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Abstract— A learning-based approach for robust predictive
control design for multi-input multi-output (MIMO) linear
systems is presented. The identification stage allows to obtain
multi-step ahead prediction models and to derive tight uncer-
tainty bounds. The identified models are then used by a robust
model predictive controller, that is designed for the tracking
problem with stabilizing properties. The proposed algorithm
is used to control the nonlinear model of a quadruple-tank
process using data gathered from it. The resulting controller,
suitably modified to account for the nonlinear system gain
matrix, results in remarkable tracking performances.

I. INTRODUCTION

Given the growing complexity of systems and plants,
and the easy availability of large datasets collected during
plant operation, researchers are focusing more and more on
learning techniques to extract knowledge from data [5]. This
trend involves also the control community, that has devoted
attention to learning and identification algorithms and tools
for dynamical system modeling [15], [19]. Data-driven mod-
eling methods allow to overcome most of the critical issues
of the approaches based on first principle equations, e.g.
lack of information on the system or the complexity of the
phenomena. Furthermore, data-driven approaches often allow
to save valuable time in industrial applications.
Several techniques have been developed so far with the
aim of designing a controller from data. They are either
model-free, i.e. they derive the control policy directly from
data [20], [7], [18] or model-based, i.e. they first derive
a model of the plant, based on which the control design
is addressed [3],[2],[10]. A critical issue of model-based
approaches is the quantification of the uncertainty associated
with the learned model. Having a quantitative description
of the uncertainty is crucial to quantify the mismatch be-
tween the model and the real system, that must be taken
into account by the controller. The most common choice,
though, is to assume the uncertainty bound known [4], [11],
[8], but few approaches are devoted to derive it [12]. In
recent years, a number of contributions has addressed this
problem exploiting set membership techniques [13], that are
promising in this context since they allow to quantify the
model uncertainty from data [14].
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Among the most widely employed control design methods
model predictive control (MPC) [17] has gained popularity
due to the large flexibility and the capability of handling
operational constraints. It naturally requires a model of the
system, based on which an optimization program is formu-
lated, according to the desired objective, and periodically
solved, to compute a proper control action [9]. Recently, a
novel approach has been proposed for linear systems, that ad-
dresses model identification, model mismatch quantification,
and MPC design in a unitary and consistent fashion [22].
First of all, set membership identification [21] is used to
derive multi-step prediction models and for quantifying their
associated uncertainty bounds. Specifically tailored robust
MPC controllers are also proposed for regulation [23] and
tracking [22], which are able to include explicitly multi-
step predictors and prediction error bounds into the MPC
controller formulation. These contributions focus on single
input and single output (i.e., SISO) systems, and they have
been tested on linear academic examples taken from the
related literature.
In this paper we proceed along this line of research. In
particular, we propose an extension of the approach described
in [22] for multi input multi output (MIMO) systems and we
test the controller on a realistic benchmark example, i.e., the
quad-tank system [1]. Motivated by this example, we also
discuss about some issues and possible solutions arising in
the application of our approach on nonlinear systems.
In Section II the problem is formally stated, in Section III
the control algorithm is devised, while a short description of
the learning algorithm is given in Section IV. In Section V
the numerical results are reported. Conclusions and hints for
future work conclude the paper in Section VI.
Notation. We denote with In the identity matrix of order n,
with 0a,b the matrix of dimensions a×b with all entries equal
to 0. Also, we denote with 1n the vector with n entries equal
to 1 and with ⊗ the Kronecker product. The Minkowski sum
and the Pontryagin difference between sets are denoted with
⊕ and with 	 respectively. Given a matrix A, we denote Ai•
its i-th row and A•i its i-th column. The 2-norm of a vector v
is denoted with ‖v‖ =

√
vT v, its i-th component is denoted

with vi and its infinity norm is ‖v‖∞ = maxi |vi|. Finally,
given two numbers m,n ∈ N, we define with rem∗(m/n)
the least positive remainder of the division m/n: however,
in case m is multiple of n, we set rem∗(m/n) = n rather
than 0.

