
Data-driven control of nonlinear systems: an on-line direct approach

Marko Tanaskovic a,d, Lorenzo Fagiano b, Carlo Novara c, Manfred Morari a

aAutomatic Control Laboratory, Swiss Federal Institute of Technology, Zurich, Switzerland.

bABB Switzerland Ltd., Corporate Research,Baden-Daettwil, Switzerland.

cDipartamento di Automatica e Informatica, Politechnico di Torino, Italy.

dMaxon motor ag., Brünigstrasse 220, Sachseln, Switzerland

Abstract

A data-driven method to design reference tracking controllers for nonlinear systems is presented. The technique does not derive explicitly
a model of the system, rather it delivers directly a time-varying state-feedback controller by combining an on-line and and off-line
scheme. Like in other on-line algorithms, the measurements collected in closed-loop operation are exploited to modify the controller in
order to improve the tracking performance over time. At the same time, a predictable closed-loop behavior is guaranteed by making use of
a batch of available data, which is a characteristic of off-line algorithms. The feedback controller is parameterized with kernel functions
and the design approach exploits results in set membership identification and learning by projections. Under the assumptions of Lipshitz
continuity and stabilizability of the system’s dynamics, it is shown that if the initial batch of data is informative enough then the
resulting closed-loop system is guaranteed to be finite gain stable. In addition to the main theoretical properties of the approach, the
design algorithm is demonstrated experimentally on a water tank system.

Key words: Data-driven control, Dynamic inversion, Nonlinear control, Identification for control, Adaptive control

1 Introduction

Model-based control design approaches require the deriva-
tion of a mathematical model of the plant to be controlled,
the identification of the model parameters and the design
of a controller based on the derived model. This approach
is widely used and gives good results in many applications.
However, in several cases, building a detailed and accu-
rate model of a nonlinear plant can be difficult, costly and
time-consuming. In these situations, data-driven design tech-
niques represent a possible alternative approach, since they
do not require a detailed knowledge of the physics of the
system and rely only on the available measured data and rel-
atively little prior information (e.g. qualitative information
on the relations between the involved variables, approximate
knowledge of the system order, knowledge on the system

? The material in this paper has been partly presented at 17th
IFAC Symposium on System Identification (SYSID 2015) held in
Beijing, Oct 19–21, 2015. Corresponding author M. Tanaskovic.
c©2017 Elsevier 10.1016/j.automatica.2016.09.032

Email addresses: tmarko@control.ee.ethz.ch (Marko
Tanaskovic), lorenzo.fagiano@ch.abb.com (Lorenzo
Fagiano), carlo.novara@polito.it (Carlo Novara),
morari@control.ee.ethz.ch (Manfred Morari).

block structure and on the most important internal states,
etc.). In particular, in direct data-driven approaches the con-
troller is designed directly from the measured data, elimi-
nating completely the need for a model of the plant.

The existing direct data-driven approaches can be divided
into on-line and off-line ones. In on-line schemes the con-
troller is modified with each new measurement obtained in
closed-loop operation. Examples of on-line direct techniques
are the perturbation stochastic approximation control (see
[20]), the model free adaptive control (see e.g. [6–8]) and
the unfalsified control (see [4,16]). The main advantage of
on-line techniques is the ability to improve the control per-
formance over time using the measured data. However, since
the controller can change at any time, its behavior is often
hard to predict. In addition, guaranteeing stability of these
control schemes is quite challenging and requires restrictive
assumptions on the controlled system.

In off-line procedures the design is based on a batch of mea-
surements, collected in preliminary experiments before the
controller becomes operational, and no further modification
is carried out during operation. Such techniques include the
iterative feedback tuning (see e.g. [5,18]), the correlation
based tuning (see [12]), the virtual reference feedback tun-

Preprint submitted to Automatica 17 October 2018

ing (see [1,3]) and the direct inversion based control (see
e.g. [13] and the references therein). In most of these tech-
niques, stability is not considered in the design phase and it
is assessed by simulations or experimental verification be-
fore the controller becomes operational. Recently, an off-
line direct technique that relies on nonlinear set-membership
identification (see e.g. [10]) has been proposed in [14]. The
approach guarantees theoretically finite-gain stability of the
closed-loop system, as the number of data used for the de-
sign approaches infinity. The main disadvantage of off-line
algorithms is that, unlike the on-line schemes, they do not
exploit the additional measurements obtained during con-
troller operation in order to improve the performance. On
the other hand, the behavior of a controller designed off-line
is usually more predictable.

In this paper, we propose a direct, data-driven design ap-
proach that combines the advantages of on-line and off-line
techniques. The technique makes use of the theory of learn-
ing by projections (see [22] and the references therein) to
update the controller on-line. At the same time, under the
assumptions of Lipshitz continuity and stabilizability of
the system’s dynamics, it is shown that if the initial batch
of data is informative enough then the resulting closed-
loop system is guaranteed to be finite gain stable. In par-
ticular, stability is achieved by enforcing a robust constraint
on the control input; such a constraint is derived by means
of set-membership identification. The mentioned theoretical
results are obtained by considering the control design prob-
lem as a static inversion, where one aims to derive, from
experimental data, an approximate inverse of the system’s
function. This is the same theoretical framework as in [14],
but the design approach and the results are completely dif-
ferent in order to enable on-line learning while retaining the
stability guarantee. In addition, unlike the scheme in [14],
the proposed on-line design algorithm leads to closed-loop
stability even when the number of initially available data is
finite. After describing the approach and its properties, we
present the experimental results obtained on a laboratory
water tank system, where we compare our technique with
a purely off-line direct design approach and a well tuned
linear controller.

The paper is organized as follows. The control problem is
defined in Section 2 and the design algorithm is presented in
Section 3. The theoretical analysis of the proposed scheme
is described in Section 4.1, while Section 4.2 discusses the
tuning of the involved parameters. The experimental results
are presented in Section 5 and conclusions are drawn in
Section 6.

2 Problem Statement

We consider a discrete-time nonlinear system with one
input and nx states, represented by the following state
equation:

xt+1 = g(xt, ut) + et+1, (1)

where t ∈ Z is the discrete time variable, ut ∈ R is the
control input, xt ∈ Rnx is the vector of measured states
and et ∈ Rnx is the vector of disturbance signals that
accounts for both the measurement noise and process
disturbances.

Assumption 1 The noise and disturbance term et is
bounded in magnitude:

et ∈ Bε
.
= {et : ‖et‖ ≤ ε,∀t ∈ Z}, (2)

for some ε > 0.

For a given compact domain Y and image set Z, let us
denote the class of Lipschitz continuous functions over Y ,
with Lipschitz constant γ, with:

F(γ, Y)
.
=
{
f : Y → Z : ‖f(ya)− f(yb)‖ ≤ γ‖ya − yb‖ ,
∀ya, yb ∈ Y

}
Remark 1 Throughout the paper, the notation ‖ · ‖ stands
for a suitable vector norm chosen by the user (typically 2- or
∞-norm); the presented results hold for any specific norm.

