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Automatic crosswind flight of tethered wings for
airborne wind energy:

modeling, control design and experimental results
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Abstract—An approach to control tethered wings for airborne
wind energy is proposed. A fixed length of the lines is considered,
and the aim of the control system is to obtain figure-eight cross-
wind trajectories. The proposed technique is based on the notion
of the wing’s “velocity angle” and, in contrast with most existing
approaches, it does not require a measurement of the wind
speed or of the apparent wind at the wing’s location. Moreover,
the proposed approach features few parameters, whose effects
on the system’s behavior are very intuitive, hence simplifying
tuning procedures. A simplified model of the steering dynamics
of the wing is derived from first-principle laws, compared with
experimental data and used for the control design. The control
algorithm is divided into a low-level loop for the velocity angle
and a high-level guidance strategy to achieve the desired flight
patterns. The robustness of the inner loop is verified analytically,
and the overall control system is tested experimentally on a small-
scale prototype, with varying wind conditions and using different
wings.

I. INTRODUCTION

Airborne wind energy systems aim at harnessing the wind
blowing up to 1000 m above the ground, using tethered
wings or aircrafts. In recent years, an increasing number of
researchers in academia and industry started to investigate this
idea, see e.g. [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12] as well as [13] for an overview.

In several concepts that are currently being developed, a
tethered flexible wing has to be controlled to fly in crosswind
conditions, i.e. roughly perpendicular to the wind flow [14],
and the traction forces acting on the lines are converted
into electricity using mechanical and electrical equipments
installed on the ground [2], [5], [6], [11]. The automatic
control of the wing is a key aspect of airborne wind energy.
When energy is produced, the aim is to make the wing fly
along figure-eight paths, which yield the highest traction forces
while preventing line twisting. This control problem involves
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fast, nonlinear, unstable time-varying dynamics subject to hard
operational constraints and external disturbances. Contribu-
tions by various research groups and companies worldwide
have recently appeared in the literature, see e.g. [8], [15], [9],
[16], [17], [11]. Most of the presented approaches [7], [8],
[15], [9], [18], implemented in numerical simulations only,
are based on a nonlinear point-mass model of the system,
derived on the basis of first-principle laws of mechanics and
aerodynamics, and they rely on the use of advanced nonlinear
control design techniques, including either tracking [8] or
economic [9] Model Predictive Control (MPC) and adaptive
control-Lyapunov techniques [11]. However, the use of these
approaches in a real system appears to be not trivial, due to
the discrepancies between the employed simplified model and
the real dynamics of flexible wings, the need to solve complex
nonlinear optimization problems in real-time, finally the need
to measure the wind speed and direction at the wing’s flying
altitude.

In contrast with the mentioned works, in a recent contri-
bution, concerned with the control of large kites for seagoing
vessels [17], a simpler dynamical model has been proposed
and used for control design. Such a model has been justified
by means of measured data, and the designed control system
has been tested experimentally, thus showing the practical
applicability of the approach. It has to be noted that a similar
model has been considered also in [11], where it has been
justified by a priori assumptions. Hence, neither [11] nor
[17] provided an explicit link between the model considered
in the control design and the wing’s characteristics, like
area, efficiency and mass. The approach proposed in [17] is
composed by an inner control loop that computes the input
needed to obtain a desired reference heading of the wing,
and an outer control loop that computes the reference heading
according to a bang-bang-like strategy. The inner control loop
is a quite sophisticated model following approach and it needs
the measure of the apparent wind speed at the wing’s altitude,
obtained from an onboard anemometer.

In the described context, we present here new contributions
in the field of control of flexible tethered wings for airborne
wind energy systems with ground-level generators. We focus
on the problem of controlling the wing in order to achieve
figure-eight crosswind paths. First, we consider a simplified
model based on the notion of “velocity angle” of the wing,
similar in form to the one proposed by [11] and [17], and
we derive an explicit link between the model’s parameters
and the system’s characteristics. We show the validity of such
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a model as compared to experimental data collected with a
small-scale prototype. This result provides a definitive assess-
ment of the considered control-oriented model for tethered
wings, thus bridging the gap between theoretical equations and
experimental evidence. As a second contribution, we present
a new control algorithm for tethered wings, based on the
derived simplified model. Differently from [8], [15], [11],
the approach does not employ pre-computed paths based on
a mathematical model of the system, thus avoiding issues
related to model mismatch and to the actual feasibility of the
employed reference path for the (uncertain and time-varying)
dynamics of a real system. Moreover, an estimate or measure
of the wind speed at the wing’s location, as considered e.g. in
[8], [15], [9], is not needed, nor is a measure of the apparent
wind speed aligned with the wing’s longitudinal body axis,
used in [17], but only a rough estimate of the wind direction
with respect to the ground. We employ a hierarchical structure
similar to that of [17], but the controllers employed for the
inner and outer control loops are different. In particular, the
inner controller is a simple static gain, while the outer one is
given by a switching strategy based on the wing’s position.
The proposed control approach involves few parameters, that
can be tuned in an intuitive way. By exploiting the above-
mentioned results pertaining to the control-oriented model, we
assess the robustness of the inner control loop analytically,
against a wide range of operating conditions in terms of
wind speed and wing characteristics. We then present the
experimental results obtained by testing the approach on a
small-scale prototype realized at the University of California,
Santa Barbara, in different wind conditions and using different
wings. The paper is organized as follows. Section II describes
the considered layout and the derivation of the simplified
model for the velocity angle dynamics. The control design
is presented in section III and experimental results are given
in section IV. A final discussion and future research directions
are included in section V.

II. SYSTEM DESCRIPTION AND MODEL EQUATIONS

A. System layout

We consider a flexible wing, or power kite, connected by
three lines to a ground unit (GU). This setup corresponds
to a prototype built at the University of California, Santa
Barbara, shown in Fig. 1. In normal flight conditions, the
wing’s trajectory evolves downwind with respect to the GU.
For simplicity, we assume that the nominal wind direction
(i.e. neglecting turbulence) is aligned with the longitudinal
symmetry axis of the GU, denoted by X . This condition
can be achieved by properly orienting the GU, exploiting
a measure or estimate of the nominal wind direction. With
this assumption in mind, our control approach employs the
feedback of the wing’s position relative to the GU to obtain
crosswind trajectories, i.e. flying paths that are downwind and
symmetric with respect to X axis (i.e. the wind direction).
From our experimental results, it turns out that misalignments
of about ±30◦ between the wind and the GU do not change
significantly the obtained paths relative to the GU, but indeed
give place to lower forces on the lines, as expected from the

Fig. 1. Small-scale prototype built at the University of California, Santa
Barbara, to study the control of tethered wings for airborne wind energy.

theory (see e.g. [16]). The X axis, together with the Z axis
being perpendicular to the ground and pointing upwards and
with the Y axis to complete a right-handed system, forms the
inertial frame G

.
= (X,Y, Z), centered at the GU (see Fig. 2).