II. PROBLEM FORMULATION
Consider a discrete-time, linear time invariant, MIMO

system of order n with input u ∈ Rnu , output z ∈ Rny and
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measured output y ∈ Rny described by the autoregressive
equations:

z(k + 1) = θ
(1)
z

T
φ

(1)
z (k) + v(k)

y(k) = z(k) + d(k),
(1)

where v ∈ Rny is an additive process disturbance, d ∈ Rny

is an additive measurement noise and φ(1)
z (k) ∈ R(ny+nu)n

is the regressor defined as:

φ(1)
z (k) = [zT (k), . . . , zT (k − n+ 1), uT (k − 1), . . . ,

uT (k − n+ 1), uT (k)]T

The matrix θ(1)
z contains the real system parameters, that

are unknown, as well as the order of the system n.
Assumption 1 (System and signals):
• System (1) is asymptotically stable
• u(k) ∈ U ⊂ Rnu ∀ k ∈ Z, where U is a compact and

convex set.
• the process disturbances v(k) and the output noises d(k)

are bounded, i.e.

|vi(k)| ≤ v̄i |di(k)| ≤ d̄i ∀ k ∈ Z, ∀i = 1, . . . , ny

where d̄i > 0 are known and v̄i > 0 are possibly not
known (and assumed unknown in the sequel).

In this paper, for simplicity, we also assume that the system
is square (i.e., nu = ny) and that the input-output static gain
matrix (denoted µ in the paper) is invertible.

A dataset collected from the plant is available, composed of
Ns input-output pairs (u, y), and it is assumed that the input
signal in the database excites all the system modes to ensure
its identifiability.
The problem addressed in this paper consists of designing a
theoretically sound robust model predictive controller based
on identified multi-step prediction models, endowed with a
tight prediction error bound estimated from data.

III. TRACKING MPC WITH LEARNED MODELS

In this section we extend the procedure for the design of
an MPC robust controller for tracking proposed in [22] to
MIMO systems.

A. Available models

The proposed approach requires the definition of
a state-space simulation model with state X(k) =
[zT (k), . . . , zT (k−o+1), uT (k−1), . . . , uT (k−o+1)]T ∈
R(ny+nu)o−nu and dynamics

X(k + 1) = AX(k) +Bu(k) +Mw(k)

z(k) = CX(k)

y(k) = z(k) + d(k)

(2)

where o (see later) is selected in the identification phase
and the entries wi(k) of w(k) ∈ Rny are bounded, i.e.,
|wi(k)| ≤ w̄i. Note that w(k) accounts for various sources
of uncertainty, e.g., the model mismatch with the real system
and the process disturbances. Also, our approach requires the
definition of optimal predictors of z(k+ p) (denoted zp(k)),

for p = 1, . . . , p̄, based on the present system state and on the
future control actions U(k) =

[
u(k)T . . . u(k + p̄)T

]T
:

zp(k) = CpX(k) +DpU(k) (3)

Model (2) will be defined through a suitable learning phase.
Also, the peculiarity of our approach lies in the fact that (3)
will not be defined by iterating (2) p times, but by means
of dedicated identification steps, in order to optimize their
multi-step predictive potentialities.
For consistency of notation we define C0 = C and D0 =
0ny,(p+1)nu

such that we can write z(k) = z0(k) =
C0X(k) +D0U(k).
A dedicated observer is designed, that includes the estimate
ŵ(k) of the disturbance w, derived later on.

X̂(k+ 1) = AX̂(k) +Bu(k) +Mŵ(k) +L(y(k)−CX̂(k))
(4)

X̂(k) is the estimated state and the matrix L is chosen such
that the closed-loop matrix (A − LC) is Schur stable. We
also define the nominal dynamic system as

X̄(k + 1) = AX̄(k) +Bū(k) +Mŵ(k) (5)

where
u(k) = ū(k) +K(X̂(k)− X̄(k)) (6)

The gain K is defined in such a way that the closed-loop
transition matrix A+BK is Schur stable. The corresponding
nominal outputs are, for all p = 1, . . . , p̄

z̄p(k) = CpX̄(k) +DpŪ(k) (7)

where Ū(k) =
[
ūT (k) . . . ūT (k + p̄)

]T
. We finally

define z̄(k) = C0X̄(k) = z̄0(k). In line with [11], the
optimization problem will be formulated by regarding the
nominal model (5), while the displacement of the real
variables X(k), u(k) with respect to X̄(k), ū(k) will be
considered for constraint tightening purposes.

