare the proposed control approaches for the
retraction phase in simulation, employing the non-linear point-
mass model for tethered wings (4) and considering ϕW = 0.
The main system and controller parameters are shown in Table
I and Table II, respectively. The terms relating to γ r apply only
to the approach from Section III-A; for the state feedback
approach of Section III-B an LQ regulator with weighting
matrices equal to the identity matrix were used.

With the employed control gains, the robustness analyses
described in sections III-A and III-B indicated that the closed-
loop system is stable for wind speeds in the range of [1,15]m/s,
a lift coefficient in the range of [0.4,1], and an aerodynamic
efficiency in the range [2,8], covering a quite broad variety of
operating conditions. Indeed we employed the gains indicated
in Table II in all our simulations and experimental tests, in
presence of varying and gusty wind conditions, and also with
different kite sizes, with satisfactory performance.

In Fig. 6, a typical trajectory of the wing from launch
until the end of the first power cycle is shown. At first, the
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Fig. 6: Simulation results. Typical 3D trajectory (black) and its
projection (gray) on the ground of the tethered wing during one flown
power cycle.
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(a) Using the controller based on the regularized velocity angle.
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(b) Using the controller based on the elevation dynamics.

Fig. 7: Simulation results. Time courses of ϕ (dashed) and ϑ (solid)
of one power cycle with a reel-in speed of 2.5m/s and W0 = 5m/s.

wing is flown in crosswind conditions, flying figure-eight paths
until it reaches the maximum tether length of 150m, using
the controller described in [25]. Then, the retraction phase
is started using either the controller based on the regularized
velocity angle (16)-(17) or the feedback controller (30), while
the tether is reeled-in until a length of 50m is reached. At
that point, the traction phase controller of [25] is used again
to complete the power cycle. In Fig. 7, the time courses of
the position angles ϕ and ϑ during one power cycle for
both control approaches are shown. Around 73s, the controller
switches from traction to retraction and tracks the reference
ϑref = 1rad. Note that ϕ becomes slightly larger than π/2 due
to the reel-in speed, indicating that the wing surpasses the
GU location against the wind. Around 138s, the controller
switches from retraction to traction and the wing starts again
flying figure-eight paths in crosswind conditions.

Both control approaches lead to qualitatively similar results,
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(a) For different reel-in speeds with W0 = 5m/s.
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(b) For different wind speeds W0 with a reel-in speed of 2.5m/s.

Fig. 8: Average ϑ tracking error for the control system based on the
regularized velocity angle (solid) and the one based on the elevation
dynamics (dashed) during one retraction phase.

as it can be seen from Fig. 7. The main noticeable difference
is the tracking of the ϑ reference during retraction which is
better achieved by the approach that exploits the newly derived
model (24) for the elevation dynamics. This is expected, since
this controller employs directly the elevation angle and its rate,
which are both measured with good accuracy, as feedback vari-
ables. On the other end, the first approach that we presented
exploits the regularized velocity angle, whose estimate can be
inaccurate due to the uncertainty in the wind speed estimation
(i.e. the tuning parameter c in (13)), instead of the elevation
rate, with the consequent performance degradation. This is
shown in detail in Fig. 8 where the average tracking error of
one retraction phase for different reel-in speeds and different
wind speeds, respectively, are plotted for the two approaches.

We also carried out real-world experiments by using the
Swiss Kite Power prototype, shown in Fig. 1. The wing
employed in the tests presented here was a three line AIRUSH
ONE R© surf kite with an area of 9m2. We collected data for
about 2 hours of autonomous operation with the controller
based on the regularized velocity angle, and about 1 hour with
the controller based on the elevation dynamics.

In Figs. 9-10, the results of experimental test flights with
the retraction control strategy proposed in Section III-A, which
employs the regularized velocity angle as feedback variable,
are shown. In Fig. 10a, the wing path during a power cycle in
the (ϕ,ϑ)-plane is shown. The wing is controlled to fly along
figure-eight trajectories until it reaches the maximum tether
length and then flies horizontally to the border of the wind
window. Such a transient phase can be achieved by setting
a new target point for the traction controller at the border
of the wind window. Then, the retraction controller stabilizes
the wing during the reel-in of the tether. Once at the minimum
tether length, the wing turns back to fly figure-eight crosswind
paths. In Fig. 10b, the velocity angle and its reference are
shown, and in Fig. 10c the corresponding time courses of ϕ

