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Abstract

This paper presents a study on the design of linear model predictive control (MPC) for wind turbines, with a focus on
the controller’s tuning tradeoffs. A continuously linearized MPC approach is described and applied to control a 3-bladed,
horizontal axis, variable speed wind turbine. The tuning involves a multiobjective cost function so that the performance
can be optimized with respect to five defined measures: power variation, pitch usage, tower displacement, drivetrain
twist and frequency of violating the nominal power limit. A tuning approach based on the computation of sensitivity
tables is proposed and tested via numerical simulations using a nonlinear turbine model. The paper further compares
the performance of the MPC controller with those of a conventional one.
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1. Introduction

In the wake of increasing demands of wind energy, to-
day, the focus of research lies in maximizing the power
output per unit investment. This would make wind en-
ergy even more competitive with other sources of renew-5

able energy. The production cost per unit of power de-
creases with an increase in size of the wind turbines, how-
ever the structure becomes more and more flexible. Thus,
it is important to reduce the tower displacement and driv-
etrain twist in order to reduce the fatigue loads, hence10

eventually increasing the life span of the wind turbine. To
achieve the best performance, the task of a controller be-
comes twofold: maximizing power output from the avail-
able wind and minimizing the fatigue of the turbine.

The classical method to control wind turbines makes15

use of several proportional-integral-derivative (PID) con-
trollers. Some of them are effective in different regions of
operation [1, 2] and others are used for switching between
these regions [3]. The gains of these controllers must be
selected by considering aspects like power output, pitch ac-20

tuation effort, tower fore-aft vibration and drivetrain twist.
Another recent research focuses on individual pitch control
(IPC) which uses different PID controllers for each blade.
With the knowledge of local asymmetrical loading on tur-
bines, it has been shown that the loads can be significantly25

reduced using IPC [4, 5].
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Controllers based on PID offer good performance but
are not optimal. The current day research is focused more
towards Gain Scheduled Linear Quadratic Regulator (LQR)
[7, 6], Feedback Linearization [8, 9], H2 & H∞ Control30

[10, 11, 12], l1 Control [13], Sliding Mode Control [14] and
Model Predictive Control (MPC) [15, 16, 17, 18, 19, 20,
22, 23, 24], most of which are based on optimization princi-
ples. The fundamental advantage that optimization-based
strategies offer is that the problem objective can be defined35

explicitly by putting weights on the relevant quantities we
aim to limit, for instance: loads on tower, high speed shaft
twist, power output from turbine etc.

In particular, MPC is a natural choice for a control
algorithm for wind turbines because it is effective at han-40

dling multivariable systems with input and state constraints.
Another potential advantage that MPC offers is its ability
to predict behavior in future using a plant’s model. Thus,
it can use feedforward information to optimize the inputs
while also considering the future states. If a prediction of45

the disturbances (wind) is also known through an estima-
tion model [25], it further improves the controller’s ability
to reject these disturbances.

Several variants of MPC have been proposed for the
problem of wind turbine control. In one of the earliest50

studies [16], linear MPC (LMPC) was successfully imple-
mented on an onshore and an offshore wind turbine model.
To account for the nonlinearities, which [16] did not, in
[17] a scheduled MPC (SMPC) is designed, where the con-
troller switches from one linear model to another depend-55

ing upon the operating point. Both SMPC and LMPC
showed better speed control and load reduction in com-
parison to a baseline controller, at an expense of higher
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pitch usage. However, SMPC could perform better over
LMPC only in speed control. In [18] it has been further60

illustrated that the performance of LMPC, continuously
linearized MPC (CLMPC) and nonlinear MPC (NMPC)
are comparable and not much better than a well-tuned
PID controller. Thus, the linearized wind model very well
captures the nonlinearities in the wind turbine. It is also65

seen that under perfect predictions of the wind speed, all
the variants of MPC perform very well in load mitigation
and speed control avoiding an increase of pitch control ac-
tivity when the turbine operates in the above rated region.
The results for the perfect wind speed measurement are,70

however, not realistic. A more practical approach employs
LIDAR to measure wind speed before the wind actually
reaches the wind turbine [26]. In [19], Laks shows that
even with distorted measurements with LIDAR, it is possi-
ble to better off than having no preview at all. This result75

is also validated by Soltani [20] where mean wind speed
estimated from LIDAR measurements is used as preview
with LMPC. It exhibits load reduction and lower power
fluctuation over a PID controller in extreme wind condi-
tions. Körber [22], Schlipf [23] and Spencer [24] have also80

shown that, in above rated conditions, MPC with knowl-
edge of future wind condition helps to reduce loads signif-
icantly but the effect is most prominent when the wind is
changing rapidly. While the literature discussed till this
point deals with loads on the tower, [21] has demonstrated85

the use of MPC in reducing the blade fatigue loads.
From the above studies, it is evident that SMPC or