B. Definition of the cost function

The overall goal of the proposed method is to track the
reference output zgoal. However, for feasibility purposes, in
the optimization problem the reference set point is zref ,
which in turn is defined as a further optimization variable.
Assuming that a reliable (invertible) estimate µ̂ of the system
static gain matrix µ is available, the corresponding input and
state references are

uref(k) = µ̂−1zref(k), Xref(k) = Nzref(k) (8)

where N =

[
1o ⊗ Iny

1o−1 ⊗ µ̂−1

]
. As a result, the estimate ŵ(k)

of w(k) is defined according to the steady-state expression
Xref(k) = AXref(k) +Buref(k) +Mŵ(k), i.e.,

ŵ(k) = ηzwzref(k) (9)

where ηzw = MT
[
(I(ny+nu)o−nu

−A)N −Bµ̂−1
]
. More-

over, for consistency, the term ŵ(k) will be forced to be
bounded, i.e., |ŵi(k)| ≤ w̄i for all i = 1, . . . , ny through
dedicated constraints in the optimization problem.



From this we can define, ∀p ∈ {0, . . . , p̄}, the consistent set
point for each p-steps ahead prediction model as

zpref(k) =
[
Cp Dp

] [ Xref(k)
1p̄+1 ⊗ uref(k)

]
(10)

The cost function to be minimized at each step k is

J(k) =

p̄∑
p=0

(
‖z̄p(k)− zpref(k)‖2Qp

+ ‖ū(k + p)− uref(k)‖2Rp

)
+ ‖X̄(k + p̄+ 1)−Xref(k)‖2P + σ‖zref(k)− zgoal‖2

(11)

where X̄(k+ p̄+ 1) is obtained by iterating the unperturbed
state equation (5) p̄+ 1 times, i.e.,

X̄(k+p̄+1) = Ap̄+1X̄(k)+ΓŪ(k)+Γw(1p̄+1⊗ŵ(k)) (12)

Also, Γ =
[
Ap̄B . . . B

]
,Γw =

[
Ap̄M . . . M

]
, The

weights Qp, Rp, P , and σ > 0 are defined to guarantee
convergence properties, see [22] for details.

C. Definition of the tightened constraints
Suitable tightened input and output constraints are im-

posed on variables ū(k) and z̄(k) = CX̄(k)

ū(k) ∈ Ū, z̄(k) ∈ Z̄, ŵ(k) ∈W, (13)

where W = {w ∈ Rny : |wi| ≤ w̄i, i = 1, . . . , ny} and the
sets Ū and Z̄ are closed and satisfy:

Ū ⊆ U	KĒ (14a)

Z̄ ⊆ Z	 C(Ē⊕ Ê) (14b)

Set Ê is robust positively invariant (RPI) [16] for the system

ê(k+1) = (A−LC)ê(k)+M(w(k)−ŵ(k))−Ld(k) (15)

Note that (15) describes the evolution of ê(k) = X(k) −
X̂(k). Also, Ē is the RPI set for

ē(k + 1) = (A+BK)ē(k) + LCê(k) + Ld(k) (16)

where ē(k) = X̂(k)−X̄(k). To define the terminal constraint
set we consider the following auxiliary control law

ū(k) = uref(k) +K(X̄(k)−Xref(k)) (17)

To compute an invariant set where (X̄(k), zref) must lie in
order to guarantee that constraints (13) are verified for all
k, we need to define the Maximal Output Admissible Set
(MOAS, see [6]) O for the system[
X̄(k + 1)
zref(k + 1)

]
=

[
A+BK BM2 +Mηzw

0ny,(nu+ny)o−nu
Iny

]
︸ ︷︷ ︸

F

[
X̄(k)
zref(k)

]

(18)

that is subject to the auxiliary control law (17), where M2 =
µ̂−1 −KN . The triplet (ū(k), z̄(k), ŵ(k)) is computed as z̄(k)

ū(k)
ŵ(k)

 =

 C 0ny,ny

K M2

0ny,(nu+ny)o−nu
ηzw


︸ ︷︷ ︸

C

[
X̄(k)
zref(k)

]
(19)

In the following we will use the invariant, polytopic inner
approximation Oε to the MOAS.

D. The optimization problem

The optimization problem, to be solved at each time
instant k ≥ 0, reads

min
X̄(k),Ū(k),zref (k)

J(k) (20a)

subject to (5), (7), (8), (9), (10) and

X̂(k)− X̄(k) ∈ Ē (20b)

Also, ∀p ∈ {0, . . . , p̄}

ū(k + p) ∈ Ū, z̄(k + p) = C0X̄(k + p) ∈ Z̄, ŵ(k) ∈W
(20c)

Finally, as a terminal constraint, the following must be
fulfilled [

X̄(k + p̄+ 1)
zref(k)

]
∈ Oε (20d)

If available, the solution to the optimization problem
(20) is denoted X̄(k|k), Ū(k|k) = (ū(k|k), . . . , ū(k +
p|k)), zref(k|k), and u(k) in (6) is applied to the system
according to the receding horizon principle. Theorem 1 in
[22] guarantees convergence and recursive feasibility.