and ϑ are shown. Note that the wing flies downwards to a low
ϑ angle when starting a new traction phase. This is due to the
increasing wing speed and rather small Kc gain used for this
maneuver. This problem can be alleviated by increasing the
steering gain for this phase, as we show later in Fig. 11a. A
projection of the wing path on the ground plane can be seen
in Fig. 9. Note that the wing surpasses the GU upwind, since
it reaches a negative position in the ex direction. The average
wind speed was approximately 4.6 m/s. The time course of the
wind measured roughly 5 m above the ground can be seen in
Fig. 10d. The resulting traction force on the main line during
the power cycle is shown in Fig. 10e. It can be seen that
there is a significant drop in traction force during the retraction
phase as expected from the considerations above, leading to
a positive net energy output of the system. The time course
of the tether length can be seen in Fig. 10f. A movie of the
autonomous power cycles is available online: [34].
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Fig. 9: Experimental results. Wing path projected on to the ground,
corresponding to Fig. 10. The wind direction was roughly ϕW ≈
−0.4rad.

Fig. 11 shows the results of experimental test flights, where
the approach based on the elevation dynamics has been used,
with the same AIRUSH ONE R© 9m2 kite.

In Fig. 11a, the wing path during a power cycle in the
(ϕ,ϑ)-plane is shown. Again, the retraction controller stabi-
lizes the wing at the border of the wind window during the
reel-in of the tether. Once at the minimum tether length, the
wing turns back to fly towards a downwind position using the
traction controller [25]. The time course of the wing elevation
is shown in Fig. 11b together with its reference when the re-
traction controller was active (roughly at [510s,518s]) clearly
showing the closed-loop tracking behavior. In Fig. 11c, the
corresponding time courses of ϕ and ϑ during the power cycle
are shown. One can see that the elevation-based retraction
controller corrects the low ϑ position of the wing (starting
roughly at 510 s) towards ϑref = 1rad. The wind speed was
approximately 5 m/s, see Fig. 11d. The corresponding traction
force on the main line is visible in Fig. 11e, where it can
be noted that during the retraction phase the force drops by
a factor of about 2.5. The resulting tether length during the
power cycle is shown in Fig. 11f.

There are a few notable differences between Fig. 11 and
Fig. 10. To decrease the traction force on the lines and
the ϕ position overshoot behind the GU against the wind,
the pitch angle of the wing was slightly increased in the
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(a) Wing trajectory in ϕ and ϑ . The wind direction was roughly ϕW ≈−0.4rad
with an average wind speed of 4.6 m/s.
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(b) Time courses of γ (solid) and γref (dashed). At roughly t ∈ [558s,567s],
the regularized version of γ (13) is used for feedback control.
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(c) Time courses of ϕ (solid) and ϑ (dashed).
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(d) Wind speed (dotted) and the 1 min average wind speed (solid).
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(e) Time course of the traction force on the main line (solid).
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(f) Time course of tether length r (solid).

Fig. 10: Experimental results of one power cycle obtained by using the retraction control strategy based on the regularized velocity angle.

experiment shown in Fig. 11 compared to Fig. 10, resulting
in a lower efficiency of the wing. Additionally, the gain Kc
was kept at a higher value once the new traction phase starts
until the wing is in a downwind position (see Tab. II). This
compensates the decrease of the wing’s steering gain (see (8))
and prevents the wing from flying to a low elevation once the
traction phase starts, compare Fig. 10a and Fig. 11a. Also,
as expected, the controller based on the elevation dynamics
shows a slightly better tracking performance for ϑ . This can be
seen by comparing Fig. 10c (between 560-570 s) and Fig. 11c
(between 510-520 s).

In Figs. 12a and 12b, a comparison of the traction force
between the actual measurements during one power cycle and
the simplified traction force model (34) are shown. In Fig. 13a
and Fig. 13b a comparison of the mechanical power on the
main line are shown, using the same model. This model has
been widely used to estimate and optimize the power output of
AWE systems during the traction phase, as well as to support
economical considerations for AWE generators. To carry out
such a comparison, the lift coefficient and equivalent efficiency
where estimated using a fraction of the data set. These values
can change even for the same wing if different bridling
setups are used. In Fig. 12a the values are CL = 0.8 and
Eeq = 3.7 whereas in Fig. 12b they are CL = 0.8 and Eeq = 3.2.
Additionally, in order to estimate the magnitude of the absolute
wind projected along the lines’ direction, i.e. W r