We further consider that during the controller operation the
state trajectory shall be confined inside a compact set X ⊂
Rnx , and that input constraints are present in the form of a
compact interval U ⊂ R. The system at hand is assumed to
enjoy the following regularity property over these sets:

Assumption 2 For any x ∈ X , the function g is Lipschitz
continuous with respect to u, i.e.

∀x ∈ X, g(x, ·) ∈ F(γg, U) (3)

The function g in (1) is unknown to the control designer, but
a set DN of past input and state measurements is available
at time t = 0:

DN
.
= {ut, ωt}−1

t=−N (4)
where

ωt
.
= (xt, xt+1). (5)

Assumption 3 The batch of data DN is such that ut ∈ U
and wt ∈ X ×X, ∀t = −N, . . . ,−1.

Remark 2 If the system is open-loop unstable, a pre-
stabilizing controller (eventually a human operator, as
in [2]) can be used to carry out the initial experiments
to collect the data DN . Such data are usually collected
and commonly used also in model-based approaches, to
identify the parameters of the mathematical model of the
system. Another scenario to which our approach applies is
when a high-fidelity model of g is available, but it is too
complex to carry out model-based control design. In this
case, the data DN can be also generated through simula-
tions with such a model.

2

Remark 3 The problem settings introduced so far can be
extended to the case of output-feedback control design, if
the system state is not known or not fully measured. In this
case, one can replace the state in (1) with a regressor or
pseudo-state, composed by present and past values of the
input and of the output. Then, under reasonable control-
lability/observability conditions, the dynamics can still be
written in the form (1), and algorithms and results simi-
lar to those presented in the following can be derived. An-
other option is to employ a state observer, when available,
to obtain an estimate of the state, which would be affected
by estimation errors that can be embedded in the term et.
Similarly, when the system involves dynamics that are ne-
glected, i.e. there are additional states with respect to those
contained in x, our formulation and results would are still
valid as long as one assumes to embed the effects of such
neglected dynamics into the additive term et.

In our theoretical derivations we consider the notion of finite
gain stability (see e.g. [9]).

Definition 1 (Finite gain stability) A system with input ut ∈
U , state xt ∈ X and disturbance et ∈ Bε is finite gain
stable if there exist finite and nonnegative constants λ1, λ2

and β such that:

‖x‖∞ ≤ λ1‖u‖∞ + λ2‖e‖∞ + β, (6)

where x = (x1, x2, . . .), u = (u1, u2, . . .), e = (e1, e2, . . .)
are the time sequences of the input, state and disturbance
variables, and ‖x‖∞

.
= sup

t
‖xt‖ is the `∞ signal norm.

Let us consider a reference signal rt to be tracked, as-
sumed to belong to a compact set Br ⊆ X:

Br
.
= {x ∈ Rnx : ‖x‖ ≤ r} . (7)

This means that the reference is bounded in norm by
the scalar r ∈ R, r > 0 and it is never outside the set
where the state trajectory shall be confined. We can now
introduce the notion of γ−stabilizability.

Definition 2 (γ−stabilizability) The system (1) is γ-
stabilizable if there exists a γ < ∞ and a control function
f ∈ F(γ,X ×X) such that the closed-loop system:

xt+1 = g (xt, f(xt, rt+1)) + et+1 (8)

is finite gain stable, with input rt ∈ Br, state xt ∈ X and
disturbance et ∈ Bε.

Assumption 4 The system (1) is γ-stabilizable for some
γ <∞.

We can finally state the problem addressed in this paper.

Problem 1 Use the batch of dataDN , collected up to t = 0,
to design a feedback controller whose aim is to track a de-
sired reference signal rt ∈ Br for t > 0. Once the con-
troller is in operation, carry out on-line refinements of the
design by exploiting the incoming input and state measure-
ments, while keeping the closed-loop system finite gain sta-
ble.

3 On-line direct control design method

We approach Problem 1 from the point of view of data-
driven, direct inversion techniques. In this context, we as-
sume the existence of an “optimal” (in a sense that will be
shortly specified) inverse of the system’s function g in (1)
among the functions that, if used as controller, stabilize the
closed-loop system. Then, we build from the available prior
knowledge and data a set of functions that is guaranteed to
contain the optimal inverse, and we exploit such a set to
derive an approximated inverse, which we use as feedback
controller. This approach involves several preliminary ingre-
dients, explained in the following sub-sections.

3.1 Optimal inverse and controller structure

Following the definitions and notation introduced in [14], for
a given control function f we define the point-wise inversion
error as:

IE(f, r, x, e)
.
= ‖r − g(x, f(x, r))− e‖, (9)

and the global inversion error as:

GIE(f) =L ‖IE(f, ·, ·, ·)‖, (10)

where L‖ · ‖ in (10) is a suitable function norm (e.g. L∞)
evaluated on X × Br × Bε. Based on Assumption 4, there
exist a set S containing all functions f that stabilize the
closed loop system. Then, we define the optimal inverse
controller function f∗ as:

f∗ = arg min
S
⋂
FX×X

GIE(f), (11)

where FX×X denotes the set of all Lipschitz continuous
functions on X × X . We denote the Lipschitz constant of
f∗ with γ∗, and the related constants λ1, λ2 and β, obtained
if the controller f∗ were used in closed-loop (see (6)), by
λ∗1, λ∗2 and β∗.

Deriving function f∗ is challenging. In fact, even if the
function g were known exactly (which is not the case in
our settings, since we assume its existence but we don’t
make explicit use of it in our algorithm), just to com-
pute the global inversion error GIE (10) would entail
solving a multi-variable integral of a general nonlinear
function over a compact set. Then, to find the function

3

f∗ (11) would be even more difficult, since the related op-
timization problem is generally non-convex and infinite-
dimensional. To cope with this issue, we aim to calcu-
late an approximation of f∗ from the available data. In
particular, we will derive a time-varying nonlinear function
ft ≈ f∗ which we will employ as feedback controller. Con-
sidering the measured data available up to a generic time t,
we can write the control input as:

ut = f∗(ωt) + dt, (12)

where dt is a signal accounting for the unmeasured noise and
disturbances and possible inversion errors. From Assump-
tions 1 and 2, it holds that as long as the state and input tra-
jectories evolve in the sets X and U , respectively, the scalar
dt has to be bounded, i.e. dt ∈ Bδ ⊂ R with δ being a pos-
itive constant. Assumption 3 guarantees that this is the case
up to t = 0, i.e. considering the initial batch of data DN ,
and let us assume that for t > 0 the control input is such
that this property is still valid (we will show that indeed our
approach guarantees that xt ∈ X, ∀t > 0). Then, following
a set membership identification approach (see e.g. [23,10]),
we consider the set of feasible inverse functions at time step
t (FIFSt), i.e. the set of all functions f ∈ FX×X that are
consistent with the available data and prior information:

FIFSt
.
=

⋂
j=−N,...,t−1

Hj , (13)

where:

Hj
.
= {f ∈ FX×X : |uj − f(ωj)| ≤ δ}. (14)

The inequality in (14) stems from the observation that the
difference between the measured input ut and the value of
function f∗ evaluated at the corresponding ωt can not be
larger than the bound on the amplitude of the signal dt.