By considering a fixed length of the lines, denoted by r, the
wing’s trajectory is thus confined on a quarter sphere, given
by the intersection of a sphere of radius r centered at the GU’s
location and the planes (x, y, z) ∈ R

3 : x ≥ 0 and z ≥ 0. Such
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Fig. 2. Reference system G = (X,Y, Z), wind window (dashed lines),
variables θ, φ, and local north, east and down (LN , LE , LD) axes.

a quarter sphere is commonly named “wind window”, see Fig.
2 (dashed lines).
Of the three lines connecting the wing to the GU, the two
lateral ones, named steering lines, are linked to the back tips
of the wing (see Fig. 1) and they are used to influence its
trajectory: a shorter left steering line with respect to the right
one impresses a left turn to the wing (i.e. a counter-clockwise
turn as seen from the GU), and vice-versa. The center line,
named power line, splits into two lines connected to the front
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of the wing (or leading edge) and sustains about 70% of the
generated load. The GU is designed to support the forces
acting on the lines and it is equipped with actuators, able to
achieve a desired difference of steering lines’ length. In the
considered prototype, a single motor, together with a linear
motion system (visible in the lower-left corner of Fig. 1), is
able to change the difference of length of the steering lines.

In this work, we focus on the problem of designing a
controller able to achieve figure-eight crosswind paths, which
maximize the generated forces. The use of a fixed lines’ length
does not limit the significance of our results, since the problem
of crosswind path control can be decoupled from the problem
of controlling the lines’ reeling. Indeed it has been shown that
the optimal operation of ground-based airborne wind energy
generators is achieved with a constant line speed (equal to
approximately one third of the wind speed to maximize power
production, see e.g. [16]). The settings considered here can be
seen as a particular case of constant line speed, equal to zero.
Other approaches in the literature follow a similar strategy of
using two separate control systems, one for the wing guidance
and one for the line unrolling (see e.g. [9], [11], [17]). Rather,
the use of short lines (r = 30m in our case) makes the
control problem more challenging, since the flight paths must
be contained in a small area, in order to avoid contact with
the ground or aerodynamic stall occurring at the border of the
wind window.

The wing is equipped with onboard sensors and a radio
transmitter; the receiver and other sensors are installed on the
GU. These sensors, together with suitable filtering algorithms,
provide accurate real-time estimates of the wing’s position
and velocity vector, to be used for feedback control. For the
sake of simplicity, in this paper the feedback variables are
considered to be available for the control computation; the
interested reader is referred to [19] for details on the estimation
approach that we used. In the next section, we briefly recall
a point-mass dynamical model of the system and introduce
the notion of velocity angle of the wing. The latter is one of
the feedback variables we use and it represents a novelty with
respect to the mentioned previous approaches.

B. Model equations

We consider the point-mass model already employed in
previous works (see e.g. [8], [9], [11], [20] and references
therein) and adapt it to a slightly different reference system,
in order to introduce the wing’s velocity angle. For the sake of
completeness, we recall here the main equations of the point-
mass model, since they are instrumental to prove a theoretical
result concerned with the steering dynamics of tethered wings.
By considering the fixed line length r, the wing’s position can
be expressed in the inertial frame G by using the spherical
coordinates θ(t), φ(t) as (see Fig. 2):

G�p(t) =

⎛
⎝r cos (φ(t)) cos (θ(t))
r sin (φ(t)) cos (θ(t))

r sin (θ(t))

⎞
⎠ , (1)

where t is the continuous time variable. In (1) and throughout
the paper, the subscript letter in front of vectors (e.g. G�p(t))

denotes the reference system considered to express the vector
components.
We define also a non-inertial coordinate system L

.
=

(LN , LE , LD), centered at the wing’s position (also depicted
in Fig. 2). The LN axis, or local north, is tangent to the wind
window and points towards its zenith. The LD axis, called
local down, points to the center of the sphere (i.e. the GU),
hence it is perpendicular to the tangent plane to the wind
window at the wing’s location. The LE axis, named local east,
forms a right hand system and spans the tangent plane together
with LN . We note that the system L is a function of the wing’s
position only, and it is different from the local systems used
in previous works (see e.g. [9] and the references therein), due
to the different definition of angle θ. A vector in the L system
can be expressed in the G system by means of the following
rotation matrix:

R =⎛
⎝ − cos (φ(t)) sin (θ(t)) − sin (φ(t)) − cos (φ(t)) cos (θ(t))

− sin (φ(t)) sin (θ(t)) cos (φ(t)) − sin (φ(t)) cos (θ(t))
cos (θ(t)) 0 − sin (θ(t))

⎞
⎠

By applying Newton’s law of motion to the wing in the
reference L we obtain:

θ̈(t)=
L
�F (t) · �eLN (t)

rm
− sin (θ(t)) cos (θ(t))φ̇2(t) (2)

φ̈(t)=
L
�F (t) · �eLE (t)

rm cos (θ(t))
+ 2 tan (θ(t))θ̇(t)φ̇(t), (3)

where m is the mass of the wing. In (2)-(3) and throughout the
paper we denote unit vectors by “�e ” followed by a subscript
indicating the related axis, e.g. �eLN

(t) denotes the unit vector
of the LN axis. The force L

�F (t) consists of contributions from
the gravity force L

�Fg(t), the aerodynamic force L
�Fa(t), and

the force exerted by the lines, L
�Fc(t). The latter is determined

by the balance of all the other forces projected on the line
direction. Vector L

�Fg(t) can be computed as:

L
�Fg(t) =

⎛
⎝−mg cos (θ(t))

0
mg sin (θ(t))

⎞
⎠ , (4)

where g is the gravity acceleration. The aerodynamic force is
given by the contributions of the lift and drag generated by
the wing and of the drag induced by the lines. These forces
depend on the apparent wind, �Wa(t), computed as:

�Wa(t) = �W (t)− �v(t), (5)

where �W (t) is the wind relative to the ground and �v(t)
.
=

d
dt�p(t) is the wing velocity vector, which can be expressed in
the L frame as

L�v(t) =

⎛
⎝ rθ̇(t)

r cos (θ(t))φ̇(t)
0

⎞
⎠ . (6)
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Then, the aerodynamic force L
�Fa(t) can be computed as (see

e.g. [9]):

�Fa(t) =
1

2
ρCL(t)A| �Wa(t)|2�zw(t)+ (7a)

1

2
ρCD(t)A| �Wa(t)|2�xw(t)+ (7b)

1

8
ρCD,lAl cos (Δα(t))| �Wa(t)|2�xw(t) (7c)

=
1

2
ρCL(t)A| �Wa(t)|2�zw(t)+

1

2
ρ

(
CD(t) +

CD,lAl cos (Δα(t))

4A

)
︸ ︷︷ ︸

CD,eq(t)

A| �Wa(t)|2�xw(t).

(7d)

In (7), the contributions (7a)-(7b) are, respectively, the lift
and drag forces generated by the wing, while (7c) is the drag
induced by the lines. CL(t) and CD(t) are the aerodynamic
lift and drag coefficients of the wing, CD,l is the drag
coefficient of the lines, A is the reference area of the wing,
Al is the reference area of the lines, ρ is the air density,
and �xw(t) and �zw(t) are the directions of the drag and lift
forces, respectively. The parameter CD,eq(t) is called the
equivalent aerodynamic drag coefficient, since it accounts
for the drag of both the wing and the lines. We note that
the aerodynamic coefficients are considered as time-varying
parameters here, since they depend on the wing’s angle of
attack, which in turns changes in time as a function of the
flight conditions. The variable Δα(t) is the angle between
the apparent wind vector �Wa(t) and the tangent plane to
the wind window at the wing’s location. The vectors �xw(t)
and �zw(t), defining the directions of the lift and drag forces,
depend on the direction of the apparent wind and on the
roll angle ψ(t) of the wing. In particular, �xw(t) points in
the direction of the apparent wind �Wa(t), while �zw(t) is
perpendicular to �xw(t) and to a further vector, denoted by
�et(t), which points from the right tip of the wing to the left
one, as seen from the GU (see e.g. [9] for a formal definition).