IV. LEARNING MULTI-STEP MODELS

A. Definition of multistep prediction models in normal form

In this section we discuss how to obtain multistep models
and uncertainty bounds by adapting the original algorithm in
[21], [22] in case of MIMO systems.

In particular, we first note that, by iteration of (1),
the p-steps ahead output value of the real system can be
computed. In particular, defining the sequence V(k) =
[vT (k), . . . , vT (k + p̄ − 1)]T and the extended regressor
vector, containing also future inputs up to time k + p − 1,
φ

(p)
z (k) =

=[zT (k), . . . , zT (k − n+ 1), uT (k − 1), . . . ,

uT (k − n+ 1), uT (k), uT (k + 1), . . . , uT (k + p− 1)]T

it is possible write:

z(k + p) = θ
(p)
z

T
φ

(p)
z (k) + θ

(p)
v

T
V(k) (21)

In (21) the matrices θ(p)
z and θ(p)

v are polynomial combi-
nations of the entries of θ(1)

z , and they are thus unknown. By
introducing the vector D(k) = [dT (k), dT (k+1), . . . , dT (k+
p̄− 1)]T , expression (21) can be re-written as a function of
the regressor φ(p)

y (k), which corresponds to φ
(p)
z (k) where

z samples have been replaced by y ones. The resulting
expression reads:

z(k + p) = θ
(p)
y

T
φ

(p)
y (k) + θ

(p)
d

T
D(k) + θ(p)

v

T
V(k)︸ ︷︷ ︸

H(k)

(22)
Inspired by the form of (22), that provides directly the p-

steps ahead value of output vector z from φ
(p)
y (k), we select

an independent model to predict the output vector at each



value of p = 1, . . . , p̄. Each one of these predictors, that we
term “multistep”, is of the following form:

ẑ(k + p) = θ̂(p)T φ̃
(p)
y (k) (23)

In (23) θ̂(p)T is a matrix ∈ Rny×(ny+nu)o+nu(p−1),
where o is the chosen model order, so that φ̃(p)

y (k) =
[yT (k), . . . , yT (k − o + 1), uT (k − 1), . . . , uT (k − o +
1), uT (k), uT (k+ 1), . . . , uT (k+ p− 1)]T . Note that, given
the definition of φ̃(p)

y (k), the matrix θ̂(p)T can be naturally
partitioned into submatrices referred to variable y (denoted
with θ̂(p)

Y ), to past inputs (denoted with θ̂(p)

Ū
) and to current

and future inputs (denoted with θ̂
(p)
U ), so that ẑ(k + p) =[

θ̂
(p)T

Y θ̂
(p)T

Ū
θ̂

(p)T

U

]
φ̃

(p)
y (k). Model (23), though, is not

in a form that is suitable for the direct application of the
identification algorithm in [22], which requires the model
parameters to be in a vector.

We thus reformulate (23) in a more convenient way. In
particular, considering that θ̂(p)

•i , i = 1, . . . , ny contains the
set of parameters associated to the i-th output, we write

ẑ(k+p) =


φ̃

(p)T

y (k) 0 . . . 0

0 φ̃
(p)T

y (k) 0 0

0 0
. . . 0

0 . . . 0 φ̃
(p)T

y (k)


︸ ︷︷ ︸

Φ̃
(p)T
y


θ̂

(p)
•1
θ̂

(p)
•2
...

θ̂
(p)
•ny


︸ ︷︷ ︸

Θ̂(p)

(24)
In equation (24) the predictor contains a unique vector

of unknown parameters to be identified, and it thus fits the
form required by the algorithm in [22], to which the reader
is referred for details.

The outcome of the identification procedure consists, for
each prediction step p = 1, . . . , p̄ in:

• A nominal model vector, denoted with Θ̂∗(p). It can be
straightforwardly recast as in (23), and we denote this
representation with:

θ̂∗(p)
T

=
[
θ̂
∗(p)T
Y θ̂

∗(p)T

Ū
θ̂
∗(p)T
U

]
.

• A global prediction error bound for each one of the
system outputs, i.e. a vector τ̂ (p)(·) ∈ Rny such that:

|zj(k + p)− ẑj(k + p)| ≤ τ̂ (p)
j (Θ̂∗(p)),

∀k ∈ Z, j = 1, . . . , ny

These bounds are termed global since they depend
only on the vector of parameters (i.e. the model) and
not on the specific regressor. They are valid over a
compact set of regressor trajectories of interest, and they
enjoy asymptotic convergence properties under suitable
assumptions on the informative content of the data
collected in such a compact set, see [22] for details.