Under Assumptions 1–4, if ut ∈ U and xt ∈ X ×X, ∀t ≥
−N , then the optimal inverse f∗ belongs to FIFSt, i.e.
f∗ ∈ FIFSt for all t. In set membership identification,
an estimate f ≈ f∗ belonging to the set FIFSt enjoys a
guaranteed worst-case approximation error not larger than
twice the minimal one that can be achieved (see e.g. [23] for
details). Motivated by this accuracy guarantee, we update
the controller ft on-line in order to approach the set FIFSt.
First, in order to have a tractable computational problem,
we parameterize the controller ft with a finite sum of kernel
functions:

ft(ω) = aTt K(ω,Wt),

where at ∈ RLt is the vector of weights, and K(ω,Wt) =

[κ(ω, ω̃1), . . . , κ(ω, ω̃Lt)]
T is a vector of kernel functions

κ(·, ω̃i) : R2nx → R, i = 1, . . . , Lt belonging to a dictio-
nary that is uniquely determined by the Lt kernel function
centers Wt = {ω̃1, . . . , ω̃Lt}. Then, at each time step t we
update the setWt, which determines the kernel function dic-
tionary, and we also recursively update the weights at ex-
ploiting the knowledge of FIFSt (13), with an approach in-
spired by the projection-based learning scheme presented in

[19] in the context of signal processing. Moreover, in order
to achieve finite gain stability of the closed-loop system, we
exploit the information that f∗ ∈ FIFS0 to derive a robust
constraint on the vector of weights at, which we impose in
the on-line procedure.

In the following, we provide the details of these steps and
we then summarize the overall design method and discuss
its computational and memory requirements.

3.2 Robust inequality to enforce closed-loop stability

In order to enforce the stability of the closed-loop system
obtained when the time varying feedback controller ft is
used, we require the approximated inverse, ft, to satisfy the
following inequality at each time step t ≥ 0:

|ft(ω+
t)− f∗(ω+

t)| ≤ γ∆‖xt‖+ σ,

∀f∗ ∈ F(γ∗, X ×X) ∩ FIFS0, ∀t ≥ 0,
(15)

where ω+
t = [xt, rt+1]T and γ∆, σ ∈ R, γ∆, σ > 0, are

design parameters. Sufficient conditions on these parameters
that guarantee finite gain stability of the closed-loop are
given in Section 4. The idea behind (15) is to limit the
discrepancy between the input computed by the approximate
inverse ft at time step t, i.e. ut = ft(ω

+
t), and the one

given by the optimal inverse f∗ to a sufficiently small value,
which depends linearly on the norm of the current state.
However, since the optimal inverse f∗ is not known, we
require the inequality (15) to be satisfied robustly for all
functions inFIFS0 that have Lipschitz constant equal to γ∗.
As mentioned above, such a function set is in fact guaranteed
to contain f∗ under our working assumptions.

To translate the inequality (15) into a computationally
tractable constraint on the parameters at, we exploit the
information that f∗ ∈ F(γ∗, X × X) ∩ FIFS0 to com-
pute tight upper and lower bounds on f∗(ω+

t) using the
following result from [10].

Theorem 1 (Theorem 2 in [10]) Given a nonlinear function
f∗ ∈ F(γ∗, X × X) ∩ FIFS0, the following inequality
holds:

f(ω) ≤ f∗(ω) ≤ f(ω),

where:

f(ω) = min
k=−N,...,−1

(uk + δ + γ∗‖ω − ωk‖)

f(ω) = max
k=−N,...,−1

(uk − δ − γ∗‖ω − ωk‖) .
(16)

Exploiting Theorem 1, the robust constraint (15) can be sat-
isfied by enforcing the following two inequalities on the
vector of weights at:

− γ∆‖xt‖ − σ + f(ω+
t) ≤ aTt K(ω+

t ,Wt)

aTt K(ω+
t ,Wt) ≤ γ∆‖xt‖+ σ + f(ω+

t)
(17)

4

Note that the value of γ∗ that is required in order to enforce
the constraints in (17) can be estimated from the available
dataDN by using the methods presented in [14] and [21] (see
also Remark 5). A detailed analysis on how the enforcement
of (17) guarantees finite-gain stability of the closed-loop is
provided in our main result in Section 4. We describe next
the approach to update the dictionary of kernel functions
and the vector of weights at.

3.3 Updating the dictionary of kernel functions

As stated in Section 3.1, the two main components that are
used to calculate the time varying feedback controller ft
are the dictionary of kernel functions Wt and the vector of
weights at. In this Section, we describe the algorithm to
update the dictionary over time, such that it accounts for the
incoming measurement data, while at the same time keeping
its size bounded.

Kernel functions are widely used in machine learning for
parametrization in nonlinear approximation and learning
tasks (see e.g. [17]). Without loss of generality, we will con-
sider the use of one of the most common of such functions,
i.e. the Gauss one:

κ(ω, ω̃i) = e−p‖ω−ω̃i‖22 , (18)

where p ∈ R, p > 0 is a design parameter that determines
the width of the Gauss function and ω̃i is its center.

The data generated by any Lipschitz continuous nonlinear
function evaluated at a finite number of points can be well
approximated by a dictionary of kernel functions centered at
the same points. In our on-line controller design, we let the
dictionary grow and incorporate new kernel functions as new
input and state measurements are collected. However, adding
a new function to the dictionary at each time step would
lead to an unlimited growth of the dictionary size Lt over
time. Moreover, this would result in a dictionary that is not
sparse, i.e. with many functions that are similar (centered at
points close to each other), and with possible over-fitting of
the measurement data. To avoid these problems, we choose
to add a new function only if it is sufficiently different from
those already contained in the dictionary. As indicator of
similarity, we use the so-called coherence factor (see e.g.
[15] for more details):

µ(ω,Wt) = max
i=1,...,Lt

|κ(ω, ω̃i)|. (19)

Note that µ(ω,Wt) ∈ (0, 1], and that µ(ω,Wt) = 1 if and
only if ω ∈ Wt. Hence, the larger the coherence value in
(19), the more similar is the kernel function centered at ω
to some function already in the dictionary. In our design
technique, we set a threshold µ ∈ (0, 1) and we add a par-
ticular data point ω to the set of function centers Wt if
µ(ω,Wt) ≤ µ. This approach guarantees that the size of
the dictionary will remain bounded over time, as we recall

in Section 4 (see Lemma 1). The tuning parameter µ deter-
mines the size and sparsity of the dictionary. A discussion
on how to choose the parameters p in (18) and µ is given in
Section 4.2.