Vectors �xw(t) and �zw(t) can be expressed in the L frame
as:

L�xw(t) =

⎛
⎝− cos (ξ(t)) − sin (ξ(t)) 0
− sin (ξ(t)) cos (ξ(t)) 0

0 0 −1

⎞
⎠ ·

⎛
⎝cos (Δα(t))

0
sin (Δα(t))

⎞
⎠

L�zw(t) =

⎛
⎝− cos (ξ(t)) − sin (ξ(t)) 0
− sin (ξ(t)) cos (ξ(t)) 0

0 0 −1

⎞
⎠ ·

⎛
⎝ − cos (ψ(t)) cos (η(t)) sin (Δα(t))
cos (ψ(t)) sin (η(t)) sin (Δα(t)) + sin (ψ(t)) cos (Δα(t))

cos (ψ(t)) cos (η(t)) cos (Δα(t))

⎞
⎠

(8)
In (8), η(t) is given by (see e.g. [21]):

η(t) = arcsin (tan (Δα(t)) tan (ψ(t))), (9)

and ψ(t) is a function of the steering input, δ(t):

ψ(t) = arcsin

(
δ(t)

ds

)
(10)

where ds is the wing span. Finally, ξ(t) is the heading angle
of the wing, and it is computed as the angle between the
local north LN and the apparent wind �Wa(t) projected on
the (LN , LE) plane:

ξ(t) = arctan

(
�Wa(t) · �eLE

(t)

�Wa(t) · �eLN
(t)

)
. (11)

In (11), the four-quadrant version of the arc tangent function
shall be used, such that ξ(t) ∈ [−π, π]. The assumption
underlying equation (11) is that the wing’s longitudinal body
axis is always contained in the plane spanned by vectors
�Wa(t) and �p(t).
Equations (2)-(11) give an analytic expression for
the point-mass model of the wing, with four states
(θ(t), φ(t), θ̇(t), φ̇(t)), one manipulated input (δ(t)) and
three exogenous inputs (the components of vector �W (t)).
Such a model has been widely used in the literature on
control design for airborne wind energy applications, see e.g.
[7], [8], [9], [11]. In section II-D we show how a simpler
model, which we will use for our control design, can be
derived from the dynamics (2)-(11). The variable involved in
such control-oriented model is the velocity angle γ(t) of the
wing, defined as:

γ(t)
.
= arctan

(
�v(t) · �eLE (t)

�v(t) · �eLN
(t)

)
= arctan

(
cos (θ(t))φ̇(t)

θ̇(t)

)
.

(12)
The angle γ(t) is thus the angle between the local north
�eLN (t) and the wing’s velocity vector �v(t). This variable
is particularly suited for feedback control, since it describes
the flight conditions of the wing with just one scalar: as an
example, if γ = 0 the wing is moving upwards towards the
zenith of sphere, while γ = π/2 indicates that the wing is
moving parallel to the ground towards the local east. Moreover,
the time derivative γ̇ defines how fast the wing is being steered
while flying in the wind window. Similarly to (11), also in (12)
the four-quadrant version of the arc tangent function shall be
used, such that γ(t) ∈ [−π, π].

C. Input model

The prototype used for our test flights features two attach-
ment points for the steering lines on the GU, left and right.
These attachment points are separated by a distance d (see Fig.
1, in the lower part, where the attachment points with swaying
pulleys are visible). When the wing’s lines are not aligned
with the X axis, this distance induces an equivalent steering
deviation. We call such deviation “geometric input”, δg, since
its value depends on the geometry of the attachment points
and on the (θ, φ) position of the wing in the wind window.
Hence, the overall steering input acting on the wing is:

δ(t) = δu(t) + δg(t), (13)

where δu(t) is the input issued by the control system, i.e. the
difference of length of the steering lines (right minus left)
obtained by changing the position of the linear motion system
on the GU. In this section, we derive an expression to compute
the geometric input as a function of θ(t), φ(t) and d. To this
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end, we consider the GU and the wing as seen from above,
such that the trace of the wind window at the wing’s height is
a semicircle of radius r cos (θ). Let the wing be in a situation
in which both tips lie on the tangent plane to the wind window
at the current wing position (θ, φ). Since the steering of the
wing is essentially induced by a roll motion, by which the
wing tips are moved away from the tangent plane, we call this
orientation “neutral configuration” (see Fig. 3, gray drawing).
Now, assuming that δu = 0, the left and right lines have the
same length, so that if φ �= 0 the wing tips are forced to leave
the neutral configuration (see Fig. 3, black drawing), in the
same way as a steering input were acting on the wing. In other
words, in order for the wing to be in a neutral configuration
in the presence of a value of φ �= 0, the two steering lines
should have a difference of length equal to d sin (φ) cos (θ).
Hence, we can compute the geometric input as:

δg(t) = −d sin (φ(t)) cos (θ(t)). (14)

We note that this quantity is always bounded by d, moreover
with increasing θ its value decreases and becomes eventually
zero if the wing is at the zenith of the wind window. The

Fig. 3. Sketch of the wing in a generic (θ, φ) position as seen from above,
and related geometric input δg = d sin (φ) cos (θ).

minus sign in (14) derives from the fact that the geometric
input imposes a counter-clockwise turn (as seen from the GU)
for φ < 0 (i.e. γ̇ > 0) and a clockwise turn for φ > 0 (i.e.
γ̇ < 0).

D. Control-oriented model for tethered wings

In [17], a simple model was presented and used for the
control design, where the time derivative of the heading angle
of the wing is given as a function of the control variable.
Here, we consider a similar simplified model, where we use
the velocity angle instead of the heading angle. This choice
is supported by the assumption of small sideslip angle, as
formally stated below:

Assumption 1: The difference between the velocity angle
γ(t) and the heading angle ξ(t) is negligible, i.e. the apparent
wind projected onto the tangent plane to the wind window
at the wing’s location is equal to the wing’s velocity �v(t).

Moreover, all the forces in the direction of vector �v(t) are
negligible as compared to lift and drag. �
Assumption 1 is common in the analysis of airborne wind
energy generators (see, e.g., [14], [16]) and it is reasonable
whenever the wing is flying downwind roughly perpendicu-
larly to the wind flow. Indeed in our flight tests the velocity
angle and the wing’s heading never differed more than 0.15 rad
in crosswind conditions.

With Assumption 1 in mind, the model proposed in [17]
can be written in the following form:

γ̇(t) � K̃(t)δ(t) + T̃ (t). (15)

In particular, in [17] the term K̃(t) is given by a constant gain,
gK , multiplied by the magnitude of the apparent wind speed
aligned with the wing’s heading. Such a model was justified
mainly through experimental results in [17], where the gain
gK was derived empirically. In [11], a model of the form (15)
is also used, and justified by some assumptions. Equation (15)
provides indeed a model well-suited for control design, with
the right balance between accuracy and simplicity, however
neither [17] nor [11] derived an explicit relationship between
the model’s parameters and the main characteristics of the
system, such as wing size, mass, or efficiency. The theoretical
result we are presenting next is aimed to fill this gap, by
linking equation (15) to the first-principle model recalled in
section II-B. We consider the following assumption on the roll
angle ψ(t):

Assumption 2: The angle ψ(t) is sufficiently small to lin-
earize its trigonometric functions. �

Assumption 2 is reasonable in the considered context, since for
example the prototype at the UC Santa Barbara operates with
ψ � ±7.5◦ (for a 12-m2 wing with wingspan ds = 3.1m) up
to ψ � ±12.8◦ (for a 6-m2 wing with wingspan ds = 1.8m).
We can now state our theoretical result.