a in (34),
one needs (as mentioned in section III-D) the wing’s angular

position, the absolute wind speed vector at the wing’s position
and the reeling speed. While the kite’s angular position with
respect to the ground and the reeling speed were measured
quite accurately with the available sensors, the absolute wind
speed vector at the wing’s position was not available: we
thus employed an estimate by assuming that the wind velocity
measured roughly 5 m above the ground corresponded to the
one at the wing’s location. This approximation should lead in
general to an underestimate of the wind speed at the wings’s
location and thus an underestimate of the traction force, since
typically an increasing wind speed profile above the earth
surface is experienced. However, transients and gusts might
also give rise, for short periods of time, to the opposite
situation where there is a relatively strong wind at ground
level and much weaker wind at the wing’s position.

Despite the mentioned approximations, the two plots in
Fig. 12 show generally a good correspondence during the
traction phase with the tendency of the simplified equation
(34) to slightly underestimate the traction force. During the
retraction phase, the assumptions made in [33] do not hold
anymore and the model exhibits a larger deviation, see e.g.
Fig. 12a. Additionally, it has to be noted that our setup was
not optimized for power production and thus the drop in
traction force during the retraction is not as large as the one
that could probably be achieved by using, for example, ad-
hoc designed kites with stronger de-power capabilities and
eventually additional control strategies to adjust the kite’s
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(a) Wing trajectory in ϕ and ϑ . The wind direction was roughly ϕW ≈ 0.5rad
with an average wind speed of 5 m/s.
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(b) Time course of elevation ϑ (solid) and its reference during the retraction
phase (dased).
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(c) Time courses of ϕ (solid) and ϑ (dashed).
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(d) Wind speed (dotted) and the 1 min average wind speed (solid).
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(e) Time course of the traction force on the main line (solid).
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(f) Time course of tether length r (solid).

Fig. 11: Experimental results of one power cycle obtained using the retraction control strategy based on the elevation dynamics.

pitch during reel-in. In Fig. 12b, a drop in wind speed and
a lower reel-in speed led to a good matching of the traction
force during the retraction phase. To this regard, it also has to
be noted that the magnitude of the traction force during the
retraction depends on the reel-in speed: a larger reel-in speed
results in a higher apparent wind speed, which has a squared
dependence on the traction force (assuming that all the other
quantities remain the same). The spike in the line force in
Fig. 12b given by the simplified model (34) at roughly 475 s
could not exactly be explained by the available data; it is most
probably caused by a wind drop at the wing’s location, which
is not seen by the ground based anemometer, that led to a
short reel-in maneuver during the traction phase in order to
keep a minimum tension on the lines, compare Figs. 11f and
11d at about 475 s. More specifically, the short reel-in transient
increases W r

a in the simplified model, while still assuming the
same wind speed, and thus leads to an overestimate of the
traction force with respect to the actual measurement. Such
events are quite ordinary in the presence of relatively gusty
wind like the one we encountered in most of the experiment
sessions. The time course of the mechanical power on the
main line is compared to the simplified model in Fig. 13a
and Fig. 13b. It can be noted that the average power values
are quite consistent during the traction phase, and that the
simplified model is subject to lower variability since it does
not consider the changing wing speeds during the figure eight
pattern.

520 530 540 550 560 570 580
0

0.2

0.4

0.6

0.8

Time (s)

F
o

rc
e
 (

k
N

)

(a) Corresponding to Fig. 10.
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(b) Corresponding to Fig. 11.

Fig. 12: Time courses of the traction force on the main line (solid)
and the traction force model (34) (dot-dashed).

V. CONCLUSION

We proposed two different approaches to design a feedback
controller for the retraction phase of an AWE system with
ground-based generation, where the tether is recoiled onto
the drums. Together with a previously proposed traction con-
troller, and with a torque-based reeling control strategy, the
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Fig. 13: Time courses of the mechanical power on the main line
(solid) and the corresponding mechanical power using the traction
force model (34) (dot-dashed).

approaches presented here have been used to achieve fully
autonomous power cycles.

The two approaches were compared in simulation employ-
ing a nonlinear point-mass model and in real experiments
using the Swiss Kite Power prototype. Both approaches were
able to stabilize the wing in a position at the border of the
wind window and can be used to fly complete power cycles
with a tethered wing. The approach based on the elevation
dynamics is more promising since it relies only on directly
measured variables.