3.4 Updating the vector of weights

The vector of weights at is updated over time such that
the corresponding function ft, evaluated at a finite num-
ber of measured regressor values ωj = (xj+1, xj), j =
t−q, . . . , t−1, is consistent with the assumed prior infor-
mation, in particular with the fact that |uj−ft(wj)| ≤ δ,
see (14). This update strategy yields, on the one hand, a
computationally tractable algorithm to adapt the weights
(since enforcing the inequality (14) for all time instants
would lead to a problem whose size grows unlimited with
time), and, on the other hand, guaranteed theoretical
properties regarding the distance of the resulting func-
tion from the set FIFSt (13). At the same time, we also
enforce the robust inequalities required for closed-loop sta-
bility as described in Section 3.2.

As a preliminary step to the recursive update of the weights
at note that, as discussed above, the size of the dictionary
can expand from time step t− 1 to time step t and therefore
in general it will hold that at−1 ∈ RLt−1 and at ∈ RLt

with Lt−1 ≤ Lt. Therefore, in order to properly define the
updating algorithm at time t, we consider the vector a+

t−1 ∈
RLt :

a+
t−1 = [aTt−1, 0, . . . , 0︸ ︷︷ ︸

Lt−Lt−1

]T , (20)

obtained by initializing the weights corresponding to the
kernel functions that are added to the dictionary to zero.

To introduce the updating of the vector at ∈ RLt , we note
that each pair (uj , ωj), j = −N, . . . , t−1 defines, together
with the dictionary of kernel functions at time step t, the
following set:

Sjt
.
= {a ∈ RLt : |aTK(ωj ,Wt)− uj | ≤ δ}, (21)

which is a strip (hyperslab) in RLt . If at ∈ Sjt, then the
corresponding function ft in (15) belongs to the set Hj

defined in (14). We further define the projection of a point
in RLt onto the strip Sjt as:

Pjt(a)
.
= min
â∈Sjt

‖a− â‖2. (22)

Note that calculating the projection (22) amounts to solving
a very simple quadratic program, whose solution can be
explicitly derived (see e.g. [22]):

5

Pjt(a)=a+

uj−δ−aTK(ωj ,Wt)

‖K(ωj ,Wt)‖22
K(ωj ,Wt) if uj−δ>aTK(ωj ,Wt)

0 if |aTK(ωj ,Wt)−uj |≤δ
uj+δ−aTK(ωj ,Wt)

‖K(ωj ,Wt)‖22
K(ωj ,Wt) if uj+δ<aTK(ωj ,Wt).

(23)

Therefore, calculating the projection of any point in RLt

onto a measurement strip as in (22) can be done computa-
tionally very efficiently. Finally, we consider the hyperslab
defined by the stability constraint (17):

S+
t
.
=

{
a ∈ RLt: aTK(ω+

t ,Wt) ≥ −γ∆‖xt‖−σ+f(ω+
t)

aTK(ω+
t ,Wt)≤γ∆‖xt‖+σ+f(ω+

t)

}
,

(24)
and we denote the corresponding projection operator with
P+
t (·). Such a projection can also be calculated explicitly

by using a formula similar to (23).

From the definitions of the hyperslabs Sjt and S+
t in (21)

and (24) it follows that if

at ∈ S+
t

⋂ ⋂
j=−N,...,t−1

Sjt

 ,

then the corresponding function ft belongs to the set FIFSt
and satisfies the stabilizing constraint (15). However, to
find a point that belongs to the intersection of all Sjt, j =
−N, . . . , t−1 at each time step is computationally challeng-
ing. Therefore, we exploit the idea at the basis of projection
learning algorithms, that by repeatedly applying the projec-
tion operators to a point, the result will eventually fall in the
intersection of the considered hyperslabs. In particular, we
update the vector of weights at in two steps: first, following
the idea of [19], we calculate a convex combination of its
projections onto the hyperslabs defined by a finite number
q ≥ 1 of the latest measurements; then, we project the ob-
tained point onto the hyperslab S+

t in order to ensure the sat-
isfaction of the stabilizing constraint (15). To be more spe-
cific, let the set of indexes Jt = {max{−N, t−q}, . . . , t−1}
contain the time instants of the last q state and input mea-
surements, and let It = {j ∈ Jt : a+

t−1 /∈ Sjt} be the sub-
set of indexes such that the weighting vector a+

t−1 does not
belong to the corresponding hyperslabs. Then, we compute
our update of the weighting vector at from a+

t−1 as:

at = P+
t

a+
t−1 +

∑
j∈It

1

card(It)

(
Pjt(a

+
t−1)− a+

t−1

) ,

(25)
where card(It) denotes the number of elements in It. This
update can be computed very efficiently with the explicit
formulas for vector projections (see e.g. (23)) and eventually
by parallelizing the projection operations.

3.5 Summary of the proposed design algorithm

The described procedures to update the dictionary of ker-
nel functions and the weights at form our on-line scheme
to compute the feedback controller ft, summarized in Al-
gorithm 1.

Algorithm 1 Feedback control algorithm based on the on-
line direct control design scheme

1) Collect the state measurement xt. If t < 0, set ω+
t =

[xt, xt+1]T , otherwise set ω+
t = [xt, rt+1]T .

2) Update the dictionary Wt starting from Wt−1 by adding
ωt−1 if µ(ωt−1,Wt−1) ≤ µ. Form the vector a+

t−1 ac-
cording to (20).

3) Calculate at according to (25).
4) If t ≥ 0, calculate the input ut = aTt K(ω+

t ,Wt) and
apply it to the plant.

5) Set t = t+ 1 and go to 1).

For t ≥ 0, such an algorithm is both a controller and a design
algorithm, while for t < 0 it only acts as a design algorithm.

Remark 4 Note that instead of running Algorithm 1 for
t < 0, other off-line techniques for controller design (like
the one in [14]) could be used in order to derive the initial
controller. Algorithm 1 could then be used on-line (for t ≥ 0)
in order to further refine the initial controller during the
closed-loop operation.

The proposed scheme has moderate computational require-
ments, since many operations can be parallelized, and it does
not require the solution of complex mathematical problems.
However, in order to evaluate the bounds (16) needed to
compute the projection operator P+

t (·) onto the hyperslab
S+
t in (24), the training data DN (or a subset of it) need to

be stored in memory and made available on-line.