Proposition 1: Let assumptions 1-2 hold. Then, equation
(15) holds with:

K̃(t) =
ρCL(t)A

2mds

(
1 +

1

E2
eq(t)

)2

|�v(t)| (16a)

T̃ (t) =
g cos (θ(t)) sin (γ(t))

|�v(t)| + sin (θ(t)) φ̇(t), (16b)

where |�v(t)| is the magnitude of the wing’s velocity, and
Eeq(t)

.
= CL(t)/CD,eq(t).

Proof: See the Appendix.
Proposition 1 provides an explicit link between the main
lumped parameters of the wing, like area, mass and lift
coefficient, and the gain and external disturbance of (15). It
is worth elaborating more on this result and its implications.
According to equation (15), there is basically an integrator
between the control input δ(t) and the velocity angle γ(t),
with a time-varying gain. On the basis of (16a), such a gain
increases linearly with the wing’s speed: thus, a larger speed
provides higher control authority but it can also bring forth
stability issues, if the control system is not properly designed.
For a given wing flying in crosswind conditions, the term
ρCL(t)A

2mds

(
1 + 1

E2
eq(t)

)2

does not change significantly during
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Fig. 4. Overview of the proposed control system.

operation, hence supporting the model proposed by [17],
where, as mentioned above, a constant gain gK , multiplied
by the apparent wind speed, is used to compute K̃. Equation
(16a) also implies that a larger area-to-mass ratio, A/m,
gives in general a higher gain K̃, and that the steering gain
of wings with similar aerodynamic coefficients but different
sizes should not change much, provided that they have similar
A/m. However, the latter remark holds true if only the
wing is taken into account, while the situation changes if the
up-scaling of the lines is also considered: for example, the use
of larger wings would require lines with larger diameter, and
the consequent added mass and induced drag would generally
reduce both the equivalent efficiency and the area-to-mass
ratio.
Since the wing’s speed is roughly proportional to the apparent
wind speed projected along the lines’ direction (see e.g. [16]),
the gain K̃ can be also re-written as (assuming that the wind
is aligned with the X-axis, as we remarked in section II-A):

K̃(t) =
ρCL(t)AEeq(t) cos (θ(t)) cos (φ(t))

2mds

(
1 +

1

E2
eq(t)

)2

| �W |.
(17)

According to (17), the value of K̃ is highest when the wing
is flying crosswind, and it decreases as the wing approaches
the borders of the wind window (i.e. θ � π

2 and/or φ � ±π
2 ).

Therefore, maneuvering the wing in these conditions requires
larger control inputs and in some situations it might be not
possible, leading to a complete loss of controllability. Simi-
larly, the presence of non-zero reeling speed can be assimilated
to a change of wind speed in the line direction, so that the
value of |�v(t)| (and, consequently, of the steering gain K̃),
increases during reel-in and decreases during reel-out. Finally,
the wing’s efficiency and lift coefficients also play an impor-
tant role: in particular, for a fixed drag coefficient the gain is
expected to grow quadratically with the lift coefficient, as it
can be noted from (17) by considering that Eeq = CL/CD,eq .
The term T̃ (t) accounts for the steering effect that the gravity
and apparent forces have on the wing. It can be noted that
the influence of gravity gets smaller with larger wing speed,
hence it can be easily dominated by the control action during
crosswind flight, while it becomes more and more important
as the wing moves to the side of the wind window.

As a final remark, we note that the equations (16) can be
further refined in order to also take into account the current
wing heading with respect to the absolute wind. However,
such details would increase significantly the complexity of the

equations without adding much value to the result.
We show a comparison between Proposition 1 and experi-

mental data in section (IV-A). In the next section, we introduce
a new control approach for crosswind flight of tethered wings,
based on the presented simplified model.

III. CONTROL DESIGN

We propose a hierarchical control scheme, depicted in Fig.
4. The outer control loop employs the current wing position,
in terms of θ, φ angles, to compute a reference velocity angle,
γref, for the middle control loop. The latter employs γ as
feedback variable and it has the objective of tracking γref, by
setting a suitable position reference, δm,ref, for the actuator
installed on the GU. The innermost control loop then employs
a feedback of the motor position δm to command the motor’s
current im, in order to track the desired position δm,ref. This
control structure allows to separate the nonlinear part of the
controller, which is all kept at the outermost level, from the
linear one, hence obtaining two simple controllers for the mid-
dle and inner loops, for which we can carry out a theoretical
robustness analysis. The control algorithm for the outer loop is
given by a quite simple guidance strategy, hence making the
whole control system very suitable for implementation and
experimental testing. In the next sections, we describe each
control loop in details. We first adopt a general notation for
the involved design parameters and we then provide in section
IV the specific numerical values employed in our tests.

A. Position control loop

The innermost loop consists of a standard position control
system with an electrical DC brushed motor and a linear mo-
tion system, based on a lead screw mechanism. By neglecting
high-order effects, in the absence of external disturbances the
dynamics of the actuator can be modeled as:

δ̈m(t)

ωm
= −δ̇m(t) +Kmim(t), (18)

where δm(t) is the actuator’s position in meters, Km, ωm are
parameters depending on the actuator’s characteristics and
im(t) is the commanded current in amperes. Moreover, the
prototype is equipped with a series of pulleys such that, for a
given value of δm, the corresponding difference of length of
the steering lines is equal to

δu(t) = Kδ δm(t), (19)
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with Kδ being a known, constant gain. The value of δm is
measured with high accuracy by an optical rotary incremental
encoder, suitably scaled to obtain the linear position of the
actuator from the motor’s angular position. We use standard
loop-shaping control design techniques (see e.g. [22]) to
design a cascade feedback controller C for this control level.
The control scheme is shown in Fig. 5. We note that the
actuator has current limits of ±im, included as a saturation in
Fig. 5. Such a saturation does not give rise to integrator windup
problems, since the employed controller C does not have
integral action. Yet, the presence of an integrator in the plant
(18) still yields a closed-loop transfer function with unitary
gain between the reference and the output. In particular, the
closed loop system for the inner loop results to be of the form:

δ̈m(t) + 2ζclωclδ̇m(t) + ω2
clδm(t) = ω2

clδm,ref(t), (20)

where δm,ref(t) is the reference position provided by the
controller for the wing’s velocity angle, which is described
next.

δmActuatorC
imδm,ref Kδ-

+ δu

Fig. 5. Scheme of the actuator position control loop.