CLMPC are sufficient to capture the nonlinear behavior
of the wind turbine. The knowledge of future wind defi-
nitely gives MPC an edge over other control strategies but90

the accuracy with which it can be measured and the cost
surrounding measurement equipments remain issues that
must be still resolved. On the other hand, while several
publications indicated that MPC can be beneficial for wind
turbine control, none of them discusses its tuning proce-95

dure. Indeed, tuning of MPC is a crucial part of the design
and it might be a non-trivial task when multiple compet-
ing objectives are present, like in wind turbine control,
such that a tradeoff between different performance mea-
sures has to be defined. To fill this gap in the literature,100

this paper discusses a tuning procedure for a continuously
linearized model predictive controller by forming a mean-
ingful objective function which explicitly accounts for 5
different performance indices. For the reasons discussed
above, the paper primarily focuses on MPC without wind105

preview.
This paper is organized as follows. In section 2, a

nonlinear model of the wind turbine is derived. In sec-
tion 3, the simulation environment for MPC including the
wind model, the performance indices and a baseline con-110

troller for comparison is described. In the following sec-
tions, the formulation of the model predictive controller is
discussed together with a systematic approach to tune the
control parameters. In section 6, qualitative and quanti-
tative comparisons of MPC with a baseline controller is115

Figure 1: Power Coefficient, Cp

Figure 2: Thrust Coefficient, Ct

presented. Finally, the paper concludes with a discussion
on the achieved results.

2. Model of the Wind Turbine

For the sake of this study, we consider a 3-blade hor-
izontal axis pitch-regulated wind turbine. In particular,120

the parameters of the NREL 5 MW wind turbine [27],
adapted from [16], are considered (see Appendix). The
turbine model comprises the dynamics of 5 essential sub-
systems, as described in the following.

2.1. Aerodynamics125

The momentum of the wind is transferred to the rotor
by means of an aerodynamic torque, given by the relation

Tr =
Pr
ωr
, (1)

where ωr is the rotor speed and Pr is the equivalent power
generated during the interaction of wind and turbine blades.
Pr is a function of the wind speed vw, blade radius R, air130

density ρ, and coefficient of performance Cp:

Pr =
1

2
ρπR2v3wCp. (2)
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Cp is the ratio of power extracted by the wind turbine
to power carried by the wind and is a function of blade
pitch angle θ and tip speed ratio λ. The tip speed ratio is
defined as135

λ =
vw
ωrR

. (3)

The wind also exerts a thrust force Ft on the rotor and
turbine which depends on the thrust coefficient Ct,

Ft =
1

2
ρπR2v2wCt. (4)

Cp and Ct are typically known from measurements. Their
dependence on θ and λ is shown in Fig. 1 and Fig. 2.

2.2. Rotor Mechanics140

The transmission of power from rotor to generator is
illustrated in Fig. 3. The wind produces an aerodynamic
torque Tr on the rotor. The inertia of rotor and generator
sides is represented by Jr and Jg, respectively. The low
speed shaft is modeled as a flexible shaft with damping co-145

efficient Ds and spring constant Ks. The shaft experiences
twist δ due to varying torques on both ends. The gearbox
couples the two rotating masses modeled as discs. Td,r and
Td,g are the torques across the transmission whose gear ra-
tio is indicated by Ng. The gearbox is assumed to have150

perfect mechanical efficiency. Tg is the resulting generator
torque:

Td,g =
Td,r
Ng

. (5)

Applying Newton laws of mechanics yields the following
equations:

ω̇Jr = Tr − Td,r, (6)

ω̇Jg = Td,g − Tg. (7)

The governing equations for the drivetrain twist are:155

Td,r = Dsδ̇ +Ksδ, (8)

δ = Ωr −
Ωg
N
, (9)

δ̇ = ωr −
ωg
N
. (10)

Ωr and Ωg represent angular position of the rotor and gen-
erator shaft, while ωr and ωg represent the corresponding
angular velocities.

2.3. Tower Dynamics

Due to the variability of the thrust force Ft, the tower160

exhibits fore and aft motion whose displacement ξ is mod-
eled assuming a spring-mass-damper system:

Mtξ̈ +Dtξ̇ +Ktξ = Ft. (11)

Mt, Dt and Kt are the mass, damping constant and spring
constant of the tower, respectively. The motion of the
tower changes the relative wind speed vrw at the rotor by165

the velocity of tower ξ̇:

vrw = vw − ξ̇. (12)

Jr

Ks

Ds

Jg

Tr, ωr Td,r Td,r

Td,g
ωg Tg

Figure 3: Turbine Mechanics [28]

2.4. Generator Dynamics

The generator is modeled as a first order system with
time constant τT :

Ṫg = − 1

τT
Tg +

1

τT
Tg,ref. (13)

Here, Tg,ref is the demanded torque and Tg is the output170

torque. The losses in transmission have been assumed to
be zero. Therefore, the power output Pe is given by

Pe = Tgωg. (14)

2.5. Pitch Actuation

The pitch is controlled collectively. The pitch actuator
is assumed to follow second order dynamics:175

θ̈ + 2ζωnθ̇ + ω2
nθ = ω2

nθref. (15)

Here, θref and θ are the demanded and actual pitch angles,
respectively, ζ denotes the damping of pitch actuator and
ωn denotes the natural frequency of the actuator.