4 Properties of the approach and tuning guidelines

4.1 Theoretical properties of the proposed algorithm

We will now present results on the following aspects: closed-
loop stability, growth of the dictionary of kernel functions
over time, and performance in terms of boundedness of the
tracking error. The first result provides sufficient conditions
for a time-varying controller ft, designed according to our
Algorithm 1, to render the closed-loop system finite-gain
stable. Let us consider the following assumption on the tun-
ing parameter γ∆.

Assumption 5

γ∆ ∈
(

0,
1

γgλ∗2

)
.

6

Assumption 5 requires the tuning parameter γ∆ to be small
enough. With this assumption, we can define the maximal
achievable state amplitude as:

x
.
=
λ∗1r + γgλ

∗
2σ + λ∗2ε+ β∗

1− γgλ∗2γ∆
, (26)

and the sets Bx and Bxr as:

Bx
.
= {x ∈ Rnx : ‖x‖ ≤ x},

Bxr
.
= {ω = (x, r) : x ∈ Bx, r ∈ Br} .

(27)

We consider also a technical assumption on the relationship
between the sets Bx, Bxr and the sets U and X .

Assumption 6 Bx ⊆ X . Moreover, ∀ω ∈ Bxr,∀∆u ∈
[−γ∆x− σ, γ∆x+ σ], f∗(ω) + ∆u ∈ U .

Namely, Assumption 6 requires the compact sets X and U ,
in which the state and the input of the plant (1) evolve, to be
sufficiently large, such that they include, respectively, the set
Bx and all possible control inputs that are consistent with
the robust constraint (15), for all pairs of state measurement
and reference values in Bxr. In particular, this means that
the function g should be Lipschitz continuous with respect
to the input u over sets X and U that are sufficiently large.

Moreover, we denote with D0 the diameter of information
derived from the set membership condition f∗ ∈ F(γ∗, X×
X)∩FIFS0. D0 is the maximal difference, evaluated over
the set Bxr, between the bounds in (16):

D0
.
= sup
ω∈Bxr

(
f(ω)− f(ω)

)
. (28)

We assume that D0 and the tuning parameter σ satisfy the
following condition.

Assumption 7

σ ≥ D0

2
.

Remark 5 Assumptions 5, 6 and 7 depend on both system-
related quantities, like ε, δ, γg , γ∗, D0, λ∗1, λ∗2 and β∗, and
design parameters, i.e. σ and γ∆, that have been introduced
so far. We note that, in order to apply our method, most of
the involved system-related quantities need not to be known
explicitly, rather they are instrumental to derive theoretical
guarantees on the closed-loop system and on the behavior of
the approach. The only quantities that need to be estimated
are the bound δ and the Lipschitz constant γ∗. As a matter
of fact, such estimates can be obtained from the collected
data, see e.g. [14], with guaranteed convergence under as-
sumptions on the informative content of the collected data.
As an additional extension of the approach, we also explored
the possibility to compute and refine such estimates on-line,
with guaranteed convergence properties. We omit here such
extensions for the sake of clarity and brevity; for the full
details the interested reader is referred to [21].

We now have all the ingredients to state the result on the
finite gain stability of the closed-loop.

Theorem 2 Let the Assumptions 1–7 hold, and let S+
0 6= ∅

and x0 ∈ Bx. Then, for any reference signal rt ∈ Br,∀t >
0, Algorithm 1 guarantees that S+

t 6= ∅,∀t ≥ 0 and that the
closed-loop system is finite gain stable.

Proof. We prove the theorem by induction. First, we note that
the closed loop system obtained by using the approximate
controller ft can be represented as:

xt+1 =g(xt, ft(xt, rt+1))+et+1 =g(xt, f
∗(xt, rt+1))+et+1+vt,

vt = g(xt, ft(xt, rt+1))− g(xt, f
∗(xt, rt+1)).

(29)
From Assumption 4 and the definition of the optimal inverse
controller f∗ in (11), it holds that:

‖x‖∞ ≤ λ∗1‖r‖∞ + λ∗2‖v‖∞ + λ∗2‖e‖∞ + β∗, (30)

where v = (v1, v2, . . .). Moreover, we note that from As-
sumptions 2 and 6, it follows that:

‖vt‖≤γg|ft(xt,rt+1)−f∗(xt,rt+1)|,∀(xt, rt+1)∈Bxr.
(31)

We now employ the inductive argument to show that if S+
0 6=

∅ and x0 ∈ Bx, then S+
t 6= ∅ and xt ∈ Bx,∀t ≥ 0. The

condition is satisfied for t = 0 by the Theorem assumption.
Let us assume, for the sake of inductive argument, that S+

k 6=
∅ and xk ∈ Bx,∀k ∈ [0, t − 1]. From this assumption and
the way the weighting vector at is updated in (25), it follows
that ak ∈ S+

k , ∀k ∈ [0, t − 1]. From Assumptions 3 and 6,
it follows that ωk ∈ X ×X and uk ∈ U,∀k ∈ [−N, t− 1].
From the definition of S+

t in (24), Assumptions 1–2 and
Theorem 1, it then follows that:

|fk(xk, rk+1)−f∗(xk, rk+1)| ≤ γ∆‖xk‖+σ, ∀k ∈ [0, t−1].
(32)

From (31) and (32) it then holds that:

‖vk‖ ≤ γgγ∆‖xk‖+ γgσ, ∀k ∈ [0, t− 1]. (33)

From Assumption 5, it follows that γgλ∗2γ∆ < 1. From this
and from (30) and (33) it further follows that:

‖xt‖∞ ≤
λ∗1

1− γgλ∗2γ∆
‖rt‖∞ +

λ∗2
1− γgλ∗2γ∆

‖et‖∞

+
γgλ
∗
2σ + β∗

1− γgλ∗2γ∆
,

(34)

where xt = (x1, . . . , xt), rt = (r1, . . . , rt) and et =
(e1, . . . , et). From the facts that ‖rt‖∞ ≤ r and that
‖et‖∞ ≤ ε, and from (26), it then follows that ‖xt‖ ≤ x,
i.e. xt ∈ Bx. Therefore, ω+

t ∈ Bxr and from (28), it holds
that f(ω+

t) − f(ω+
t) ≤ D0. From Assumption 7, it then

follows that:

−γ∆‖xt‖ − σ + f(ω+
t) ≤ γ∆‖xt‖+ σ + f(ω+

t),

7

which implies that S+
t 6= ∅. Repeating this inductive argu-

mentation for all t ≥ 0, it follows that S+
t 6= ∅,∀t ≥ 0. In

addition, (34) will hold for all t ≥ 0 which implies that the
closed-loop system is finite gain stable (see e.g. Definition
1). �

Remark 6 It is hard to use Theorem 2 in a constructive
way in order to precisely select the tuning parameters and
the initial batch of data that guarantee closed-loop stability,
since, as mentioned above, many of the quantities involved
in Assumptions 1–7 are in general not known. Nevertheless,
the result provides useful insights on the behavior of the ap-
proach, as well as tuning guidelines for the parameters σ
and γ∆. In particular, from Assumptions 5 and 7 it follows
that, for the sake of closed-loop stability, γ∆ should be cho-
sen as a small value, and σ as a large one. A larger value
of σ implies that larger discrepancies between the approx-
imated inverse and the optimal one can occur (see (15)),
with consequent potentially larger values of the state vari-
able in closed-loop, represented by x in (26). However, the
latter quantity shall be kept small, as required by Assump-
tion 6, for the state trajectory to remain inside the set X and
for the input to remain within the set U . Hence, the value
of σ should be chosen as the smallest such that Assumption
7 holds. The latter condition can be indeed always satisfied
for any fixed value of σ provided that the initial batch of data
DN is large and informative enough, since in this case the
diameter of information D0 can be made arbitrarily small,
see e.g. [10]. Thus, ultimately Theorem 2 can be also inter-
preted as a sufficient condition on the initial data set, such
that the designed controller guarantees closed-loop stability.

A direct consequence of Theorem 2 and of its proof is that
the tracking error is bounded ∀t ≥ 0. Namely, from (9),
(15), (29) and (31) it follows that ∀t ≥ 0:

‖rt−xt‖ ≤IE(f∗, rt, xt−1, et)+γgγ∆||xt−1||+γgσ.
(35)

Therefore, despite the fact that the controller ft can change
at each time step during operation, an upper bound on the
tracking error can be theoretically derived.

Next, we address the question on whether the size of the
dictionary remains bounded or grows unlimited over time,
which would imply prohibitive computations with the pro-
posed algorithm. To answer this question, we recall an im-
portant property of the coherence measure, demonstrated in
[15].

Lemma 1 (Proposition 2 in [15]) Let W be a compact
set. Then for any µ ∈ [0, 1), the dictionary obtained by
adding a kernel function centered at ωt ∈ W to it when
µ(ωt,Wt) ≤ µ has a finite number of elements for any se-
quence {wt}∞t=−N .

As shown by Theorem 2, under our working assumptions
it holds that ωt ∈ Bxr, ∀t ≥ 0 and from Assumption 3 it

follows that ωt ∈ X ×X for t ∈ [−N,−1]. Therefore, all
incoming data points that are used to evaluate the coherence
factor µ in (19) belong to a compact set and we can apply
Lemma 1 to conclude that the size of the dictionary used
under the Algorithm 1 remains bounded.

More precisely, there exists a finite time step t < ∞ such
that the dimension Lt of vector at reaches an upper bound
Lt = L, ∀t ≥ t and therefore Sjt ⊂ RL,∀j ∈ It and
S+
t ⊂ RL for ∀t ≥ t. Moreover, ∀ta, tb,≥ t, it holds that
Sjta = Sjtb , therefore for t ≥ t we can denote Sjt just
by Sj , since the centers of the kernel functions do not
depend on time anymore.

In addition, we state the following result, which is a direct
consequence of the properties of the projection based update
rule (25) analyzed in [19].

Lemma 2 (Slight modification of Theorem 4.2 in [19]) Let

Ω
.
=
⋂
t≥t

(
S+
t

⋂(⋂
j∈It

Sj

))
6= ∅ for some finite t ∈ N, t ≤

t < ∞. Then, the recursive update rule (25) of Algorithm
1 is guaranteed to bring the point at ∈ RL closer to the
set Ω with each time step t ≥ t, i.e. min

a∈Ω
‖at − a‖2 ≤

min
a∈Ω
‖at−1 − a‖2,∀t ≥ t and in the limit it holds that:

lim
t→∞

min
a∈Ω
‖at − a‖2 = 0. (36)

Lemma 2 states that if the set Ω is nonempty, then, in the
limit, the vector of weights at is guaranteed to belong to
the intersection of all but finitely many hyperslabs S+

t and
Sj , j ∈ It, t ≥ t. Therefore, from the definitions of Sjt
in (21) and the control function ft in (15), it follows that
in the limit, the control law ft belongs to the intersection
of the sets Hk, k ≥ t (see e.g. (14)). Note also that for
Lemma 2 to hold, the set Ω needs to be nonempty, which
is a reasonable assumption if the values of the disturbance
bound δ and the Lipschitz constant γ∗ are correctly estimated
or overestimated (see also Remark 5) and if the parameters
related to the parametrization of the controller are chosen
properly. Guidelines on how to select the tuning parameters
related to controller parametrization are given in Section 4.2.

Finally, we present a result pertaining to the behavior of the
tracking error. On the basis of the properties of Algorithm 1
described so far, we can show that in the limit, i.e. as t→∞,
there is a bound on the tracking error that might be tighter
than the one provided by (35). To introduce this result, for
any point ω ∈ Bxr, we denote by vω the smallest positive
constant for which there exists a time step t, t ≤ t < ∞
such that

||ωt − ω|| ≤ vω,
where ωt is the state measurement pair acquired at time step
t. In addition, we denote by γft the Lipschitz constant of

8

the approximate controller ft. Note that the function ft is
indeed Lipschitz continuous as it is a sum of Gauss kernel
functions (see (15)). In addition, we note that if the set Ω is
bounded, then according to Lemma 2 it follows that as t→
∞, ft is given as a weighted sum of Lipschitz functions with
bounded weights and therefore there exists a constant γf ∈
R, γf > 0 such that lim

t→∞
sup γft ≤ γf . The condition that

Ω is bounded is satisfied if the acquired measurements are
informative, i.e. if the hyperslabs generated by the incoming
measurements form a bounded set. Based on the introduced
definitions, we state the following result.

Theorem 3 If Ω is nonempty and bounded, then:

lim
t→∞

‖rt−xt‖ ≤ lim
t→∞

here???IE(f∗, rt, xt−1, et−1)+2γgδ

+ γg
(
γf+γ∗

)
vω,∀(xt−1, rt) ∈ Bxr,

(37)
where ω = (xt−1, rt).

Proof 1 For any ω ∈ Bxr it holds that

|ft(ω)−f∗(ω)| ≤|ft(ωk)−f∗(ωk)|
+|ft(ωk)−ft(ω)|+|f∗(ωk)−f∗(ω)|,

(38)
where ωk is the state measurement pair acquired at time
step k, t ≤ k <∞ that satisfies

||ωk − ω|| ≤ vω.