B. Definition of the control-oriented models

The models (2) and (3) are obtained by setting

A =


θ̂
∗(1)T

Y θ̂
∗(1)T

Ū
I(o−1)ny

0(o−1)ny,ny
0(o−1)ny,(o−1)nu

0(o−1)nu,ony

0nu,(o−1)nu

I(o−2)nu
0(o−2)nu,nu

 ,

B =


θ̂
∗(1)T

U

0(o−1)ny,nu

Inu

0(o−2)nu,nu

 , C =
[
Iny 0ny,(ny+nu)(o−1)

]
,M = CT

Cp =
[
θ̂
∗(p)T
Y θ̂

∗(p)T
U

]
, Dp =

[
θ̂
∗(p)T

Ū
0ny,(p+1−p)nu

]
.

The maximum amplitude of each of the components w̄i
is identified based on the prediction error bound τ̂

(p)
j (·)

suitably employed, with arguments similar to those presented
in [22], with special attention to the multivariable nature of
the system. In particular, we obtain w̄ = [w̄1, . . . , w̄ny

]T

as a solution to optimization program (25) stated below.
Specifically, ∀p = 1, . . . , p̄, Θ̂∗(1,p) represents the 1 step
nominal model iterated p times according to (2), c ∈ R1,ny

is a weighting vector, and E =

[
Iony

0(o−1)nu,ony

]
is a selection

matrix.

w̄ = arg min
wi∈R+

cTw (25)

s.t.

p−1∑
i=0

ny∑
h=1

∣∣Cj•AiM•h∣∣wh+

+
ony∑
i=1

|Cj•ApE•i|d̄rem∗(i/ny) ≥ τ̂ (p)
j (Θ̂∗(1,p))

∀j = 1, . . . , ny, ∀p = 1, . . . , p̄

V. NUMERICAL EXAMPLE

In this section we test the proposed approach on a
quadruple-tank system. After a short discussion on the issues
arising in the application of the proposed approach to a
nonlinear system, we show the results obtained with a
nonlinear simulator.

A. The quad-tanks case study

We consider the system proposed in [1], consisting of a
four-tank system. The water level of the tanks are denoted
h1, . . . , h4 and their dynamics is described by the following
model.

Sḣ1(t) = −a1

√
2gh1(t) + a3

√
2gh3(t) + γaqa(t),

Sḣ2(t) = −a2

√
2gh2(t) + a4

√
2gh4 + γbqb(t),

Sḣ3(t) = −a3

√
2gh3(t) + (1− γb)qb(t),

Sḣ3(t) = −a4

√
2gh4(t) + (1− γa)qa(t),

(26)
where ai (with i = 1, . . . , 4) is the discharge constant of
the i-th tank, S is the cross section of the tanks and g is
the gravitational acceleration. The inputs to the system are
flowrates qa and qb, generated by two pumps. Tanks 1 and
4 are filled with flowrates γaqa and (1−γa)qa, respectively,
where γa ∈ [0, 1] is the aperture ratio of the three-way valve



TABLE I
PARAMETERS OF THE PLANT.

a1 a2 hmax hmin γa γb
value 1.31 · 10−4 1.51 · 10−4 1.3 0.3 0.3 0.4
unit m2 m2 m m - -

a3 a4 qmax qmin S
value 9.57 · 10−4 8.82 · 10−4 3 0 0.06
unit m2 m2 m3/h m3/h m2

after pumps 1. On the other hand, tanks 2 and 3 have, as
input flowrates, γbqb and (1 − γb)qb, respectively, where
γb ∈ [0, 1] is the equivalent aperture ratio of the valve after
pump 2. Tanks 3 and 4 discharge water into tanks 1 and 2,
respectively. The parameters of the plant are given in Table I.
The measurement noise is such that |di(k)| ≤ d̄i = 0.005
for i = 1, 2.

We define x = [h1, h2, h3, h4]T , u = [qa, qb]
T , y =

[h1, h2]T . The sample time considered is Ts = 60 s. The
input constraints are qa ∈ [0.1, 2.6] m3/h and qb ∈ [0.4, 2.9]
m3/h, while the outputs must lie within the intervals h1 ∈
[0.1016, 1.1016] m and h2 ∈ [0.1097, 1.1097] m.