B. Velocity angle control loop

The control design for the middle loop exploits the model
(16). The manipulated variable is the actuator position δm,ref(t)
(i.e. the reference for the inner control loop described in
section III-A), and the feedback variable is the wing’s velocity
angle γ(t). The controller is given by a simple proportional
law :

δm,ref(t) = Kc (γref(t)− γ(t)) , (21)

where γref(t) is the target velocity angle provided by the
outer control loop, and Kc is a scalar. The value of Kc is
the only design parameter for the velocity angle controller,
and it can be tuned at first by using the equations (15)-
(16) with some nominal system parameters, and then via
experiments. Moreover we show that Kc can be tuned in
order to robustly stabilize the control loop. To this end, we
re-write the dynamical system given by equations (16)-(19)
and (20)-(21) by considering the velocity angle tracking error,
Δγ(t)

.
= γref(t)− γ(t):

⎡
⎣ Δ̇γ(t)

δ̇m(t)

δ̈m(t)

⎤
⎦ =

⎡
⎣ 0 −K̃(t)Kδ 0

0 0 1
Kcω

2
cl −ω2

cl −2ζωcl

⎤
⎦

︸ ︷︷ ︸
Acl(K̃(t))

⎡
⎣ Δγ(t)

δm(t)

δ̇m(t)

⎤
⎦+w(t).

(22)
In (22), the term K̃(t) corresponds to the gain in (16) and
depends on the system’s parameters as well as the wind and
flight conditions. The term w(t) accounts for the effects of
gravity and apparent forces of (16), of the derivative γ̇ref(t)
and of the forces exerted by the lines on the innermost control

system. All these contributions are bounded, hence w(t) can
be seen as a bounded disturbance acting on the system. The
scalar K̃(t) is the only uncertain parameter in matrix Acl, and
it depends on several other variables. However, by exploiting
Proposition 1, upper and lower limits K̃i, i = 1, 2, can be
easily derived on the basis of the available knowledge on
the system, such that K̃ ∈ [K̃1, K̃2]. Then, any possible
matrix Acl(K̃) results to be contained in the convex hull
defined by the vertices Acl(K̃

1), Acl(K̃
2). After computing

these vertices, existing results based on quadratic stability and
linear matrix inequalities (LMI) can be used to assess the
robust stability of system (22). In particular, the system (22)
results to be robustly stable if there exists a positive definite
matrix P = PT ∈ R

3×3 such that (see e.g. [23]):

AT
cl (K̃

i)P + PAcl(K̃
i) ≺ 0, i = 1, 2, (23)

where T stands for the matrix transpose operation. Condition
(23) can be easily checked by using an LMI solver. In section
IV we show that indeed a unique value of Kc guarantees
robust stability of the velocity angle control loop for a wide
range of operating conditions. Since the wing’s velocity can
be measured quite accurately, one could also adopt a gain
scheduling approach and make the gain in (21) depend on
|�v(t)|, in order to improve the performance. However, in
our experimental tests this was not needed, as the control
system achieved satisfactory performance for all the conditions
of wind speed (and, consequently, of wing speeds) that we
experienced, as well as with all the three different wings we
tested.
Finally we remark that, due to the physical limitations of
the actuator, the position δm(t) is constrained in the range
±δm, where δm is a positive scalar. Similarly, we saturate the
reference position δm,ref(t) in the same range. However, we
note that these saturations are never active during operation
(we show this fact with measured data in the next section),
hence the stability analysis reported above is still valid even if
it does not account explicitly for the input limits. Fig. 6 shows
a scheme of the velocity angle controller.

+

γ
-

δm,refKc
γref

Fig. 6. Scheme of the velocity angle controller.

C. Outer control loop

The outer control loop (shown in Fig. 7) is responsible for
providing the velocity angle control loop with a reference
heading γref(t). Our goal is to derive a control algorithm
able to achieve figure-eight crosswind paths, with few tuning
parameters. Hence, we want to avoid the need to pre-compute
a whole trajectory to be used as reference, as it has been done
in previous works [8], [11]. In fact, pre-computed reference
paths are based on some mathematical model of the system,
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γrefGuidance 
strategy Fγ

γref
~

θ,φ

Fig. 7. Scheme of the guidance strategy.

with the consequent unavoidable issues of model mismatch
and approximation that might give rise to problems related to
stability and attractiveness of the chosen trajectory. In [17],
a bang-bang like strategy to set the reference heading of the
wing, avoiding the use of pre-computed reference flying paths,
has been described. Here, we propose a similar approach,
whose advantage is to provide an intuitive link between the
tuning parameters and the position of the resulting paths in
the wind window.
In our approach we define two fixed reference points in the
(φ, θ) plane, denoted by P− = (φ−, θ−) and P+ = (φ+, θ+),
with φ− < φ+ (see Fig. 8). The controller computes a new

����

����	
����
�������

Fig. 8. Sketch of the control strategy for the outermost loop. Wind window
projected on the (Y, Z) plane (black solid line), target points P−, P+ (‘◦’),
traces of points with constant θ and φ (dashed lines), example of wing’s path
(gray solid line), and example of how the reference γref is computed for a
given wing position (‘•’).

value of the reference velocity angle at discrete time instants.
At each time step k ∈ Z, one of the two reference points is
set as the active target Pa(k) = (φa(k), θa(k)), according to
a switching strategy that we describe next. Then, a first target
velocity angle γ̃ref(k) is computed on the basis of the measured
values of θ(k) and φ(k) as follows:

γ̃ref(k) = arctan

(
(φa(k)− φ(k)) cos (θ(k))

θa(k)− θ(k)

)
, (24)

i.e. in order to make the wing’s velocity vector point towards
the active target (compare the definition of γ(t) in (12)).
Finally, the actual reference γref is computed as the output
of a 2nd-order Butterworth filter Fγ , whose input is γ̃ref, with
cutoff frequency ωγ (to be tuned by the control designer), in
order to provide a smooth reference as input to the velocity
angle control loop. The target points are switched according

to the following strategy:

If φ(k) < φ− then Pa(k) = P+

If φ(k) > φ+ then Pa(k) = P−
Else Pa(k) = Pa(k − 1).

(25)

Thus, the target point is switched when the measured value
of φ is outside the interval [φ−, φ+]. By how we defined
the velocity angle γ, after the target point has been switched
the wing will start turning, under the action of the inner
control loops, following “up-loops”, i.e. pointing first towards
the zenith of the wind window and then to the other target
point. The main parameters to be chosen in the described
guidance strategy are the target points P−, P+, which can be
intuitively tuned by using simplified equations of crosswind
motion like those presented in [16], and the cutoff frequency
ωγ , which can be tuned in order to have sharper (for higher
ωγ) or wider (for smaller ωγ) turns of the wing (we provide an
example obtained from our experiments in the next section).
Finally, we note that the described approach does not rely on
any measurement or estimate of the wind speed, however the
interval [φ−, φ+] shall be centered around the wind direction,
in order to make the wing fly in crosswind conditions. A rough
measure of the wind direction can be obtained by means of
standard wind vanes, moreover an estimate can be obtained
from other measured quantities, like the wing’s speed and line
forces, as we discuss in section V.

IV. EXPERIMENTAL RESULTS

We present here the experimental results obtained with our
small-scale prototype. The data correspond to about 22 hours
of autonomous flight time in total, i.e. about 14,000 complete
figure-eight paths. The longest flight was of 4.3 hours. In all
the tests, the take-off and landing maneuvers were started and
ended by a human operator. The control system was able
to achieve consistently autonomous flight in different wind
conditions and with three different wings. In particular, we
employed a 6 m2, a 9 m2 and a 12 m2 Airush� One power
kites in the tests.