For both approaches, only few parameters, that can be
intuitively tuned, are involved in the design. The approaches
employ the steering deviation as control input and can stabilize
the wing’s elevation robustly against different tether lengths
and reeling speeds. Hence, the latter can still be optimized to
maximize the energy output of the system.

The presented automatic controllers for the retraction phase
are two among the few which have so far been proven to
work on real prototypes. Future research on this topic can be
devoted to the power cycle optimization by using multivariable
approaches and to the inclusion of active pitch strategies as
considered e.g. in [27].

APPENDIX

PROOF OF PROPOSITION 1

For the sake of simplicity of notation we drop the depen-
dence of time-varying variables and parameters on t.

The components of the force F in (4) in ϑ direction are
given by the gravitational force Fg and the aerodynamic force
Fa. The gravitational force can be expressed in the local frame
L as:

LFg =

−mgcos(ϑ)
0

mgsin(ϑ)

 (40)

with m being the mass of the wing plus the added mass of the
tether and g is the gravitational acceleration. The aerodynamic
force is given as:

Fa = FL eL +FD,eq eW , (41)

where FL is the lift force and FD,eq the equivalent drag force
including also the tether drag:

FL =
1
2

ρACL|Wa|2 (42)

FD,eq =
1
2

ρACD,eq|Wa|2 . (43)

In (42) and (43), ρ is the air density, A is the effective area of
the wing, CL and CD,eq are the lift coefficient and equivalent
drag coefficient, and Wa is the apparent wind velocity. The
vectors eL and eW in (41) can be expressed in the L frame as:

LeL(t) =

cosξ −sinξ 0
sinξ cosξ 0

0 0 1

 ·
 cosψ cosη sin∆α

cosψ sinη sin∆α + sinψ cos∆α

−cosψ cosη cos∆α

 (44)

LeW (t) =

cosξ −sinξ 0
sinξ cosξ 0

0 0 1

−cos∆α

0
−sin∆α

 , (45)

where ∆α is the angle between the apparent wind and the
tangent plane (eN ,eE), ψ the roll angle of the wing which is
a function of the steering input δ :

ψ = arcsin
(

δ

ds

)
, (46)

η is given by (see e.g. [35]):

η = arcsin(tan(∆α) tan(ψ)) , (47)

and ξ is the heading of the wing which is given by the apparent
wind vector Wa, defined in (9), and can be written as:

ξ = arctan
(
−Wa · eE

−Wa · eN

)
(48)

= arctan
(

W0 sin(ϕ−ϕW )+ r cos(ϑ)ϕ̇

W0 sin(ϑ)cos(ϕ−ϕW )+ rϑ̇

)
. (49)

The assumption underlying equation (48) is that the wing’s
longitudinal symmetry axis is always contained in the plane
spanned by the vectors Wa and p and is common in the field
of AWE [19], [22], [36].

Thus the force F in eN direction can be computed as:

F · eN = FL (cos(η)sin(∆α)cos(ξ )−
(sin(η)sin(∆α)+ cos(∆α)ψ)sin(ξ ))− (50)

FD,eq cos(∆α)cos(ξ )−mgcos(ϑ) .

For more details and a formal definition of the components of
F see e.g. [25].

By Assumption 1 and considering the equilibrium of the
lift and drag force in the direction of the wing’s heading ξ ,
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projected on the tangent plane to the wind window at the
wing’s location, we have (see [33]):

sin(∆α)

cos(∆α)
=

CD,eq

CL

.
=

1
Eeq

, (51)

where Eeq is the equivalent efficiency of the wing. By (51) we
can see that ∆α is small for a reasonable wing efficiency of
4−6.

By Assumption 2, (46), and (51) we see that (47) simplifies
to

η =
1

Eeq
ψ =

1
Eeqds

δ , (52)

where ds is the span of the wing.
By using (50) together with (42)-(48) we obtain:

F · eN =
ρACL

2ds

(
1+

1
E2

eq

)(
W0 sin(ϕ−ϕW )+

r cos(ϑ)ϕ̇
)
|Wa|δ −mgcos(ϑ) . (53)

Equation (23), by Assumption 1, can now be rewritten as

ϑ̈ =−Cδ − gcos(ϑ)+2ϑ̇ ṙ
r

, (54)

where

C = ρACL

2rmds

(
1+

1
E2

eq

)
W0 sin(ϕ−ϕW )|Wa| . (55)

�
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