In addition, from the definition of Ω it holds that a ∈ Sk, for
any a ∈ Ω and any k ≥ t, where Sk is the hyperslab defined
by the measurement point ωk. Moreover, from Lemma 1 it
follows that Wt = Wt,∀t ≥ t. From this and the fact that
|f∗(ωk)− uk| ≤ δ (see e.g. (12)), it follows that

|aTK(ωk,Wt)− f∗(ωk)| ≤ 2δ, ∀a ∈ Ω,∀k ≥ t. (39)

From Lemma 2 it follows that there exists a point a ∈ Ω
such that lim

t→∞
at = a and hence from the definition of the

controller ft and (39) it follows that:

lim
t→∞

|ft(ωk)− f∗(ωk)| ≤ 2δ, ∀k ≥ t. (40)

In addition, from the fact that both ft and f∗ are Lipschitz
continuous, and from the definitions of vω and γf it follows
that

lim
t→∞

|ft(ωk)− ft(ω)| ≤ γfvω
lim
t→∞

|f∗(ωk)− f∗(ω)| ≤ γ∗vω.
(41)

Moreover, as shown in the proof of Theorem 2, it holds that

‖rt − xt‖ ≤IE(f∗, rt, xt−1, et−1)

+ γg|ft(xt−1, rt)− f∗(xt−1, rt)|.
(42)

Therefore, from (38)–(42) the claim of the theorem follows
directly. �

As an interpretation of Theorem 3, consider the case when
the system operates close to the reference. As more and
more data points are collected over time, the value of the
constant vω for the points close to the reference trajectory
is reduced and it eventually tends to zero as the state space
around the desired reference trajectory is well explored. In
such a case, the tracking error in the limit is bounded by the
inversion error of the optimal inverse function f∗, which can
be assumed to be small, plus the product 2γg δ, which can
be also assumed to be small in practice. Thus, if the neigh-
borhood of the reference trajectory is well explored during
operation, then good tracking performance can be expected
as more and more measurement data are collected. This is
typically the case when the reference trajectory is periodic
or constant for some time, as we show in our experimental
results in Section 5.

4.2 Tuning guidelines for the learning algorithm

In order to implement Algorithm 1, few tuning parameters
need to be selected. These parameters can be split into two
groups. The first group consists of the scalars γ∆ and σ,
related to closed-loop stability and to the amount of infor-
mation contained in the initial data, which we already com-
mented on in the previous Section (see Remark 6). Calculat-
ing these parameters such that the assumptions required for
stability would be satisfied might be challenging in general
and is a topic of current research. Some initial considera-
tions on how to select these parameters, on the basis of the
available measurement data, such that closed-loop stability
is guaranteed are given in [21].

The second group of parameters also consists of two scalars,
the Gauss kernel function parameter p (see (18)) and the
value of the coherence bound µ (see (19)), which are related
to the parametrization of the controller ft. We briefly elab-
orate here about the choice of such parameters. A possible
way to select the right combination of p and µ is to run the
Algorithm 1 off-line, by using the available training data
DN , for a set of different parameter values and, after each
execution, to calculate the average estimation error with re-
spect to the data DN as:

Ee =
1

N

−1∑
k=−N

|aT−1K(ωk,W−1)− uk|. (43)

There are several outcomes of these trials, which can be an-
alyzed in order to select the parameter values. Namely, if
Ee is much larger than δ, it means that the particular choice
of parameters yields a poor approximation of the function
f∗, hence large estimation error. If Ee is small (around δ or
smaller) and the resulting dimension of the weighting vec-
tor a−1, i.e. L−1, is large (close to N), then the choice of
the corresponding parameters is also poor, since a large dic-
tionary is required to fit the data well. On the other hand,
if both Ee and L−1 are small, then the selected parameter
combination approximates f∗ well with a relatively small

9

dictionary, hence such a combination of tuning parameters
is preferable. Note that although this analysis might be com-
putationally expensive and time consuming, it can be carried
out off-line before the controller becomes operational.

5 Experimental example

We tested experimentally the proposed control design algo-
rithm on a water tank system. The latter consists of a round
water tank with a water inlet at the top and a small opening
at the bottom, through which the water leaks out of the tank.
Water is injected from a reservoir into the tank by an elec-
tric pump, whose flow can be controlled with the voltage v
applied to the motor. The water flow that the pump gener-
ates depends nonlinearly on the applied voltage. The water
level in the tank, h, is measured by a pressure sensor located
at its bottom. The pump voltage v is the input variable and
the water level h is the main internal state, hence referring
to the notation used in the previous sections we have x = h
and u = v. A schematic of the described experimental setup
and its picture are given in Fig. 1. The described system is
nonlinear and the pump characteristic and the cross section
of the water outlet are not known. Therefore, the proposed
on-line control design algorithm represents a useful way to
build a controller that would regulate the tank water level
without the need of going through detailed modeling and
parameter identification procedures.

Fig. 1. Schematic of the experimental setup (left) and its picture
(right)

A sampling time of 3 seconds was selected to control the
system. In order to implement the proposed design scheme,
we first generated the training data DN by applying the in-
put sequence shown in Fig. 2 and recording the resulting
water level measurements. Then, we employed our theo-
retical results, in particular Theorem 2, to tune the control
algorithm. Specifically, starting with the recorded data, we
applied Algorithms 2 and 3 in [21] to estimate the noise
bounds ε = 0.1, δ = 0.15 and the Lipschitz constants
γg = 1.25 and γ∗ = 3.6. We then assumed the values of
λ∗1 = λ∗2 = 1.12, β∗ = 0 and chose the value of γ∆ = 0.15.
In addition, from the available training data DN and the es-
timated values of δ and γ∗, by using the method proposed in
[11] we calculated the value D0 = 5.8 in (28) considering

the set Bxr with x = 18 and r = 9. A summary of the pa-
rameters that we used is provided in Table 1; we note that all
the tuning parameters were selected such that Assumptions
5–7 are valid. The algorithm was implemented and run on
a laptop with Intel i7 processor. The worst case execution
time during experiments was never larger than 0.8 seconds
and the maximal number of kernel functions in the dictio-
nary never exceeded 250.

Table 1
Tuning parameters.

δ γ∗ γ∆ σ µ p q

0.15 3.6 0.15 2.9 0.82 1.8 20

0

10

20

 u
[V

]

0 500 1000 1500 2000 2500 3000 3500 4000
0

10

20

 h
[c

m
]

sample

Fig. 2. Initial training data DN . The upper plot shows the applied
pump voltages and the lower plots shows the resulting tank water
levels.

To illustrate the advantage of the proposed on-line scheme,
we compared its performance with that of an approach where
the updating of the controller ft is stopped before the con-
troller is put into operation (at time step t = 0) and the
performance of a well tuned proportional-integral (PI) con-
troller. The reference tracking performance for the three
cases is compared in Fig. 3 and the applied voltage signals
during the experiments are shown in Fig. 4.

In both the experiments with directly designed nonlinear
controllers a reasonable tracking performance is achieved.
However, for the case when the controller is not updated
on-line, the tracking error is significant when the tank water
level is low, which is the operating condition with strongest
nonlinear behavior.