We first present a comparison between the control-oriented
model (15)-(16) and the experimental data collected during the
tests, and we then focus on the implementation of the control
system and on the resulting performance.

A. Experimental assessment of the control-oriented model for
tethered wings

In order to show the matching between Proposition 1 and
the experimental evidence, we first estimate the equivalent
efficiency Eeq(t) and the lift coefficient CL(t) of each wing.
To this end, we consider 10% of the data that we collected
with each wing. Using this data, we obtain an estimate of
the Eeq(t) by computing the ratio between the wing speed
relative to the ground, |�v(t)| (which is estimated accurately by
using a line angle sensor and an onboard inertial measurement
unit, see [19] for details), and the magnitude of the absolute
wind �W projected on the line direction, i.e. | �W | cos(θ) cos(φ),
measured with an anemometer placed at 4 m above the
ground. This estimate is justified by the theoretical equations
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of crosswind flight (see e.g. [16]), which are also valid under
Assumption 1, and it is reasonable in our setup thanks to the
short line length of 30 m, such that the wind could be measured
at an elevation quite close to that of the wing. We remark that
we used the wind measurements only for the purpose of data
analysis, and not as a feedback variable in the control system.
As to the value of the lift coefficient CL(t), we estimate it
from the following theoretical equation (see e.g. [16]):

|�Fc(t)| =
ρCL(t)A

2
Eeq(t)

(
1 + 1

Eeq(t)2

)3/2

·
(
cos(θ(t)) cos(φ(t))| �W (t)|

)2

,
(26)

where the total line force |�Fc(t)| was measured with load cells
installed on the GU. As a matter of fact, the estimated values of
Eeq(t) and CL(t) exhibit low variability, hence in the analysis
we consider their average values Eeq, CL, reported in Table
I. The obtained values are in line with the existing knowledge
of the aerodynamics of tethered curved wings: indeed, from
previous studies and physical insight, values of Eeq in the
range [4, 6] and CL in the range [0.5, 1] are reasonable.

TABLE I
LUMPED PARAMETERS OF THE WINGS EMPLOYED IN THE EXPERIMENTAL

ACTIVITIES.

Airush One� 12

Area A 12 m2

Mass m 2.9 kg

Wingspan ds 3.1 m

Equivalent aerodynamic efficiency (average) Eeq 5.3

Lift coefficient (average) CL 0.85

Airush One� 9

Area A 9 m2

Mass m 2.45 kg

Wingspan ds 2.7 m

Equivalent aerodynamic efficiency (average) Eeq 5.6

Lift coefficient (average) CL 0.8

Airush One� 6

Area A 6 m2

Mass m 1.7 kg

Wingspan ds 1.8 m

Equivalent aerodynamic efficiency (average) Eeq 5.1

Lift coefficient (average) CL 0.6

We then evaluate the quality of the control-oriented model
(15)-(16) and of equation (26) using the remaining 90% of the
data for each wing.

We first compare the measured values of γ̇, normalized by(
1 + 1

E2
eq

)2

|�v(t)|, with the steering input δ(t): according to
equation (16a), these two quantities are proportional through
the gain given by ρCL A

2mds
. The results of this comparison are

shown in Fig. 9(a), (b) and (c), for the 6-m2, 9-m2 and 12-
m2 wings, respectively. In Fig. 9(a)-(c), the gray dots represent
experimental data collected in the whole range of θ, φ spanned
by the wing during operation, while the black dots represent
values collected when |φ| ≤ 5◦, i.e. in crosswind conditions.
It can be noted that the linear relationship given by the model

(16) matches quite well with the experimental data, not only
in crosswind conditions, where the underlying assumptions are
valid, but also with larger values of φ, in the range ±35◦.
Finally, in Fig. 9-(d) we show an example of the matching
between the time course of γ̇ during figure-eight paths with
the 6-m2 wing and the estimate given by the model (15)-(16).
Overall, the presented results provide a bridge between the
existing dynamical models of the steering behavior of tethered
wings, as proposed by [17], [11], and experimental evidence.

The force equation (26) also shows generally a good match-
ing with the experimental data, albeit with larger variability,
as it can be seen in Figs. 10(a)-(c).

B. Controller implementation and experimental results of au-
tonomous flights

We implemented the controller described in section III
on a real-time machine manufactured by SpeedGoat� and
programmed with the xPC Target� toolbox for MatLab�. The
sampling frequencies we used for the control loops are 100
Hz for the innermost controller and 50 Hz for the middle
and outermost ones. A movie of the experimental tests is
available online [24]. Table II shows the main system’s and
control parameters, in addition to those reported in Table I. In

TABLE II
SYSTEM AND CONTROL PARAMETERS.

System’s parameters

Actuator gain Km 0.73m/(s A)

Actuator pole ωm 1.9 rad/s

Position limits δm 0.35 m

Current limits im 10 A

Distance between
steering lines’ attachment points d 0.5 m

Tether length r 30 m

Gain between motor position
and line lengths’ difference δu 4

Air density ρ 1.2 kg/m3

Position control loop

Sampling frequency 100 Hz

Damping ζcl 0.7

Natural frequency ωcl 78 rad/s

Velocity angle control loop

Sampling frequency 50 Hz

Feedback gain Kc 0.046 m/rad

Guidance strategy

Sampling frequency 50 Hz

Target points P+, P− variable

Butterworth filter
cutoff frequency ωγ variable

Table II, the target points P+, P− and the cutoff frequency ωγ

are indicated as “variable” because we tested different values,
in order to assess the influence of these tuning parameters
on the obtained performance. The first set of results that we
show (Figs. 11-13) is related to the 9-m2 wing; the target
points’ coordinates are θ+ = θ− = 0.35 rad, φ− = −0.2 rad,
φ+ = 0.2 rad and the value of ωγ is π

2 rad/s.
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Fig. 9. Experimental results. (a)-(c): Comparison between the measured values of γ̇(t)/

((
1 + 1

E2
eq

)2

|	v(t)|
)

as a function of the steering input δ(t)

(gray and black dots) and the theoretical linear relationship given by the gain ρCL A
2mds

as per equation (16a) (solid line). The gray dots represent experimental
data collected in the whole range of θ, φ spanned by the wing during operation, while the black dots represent values collected when |φ| ≤ 5◦, i.e. in
crosswind conditions. (a) Airush One� 6 kite, (b) Airush One� 9 kite, (c) Airush One� 12 kite. The lumped parameters for the kites are reported in Table I.
(d): Comparison between the value of γ̇ obtained in experimental tests (solid) and the one estimated using the simplified model and the result of Proposition
1 (dashed). Wing size: 6-m2.