The MPC controller has a control horizon p̄ = 5. The
Luenberger observer gain L is selected as the Kalman filter
stationary gain while the auxiliary control law gain K is
selected as a LQ gain, both of them obtained solving the
discrete-time algebraic Riccati equations of optimal control
theory and with diagonal matrices:

Q =

[
γxIony

0ony,(o−1)nu

0(o−1)nu,ony
γuI(o−1)nu

]
, R = γuIny

where γx = 0.25 and γu = 0.1 for the observer and γx = 1
and γu = 0.1 for the auxiliary control law.

B. Application of the control scheme to nonlinear MIMO
systems

The method discussed in the paper has been applied on the
nonlinear system, using linear models identified from data
generated by the nonlinear simulator (26). Since the control
algorithm has been conceived with a focus on linear systems,
a short discussion is due before to show the numerical results.

1) Identification and control issues in case of nonlinear
systems: Using data generated by the nonlinear simulator
(26), we have identified linear prediction models (2) and
(3), together with the corresponding perturbation bounds
w̄i, i = 1, 2. However, the main assumptions guaranteeing
the soundness of the learning phase (see [22]) require that
the used model class includes the model of the system
generating the data: this assumption is clearly impossible to
be verified in this setting. In fact, the set of regressors used
in (21) does not include nonlinear functions of input and
state variables. In our opinion, however, this has not caused
any significant problem in the considered case study which,
remarkably, does not display a complex nonlinear dynamics
(e.g. multiple equilibria, limit cycles, chaotic behaviour).
The mismatch between the linear model and the nonlinear
system has indeed been accurately included thanks to the
disturbance term w(k), leading to satisfactory simulation

results, especially as far as the constraints fulfillment is
regarded.
However, in the control design phase a different problem
has arised from the fact that the nonlinear static gain is not
constant, contrarily to the linear case. This problem has been
here addressed by modifying the cost function (11), and in
particular the final additive term σ‖zref(k)−zgoal‖2. The idea
used here consists of replacing zgoal with µ̂µNL(zgoal)

−1zgoal,
where µNL(zgoal) is the nonlinear system input-output static
gain, computed on the working conditions defined by zgoal.

2) Numerical results: Considering the nonlinear case,
Figure 1 shows the trends of the bounds against the pre-
diction horizon.
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Fig. 1. Nonlinear case. Lines with marker “x” refer to output
2, while lines without a marker refer to output 1. Dashed lines:
term

∑ony

i=1 |Cj•ApE•i|d̄rem∗(i/ny) accounting for the wrong ini-
tialization of the state containing y samples instead of z ones, dot-
ted lines: term

∑p−1
i=0

∑ny

h=1

∣∣Cj•AiM•h
∣∣ w̄h accounting for the distur-

bance w̄ integrated over time, line with circles: τ̂ (p)j (Θ̂∗(1,p)), j =

1, 2, solid lines: overall error bound
∑p−1

i=0

∑ny

h=1

∣∣Cj•AiM•h
∣∣ w̄h +∑ony

i=1 |Cj•ApE•i|d̄rem∗(i/ny)

Figure 2 shows the closed-loop trajectories with the non-
linear model. Thanks to the modification of the final goal
in the terminal cost, as described in this section, the output
signals are able to track the desired references, reducing the
steady state error, without harming the guaranteed theoretical
properties of the controller. This fact can be appreciated
thanks to Figure 3, which shows a detailed comparison
between the control scheme including (solid black) or not
including (dashed-dotted red) such modification, using the
same disturbance signals.

VI. CONCLUSIONS AND FUTURE WORKS

A learning-based approach for robust predictive control for
MIMO systems has been proposed and successfully tested on
a benchmark example. The identification algorithm and the
resulting controller are endowed with theoretical properties
in the linear case, though they proved to be effective also on
the nonlinear simulator. Preliminary extensions to address
the system nonlinearities have been introduced, improving
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Fig. 2. Outputs from the closed-loop simulation with the nonlinear
simulation. Solid black: output, dashed black: output constraints, dashed-
dotted red: output tightened constraints, dashed blue: reference, dotted black:
feasible reference.
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Fig. 3. Outputs from the closed loop-simulation with the nonlinear
simulation: focus on a steady state period.

the static performance of the scheme. Future work includes
the derivation of theoretical properties in the nonlinear frame-
work, the analysis of the identification algorithm with models
that are nonlinear in the regressors, and a testing phase on
the real plant. Also, the extension to non-square systems is
envisaged.
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