The PI controller was tuned to achieve good performance
when the set point is equal to XX cm, which corresponds
to the the middle of the range that the reference signal
spanned during the initial experiments. As illustrated in
Fig. 3, for this value and for all reference values above it,
the control performance of the PI controller is quite good,
since the system dynamics are close to linear. On the other
hand, due to a strong nonlinearity when the water level is
below 3 cm, it is not possible to achieve good reference
tracking with the PI controller in this range, as illustrated in
Fig. 3. However, with the nonlinear controller obtained di-
rectly from the data it is possible to achieve good reference
tracking performance for the tank water levels in a very wide

10

0
2
4
6
8

 h
[c

m
]

0 200 400 600 800 1000 1200 1400 1600 1800
0
2
4
6
8

time [s]

 h
[c

m
]

0
2
4
6
8

 h
[c

m
]

Fig. 3. Measured tank water levels (solid lines) compared with
the desired reference (dashed line) for the case when a well tuned
PI controller (upper plot) is used and the case when nonlinear
controllers directly designed from data with no on-line update
(middle plot) and with an on-line update (lower plot) are used.

0

5

10

 u
[V

]

0

5

10

 u
[V

]

0 200 400 600 800 1000 1200 1400 1600 1800
0

5

10

 u
[V

]

time [s]

Fig. 4. Pump voltage applied during the experiment with a well
tuned PI controller (upper plot), nonlinear controller directly de-
signed from data when there is no on-line update (middle plot)
and when the controller is updated during operation (lower plot).

range. In addition, when the controller is updated on-line
based on the incoming closed loop measurements, the track-
ing performance is improved over time and after 1200 sec-
onds very good reference tracking is achieved even for low
water levels. The absolute average tracking error during the
last 600 seconds of the experiment for the controller that is
updated on-line is 0.08 cm, compared to 0.30 cm for the
controller that is designed on the basis of initial training data
only and 0.61 cm for the PI controller. This illustrates the
main advantage of the proposed scheme, which is the abil-
ity to exploit the incoming measurements obtained during
controller operation in order to improve the tracking perfor-
mance over time while at the same time having a predictable
behavior.

6 Conclusion

We proposed a novel on-line direct control design method.
The algorithm exploits results from set membership theory
for nonlinear systems and the theory of learning by projec-
tions, and it retains the advantages of the existing on-line
and off-line schemes. We presented theoretical results con-
cerned with closed-loop stability, controller complexity and
tracking performance, and experimental results showing the
advantages of the method with respect to a purely off-line
direct design approach and a well tuned linear controller.
Future research efforts will aim to derive automatic ways
to tune and update the design parameters (particularly
γ∆ and σ) on-line, exploiting the available data, and to
extend the approach to systems with multiple inputs.

References

[1] M. C. Campi and S. M. Savaresi. Direct nonlinear control design:
the virtual reference feedback tuning (VRFT) approach. IEEE
Transactions on Automatic Control, 51:14–27, 2006.

[2] L. Fagiano and C. Novara. Automatic crosswind flight of tethered
wings for airborne wind energy: a direct data-driven approach.
Proceeding of the 19th IFAC World Congress, Cape Town, South
Africa, 21:4927–4932, 2014.

[3] S. Formentin, P. De Filippi, M. Corno, M. Tanelli, and S. M. Savaresi.
Data-driven design of braking control systems. IEEE Transactions
on Control Systems Technology, 21:186–193, 2013.

[4] J. Van Helvoort, B. de Jager, and M. Steinbuch. Direct data-driven
recursive controller unfalsification with analytic update. Automatica,
43:2034–2046, 2007.

[5] H. Hjalmarsson. Iterative feedback tuning–an overview. International
Journal of Adaptive Control and Signal Processing, 16:373–395,
2002.

[6] Z. Hou and S. Jin. A novel data-driven control approach for a class
of discrete-time nonlinear systems. IEEE Transactions on Control
Systems Technology, 19:1549–1558, 2011.

[7] Z. Hou and S. Jin. Controller-dynamic-linearization-based model
free adaptive control for discrete-time nonlinear systems. IEEE
Transactions on Industrial Informatics, 9:2301–2309, 2013.

[8] Z. Hou and S. Jin. Model free adaptive control: theory and
applications. CRC Press, 2013.

[9] H. K. Khalil. Nonlinear systems. Prentice Hall, 1996.

[10] M. Milanese and C. Novara. Set membership identification of
nonlinear systems. Automatica, 40:957–975, 2004.

[11] M. Milanese and C. Novara. Computation of local radius of
information in SM-IBC identification of nonlinear systems. Journal
of Complexity, 23:937–951, 2007.

[12] L. Miskovic, A. Karimi, D. Bonvin, and M. Gevers. Corelation-
based tuning of decoupling multivariable controllers. Automatica,
43:1481–1494, 2007.

[13] M. Norgaard, O. Ravn, N. Poulsen, and L. K. Hansen. Neural
networks for modeling and control of dynamic systems. Springer,
2000.

[14] C. Novara, L. Fagiano, and M. Milanese. Direct feedback control
design for nonlinear systems. Automatica, 49:849–860, 2013.

[15] C. Richard, J. C. M. Bermudez, and P. Honeine. Online prediction
of time series data with kernels. IEEE Transactions on Signal
Processing, 57:1058–1067, 2009.

11

[16] M. G. Safonov and T.C. Tsao. The unfalsified control concept and
learning. IEEE Transactions on Automatic Control, 42:843–847,
1997.

[17] B. Schölkopf and A. J. Smola. Learning with kernels. MIT Press,
Cambridge MA, 2001.

[18] J. Sjöberg, F. De Bruyne, M. Agarwal, B. D. O. Anderson, M. Gevers,
F. J. Kraus, and N. Linard. Iterative controller optimization for
nonlinear systems. Control Engineering Practice, 11:1079–1086,
2003.

[19] K. Slavakis and I. Yamada. The adaptive projected subgradient
method constrained by families of quasi-nonexpansive mappings and
its application to online learning. SIAM Journal of Optimization,
23:126–152, 2013.

[20] J. C. Spall and J. A. Cristion. Model-free control of nonlinear
stochastic systems with discrete-time measurements. IEEE
Transactions on Automatic Control, 43:1198–1210, 1998.

[21] M. Tanaskovic, L. Fagiano, C. Novara, and M. Morari. On-line direct
data driven controller design approach with automatic update for
some of the tuning parameters, 2015. arXiv:1506.05267 (available
online).

[22] S. Theodoridis, K. Slavakis, and I. Yamada. Adaptive learning in a
world of projections. IEEE Signal Processing Magazine, 28:97–123,
2011.

[23] F. J. Traub and H. Wozniakowski. A general theory of optimal
algorithms. Academic Press, New York, 1980.

12