Fig. 11 shows an example of the courses of δm,ref(t) and δm(t)
obtained during the experiments with the employed controller
for the innermost control loop. Note that, for the sake of
simplicity, we did not include the presence of disturbances
in the description of this control loop in section III-A. Indeed
the forces applied by the wing’s lines on the actuator can be
modeled as an additive disturbance at this level. The effect of
such disturbance can be clearly seen between points 8-1 and
around point 5 in Fig. 11, where there is some error between
the reference and the actual positions. By how the machine has
been designed, the force exerted by each steering line on the
actuator is equal to twice the force on the line. This amounts to
approximately 800 N at the mentioned points in the figure. The
tracking error induced by such disturbance does not influence
much the performance of the overall system. If needed, the
position controller can be tuned to achieve better tracking
performance, at the cost of higher energy consumption. The

flown path corresponding to Fig. 11 can be seen in Fig. 12, as
well as the line forces and the velocity angle of the wing. In
order to evaluate the robustness of the velocity angle control
loop, we checked the condition (23) for the following ranges of
the involved parameters: |�v| ∈ [2, 80]m/s, Eeq ∈ [2, 8], CL ∈
[0.4, 1], A ∈ [6, 12]m2, ds ∈ [1.8, 3.1]m, m ∈ [1.7, 3] kg.
The considered ranges of wing speed and equivalent efficiency
correspond to wind speeds in the interval [1, 10]m/s, covering
a wide range of normal operating conditions for airborne wind
energy generators. With the considered intervals, the control
system results to be stable with the chosen value of the gain
Kc = 0.046m/rad, thus indicating a good robustness of the
approach. Indeed in our tests the same value of Kc was used
for all wind conditions and all three wings, with good results.
We remark that, as anticipated in section III-B, the saturation
δm = 0.35m on the motor position was never active since,
in practice, the commanded position is much lower, of the
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(a)

(b)

(c)

Fig. 10. Experimental results. Comparison between the mea-
sured values of total line force as a function of the quantity

Eeq

(
1 + 1

E2
eq

)3/2 (
cos θ cos(φ)| 	W |

)2
(gray dots) and the theoretical

linear relationship given by the gain ρCL A
2

(26). (a) Airush One� 6 kite,
(b) Airush One� 9 kite, (c) Airush One� 12 kite. The lumped parameters
for the kites are reported in Table I.

order of 0.05 m (see Fig. 11). The wing can be effectively
steered with such small values of control input thanks to
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Fig. 11. Experimental results. Example of courses of target position δm,ref(t)
(dashed line) and actual position δm(t) (solid line) of the actuator obtained
with the designed innermost control loop, during automatic flight tests of a
9-m2 wing. The numbered circles corresponds to the conditions highlighted
in Fig. 12. Guidance parameters: θ+ = θ− = 0.35 rad, φ− = −0.2 rad,
φ+ = 0.2 rad; ωγ = π

2
rad/s.

the presence of the geometric input δg, whose effect is to
contribute to steer the wing towards the center of the wind-
window, hence facilitating the desired up-loops figure eights.
In other words, the geometric input already gives place to a
“self-steering” behavior, and the aim of the controller is to
apply relatively slight corrections to prevent instability and
divergence of the flown paths, especially in the middle of the
wind window, where the geometric input is small and the wing,
without feedback control, would head straight towards the
ground. This can be clearly seen by comparing the numbered
points in Figs. 11 and 12 (top). In Fig. 12 (bottom), a typical
example of the courses of the reference γref(t) and of the
actual velocity angle γ(t) obtained during the experiments is
shown: it can be noted that the middle control loop achieves
good performance in tracking the desired velocity angle.
The proposed control approach has been successfully tested
under various conditions. The controller was able to deal with
varying wind speed between about 2m/s up to 6m/s (measured
at 4 m above the ground), achieving similar, consistent flight
paths also in the presence of gusts. Wind speeds lower than
2 m/s would not allow the employed wings to fly without
stalling, and we avoided to test with wind speeds higher than
6 m/s not to stress too much the wing itself, the lines and
the mechanical frame, pulleys and other components of the
prototype (we recall that the involved forces increase linearly
with the square of the wind speed). Misalignments of the GU
with respect to the wind direction up to 30◦ did not pose
a problem for the overall control strategy. However, if the
target points (and thus the figure-eight paths) are not centered
with respect to the wind, the flight trajectory becomes slightly
asymmetric in terms of altitude. This phenomenon can be seen
in Fig. 13. Fig. 14 shows the results obtained with different
wind speeds, again with the 9-m2 wing and target points set
to θ+ = θ− = 0.8, rad, φ− = −0.4 rad, φ+ = 0.4 rad. The
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Fig. 12. Experimental results. Single figure-eight path obtained during
automatic test flights with about 2.4m/s wind speed measured at 4 m above
the ground. From top to bottom: flying path in (φ, θ) coordinates, course of
the total force acting on the lines (solid line) and of the forces acting on the
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wing: 9 m2. Guidance parameters: θ+ = θ− = 0.35 rad, φ− = −0.2 rad,
φ+ = 0.2 rad; ωγ = π
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results of Fig. 14 highlight the fact that, since the proposed
controller does not aim to track a given, specific reference path,
the resulting figure-eight trajectories change with different
wind conditions. However, the results also indicate that such
changes are not dramatic, moreover the flown paths can be
intuitively adjusted by changing the position of the target
points P−, P+ employed in our guidance strategy.
As mentioned in section III-C, the cutoff frequency ωγ can
be used to influence the course of the reference velocity
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Fig. 14. Experimental results. Figure-eight paths flown with different wind
speeds measured at 4 m above the ground. The solid line corresponds to a
series of consecutive figure-eights flown with average wind speed of 4.5m/s,
the dashed line with average wind speed of 2.2m/s. Employed wing: 9 m2.
Guidance parameters: θ+ = θ− = 0.8 rad, φ− = −0.4 rad, φ+ = 0.4 rad;
ωγ = π

2
rad/s.

angle. The higher this frequency, the faster the transient
behavior of γref(t) when the target point is switched, with
consequent sharper turns and smaller flown paths: an example
can be seen in Fig. 15, where the target points are set to
θ+ = θ− = 0.55, φ− = −0.2, φ+ = 0.2 and two different
values of ωγ are considered. Figs. 16 and 17 show an analysis
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Fig. 15. Experimental results. Figure-eight paths obtained with different
values of the cutoff frequency ωγ . The solid line corresponds to ωγ =
π
2

rad/s, the dashed one to ωγ = 2π rad/s. Employed wing: 9 m2. Guidance
parameters: θ+ = θ− = 0.55 rad, φ− = −0.2 rad, φ+ = 0.2 rad.

of typical figure-eight paths obtained with the 12-m2 and with
the 6-m2 wings, respectively: while the qualitative results are
similar to those obtained with the 9-m2 wing, these figures
show the quantitative differences in terms of generated forces
and behavior of the velocity angle.

V. DISCUSSION AND OUTLOOK

The presented experimental results indicate that the ap-
proach is able to achieve consistently and robustly figure-
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Fig. 16. Experimental results. Single figure-eight path obtained during
automatic test flights with about 3.1m/s wind speed measured at 4 m above
the ground. From top to bottom: flying path in (φ, θ) coordinates, course of
the total force acting on the lines (solid line) and of the forces acting on the
left (dotted), right (dash-dot) and center (dashed) lines, course of the velocity
angle γ (solid line) and reference velocity angle γref (dashed). Employed
wing: 12 m2. Guidance parameters: θ+ = θ− = 0.4 rad, φ− = −0.2 rad,
φ+ = 0.2 rad; ωγ = π
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eight crosswind flight paths, without the need to measure or
estimate neither the wind speed at the wing’s altitude nor
the apparent wind speed. The presence of few parameters
and the intuitive guidance strategy make the approach easy
to implement and tune. Moreover, the theoretical analysis
of the employed control-oriented model, confirmed by the
comparison with experimental data, provides new insights into
the dynamics of tethered wings.

It is interesting to elaborate more on the connection between
the presented control approach and the operation of airborne
wind energy generators, in particular with respect to the aim of
generating power. In this context, different considerations can
be made, depending on the available actuators and sensors.

The simplest system configuration involves the presence of
generators/motors on the ground, which can be controlled in
order to set a desired line force or line reeling speed. In such a
configuration, the wing’s pitch angle can not be influenced by
the control system (like in our small-scale prototype, where
we used a fixed bridling configuration). Then, the wing has to
be designed/configured in order to provide relatively constant
efficiency and lift for all the expected operating conditions, and
the amount of generated power depends mainly on two aspects:
the location where the figure-eight paths are flown relative to
the wind direction at the wing’s height, and the line reeling
speed. About the first aspect, our approach can be extended to
modify in real-time the location of the target points, employed
in the guidance strategy, in order to always achieve crosswind
flying paths. Such adaptation can be carried out without using
a direct measure of the absolute wind direction at the wing’s
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Fig. 17. Experimental results. Single figure-eight path obtained during
automatic test flights with about 2.2m/s wind speed measured at 4 m above
the ground. From top to bottom: flying path in (φ, θ) coordinates, course of
the total force acting on the lines (solid line) and of the forces acting on the
left (dotted), right (dash-dot) and center (dashed) lines, course of the velocity
angle γ (solid line) and reference velocity angle γref (dashed). Employed
wing: 6 m2. Guidance parameters: θ+ = θ− = 0.35 rad, φ− = −0.2 rad,
φ+ = 0.2 rad; ωγ = π
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location (which would be not trivial to obtain), but relying on
other available measurements, like the line force or the wing
speed relative to the ground. In particular, misalignments with
respect to the wind direction can be detected by observing the
difference of line force (or wing speed) between the left and
the right halves of the flown figure-eight paths. This is a topic
of ongoing research and the first results are promising [25]. As
regards the second aspect for optimal power generation, i.e. the
line reeling speed, the problem of controlling and optimizing
this variable can be treated separately from the problem of
achieving figure-eight paths. Since the generated power during
the traction phase is measured and it is a concave function
of the line reeling speed (see e.g. [16]), its maximum value
can be tracked by using real-time optimization techniques,
again without the need to measure the wind speed. The control
system for the line reeling can then be designed independently
from the crosswind flight controller. If needed, the potential
interaction between the two control systems, given by the fact
that the line reeling speed influences the wing’s tangential
velocity and hence its turning rate, can be dealt with by
scheduling the gain of the velocity angle controller (21) with
the wing’s speed tangent to the wind window.

A more complex system configuration involves the presence
of a pitch actuator in addition to the ground generators. Also
in this case, the approach presented in this paper can be
used without significant modifications to achieve figure-eight
crosswind paths, and the control system can then modulate the
line force and the wing pitch to optimize the generated power,
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by tracking both the optimum reel-out speed and the maximum
lift/drag ratio. This can be done by exploiting either existing
measurements, like line forces and wing speed, or additional
ones, like the onboard airflow.

In summary, the control problem for the traction phase of
ground based airborne wind energy generators involves two
objectives, i.e. the stabilization of the figure-eight trajectories
and the optimization of the generated power, and two or three
input variables, depending on the available actuators. The
approach presented in this paper exploits one of such input
variables (i.e. the steering deviation) to achieve the first control
objective, hence decoupling it from the second one, which can
then be tackled by exploiting the other inputs (i.e. the line force
and, eventually, the wing pitch), through additional feedback
strategies that can be straightforwardly combined or integrated
in the control system.

The natural development of this research will be the execu-
tion of full generating cycles with the considered concept of
airborne wind generator, and the comparison of the obtained
results with the existing theoretical and numerical analyses.
To this end, we are currently investigating the extension of
the presented technique to adapt to varying wind direction,
the design of a control approach able to address the problem
of optimal line reel-out, finally the the design of a strategy to
optimize the passive (i.e. retraction) phase of the generator.

APPENDIX

Proof of Proposition 1. For the sake of simplicity of notation,
in the following we drop the dependance of time-varying variables
from t. We start by deriving an analytic expression for the velocity
angle rate. For this we take the derivative of (12) to get

γ̇ =
cos (θ) θ̇φ̈− sin (θ) φ̇θ̇2 − cos (θ) φ̇θ̈

cos (θ)2 φ̇2 + θ̇2
(27)

The accelerations θ̈ and φ̈ in (27) can be expressed as functions of
the forces acting on the wing by using the model equations (2)-(11).
By Assumption 1, neglecting all forces except for the aerodynamic
ones and considering the balance of the lift and drag forces in the
direction of the wing velocity �v we have (see e.g. [16]):

sin (Δα)

cos (Δα)
=

1

Eeq

.
=

CD,eq

CL
(28)

where Eeq is the equivalent efficiency of the wing. By the equation
above we can see that Δα is small for a reasonable wing efficiency
of 4-6. Measurements of test flights have shown that Δα < 0.3 rad,
and most of times Δα < 0.2 rad. Therefore we can linearize (28) to
get

Δα =
1

Eeq
. (29)

Moreover, on the basis of Assumption 2 we can simplify also η in (9)
as η = Δαψ. Finally, by Assumption 1 the component of absolute
wind perpendicular to the tether is zero, and the velocity angle γ � ξ.
Hence, the aerodynamic force components given by (7) and (8) can
be simplified as follows:

L
�Fa =

1
2
ρCLA| �Wa|2

⎛
⎝Δα cos (γ)− (Δα2ψ + ψ) sin (γ)
Δα sin (γ) + (Δα2ψ + ψ) cos (γ)

−1

⎞
⎠+

1
2
ρCD,eqA| �Wa|2

⎛
⎝− cos (γ)
− sin (γ)
−Δα

⎞
⎠
(30)

By using (27) and (2)-(3) with (30) we obtain:

γ̇ =
1
2
ρCLA| �Wa|2

rm

θ̇ cos (γ) + cos (θ)φ̇ sin (γ)

cos (θ)2φ̇2 + θ̇2

(
Δα2 + 1

)
ψ

+

1
2
ρA| �Wa|2 (CLΔα− CD,eq)

(
θ̇ sin (γ)− cos (θ)φ̇ cos (γ)

)
rm

(
cos (θ)2φ̇2 + θ̇2

)

+
rm sin (θ)φ̇

(
θ̇2 + cos (θ)2φ̇2

)
rm

(
cos (θ)2φ̇2 + θ̇2

) +
g cos (θ)2φ̇

r
(
cos (θ)2φ̇2 + θ̇2

)
(31)

Following the same argument by which (29) is derived, we also
obtain:

| �Wa(t)|2 �
(
1 +

1

E2
eq

)2

|�v|2. (32)

Considering (6), |�v| is computed as:

|�v| =
√

r2(cos (θ)2φ̇2 + θ̇2), (33)

which is, by the definition of γ (12), also equal to

|�v| = rθ̇ cos (γ) + r cos (θ) φ̇ sin (γ). (34)

Finally, by combining (31) with (29) and (32)-(34), and considering
the linearization of (10) by Assumption 2, we get our result:

γ̇ =
CLρA

2mds

(
1 +

1

E2
eq

)2

|�v|δ + g cos (θ) sin (γ)

|�v| + sin (θ)φ̇.
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