2.6. Steady State Solution

Overall, the model has eight states x := [ωr, ωg, δ, xt, ẋt, θ, θ̇, Tg]
T ,180

two controllable inputs u := [θref , Tg,ref ]
T and one uncon-

trollable input (disturbance), vw. The state space repre-
sentation of the nonlinear model is given by the following
nonlinear ordinary differential equations:

ω̇r =
Pr(ωr, θ, v

r
w)

ωrJr
− ωrDs

Jr
+
ωgDs

JrNg
− δKs

Jr
,

ω̇g =
ωrDs

JgNg
− ωgDs

JgN2
g

+
δKs

JgNg
− Tg
Jg
,

δ̇ = ωr −
ωg
Ng

, (16)

ξ̈ = −Kt

Mt
ξ − Dt

Mt
ξ̇ +

1

Mt
Ft(ωr, θ, v

r
w),

θ̈ = −ω2
nθ − 2ζωnθ̇ + ω2

nθref ,

Ṫg = − 1

τT
Tg +

1

τT
Tg,ref.
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(b) Power Output and Pitch Angle

Figure 4: Optimal trajectory under steady state conditions with vw [m/s] on x-axis

The nonlinear model (16) can be written in a compact185

form as:

ẋ = f(x, u, vw). (17)

A steady state solution (ẋ = 0) for this model can be
calculated as a function of wind speed vw; such solutions
will be used in section 4.1 to linearize the model. Fig. 4
shows the optimal trajectory (i.e. the one that maximizes190

the generated power) for power output, rotor speed, tower
displacement and pitch angle under steady state condi-
tions. Tower displacement velocity and pitch rate are zero
under steady state operation.

As it is well-known [2], the turbine operating range195

is usually divided in two subregions, the so-called Region
2 and Region 3. Region 2 is characterized by low wind
speeds and below rated operation (here, between cut-in
speed of 3 m/s and about 11 m/s, see Fig. 4). The objec-
tive in this region is to extract as much power as possible200

by selecting optimal Cp. It can be seen in Fig. 4 that for a
constant tip speed, Cp is maximum for θ = 0 deg. So, the
optimal pitch angle θ = 0 deg is selected throughout this
region, and only torque control is required. Sometimes,
Region 2 1

2 is also defined in between the Regions 2205

and 3 where wind turbine achieves the rated speed
but still power output is less than the rated value.
From point of view of tuning MPC, we have con-
sidered it as part of Region 2 because in both the
regions we have the same objective of power max-210

imization and the same control input.
Region 3 is characterized by high wind speeds, in this

case greater than 11 m/s. Now, the operation can no
longer continue at constant pitch angle, since the mechan-
ical power needs to be limited in order not to exceed the215

generator’s rated power. Thus, as the wind speed in-
creases, the pitch angle must be increased so that the angle
of attack, and hence the lift on the blades, decreases. The
aim in this region is thus power limitation.

3. Performance criteria and baseline controller220

3.1. Wind Model
Wind speed profiles were generated using a dynamic

wind simulator, based on [15]. With a specified mean wind
speed, wind direction, and turbulence level, the simula-
tor provides a statistical wind model that closely approx-225

imates the wind profiles that a rotor would experience in
reality.

We used the simulator to generate several cases with
different mean wind speeds perpendicular to the face of
rotor, both in Regions 2 and 3 for tuning our MPC con-230

trol parameters. In practice, the wind speed can
be estimated from available measurements using
model-based algorithms. A comprehensive review
on wind speed estimation can be found in [25].

3.2. Performance Criteria235

We consider five indices to evaluate the performance of
the controller:

3.2.1. Average Power Output/ Power Variation (W)

For Region 2, an important performance criterion is
the mean power output over a given time interval T ,240

AP =

T∑
t=1

Pe(t)

T
. (18)

The higher the value of AP , the better the controller’s
performance.

In Region 3, the performance criterion of interest is the
root mean square value of the deviation of the generated
power from the rated power output245

PV =


∑T

t=1
(Pe(t)− Pe,nom)

2

T


1
2

. (19)

The lower the value of PV , the better the controller’s per-
formance.

4



3.2.2. Tower Displacement (m)

It is desirable to minimize the displacements of the
tower from its steady state position due to a changing wind250

speed. This quantity is taken as a measure of the tower
fatigue caused by changing loads:

TD =

∑T

t=1

∣∣∣ξ(t+ 1)− ξ̃(t)
∣∣∣

T
. (20)

3.2.3. Pitch Usage (deg/s)

Rapid changes in pitch are undesirable, since they cause
fatigue in the pitch actuator. Also, higher pitch activity255

can provoke vibrations in the structure if the resonance
frequencies of the tower are excited [7]. Hence, the av-
erage pitch angle deviation during the considered time is
computed:

PU =

∑T

t=1
|θref(t+ 1)− θref(t)|

T
. (21)

The lower PU , the better the controller’s performance.260

This applies only to Region 3, since in Region 2 the pitch
is always fixed.

3.2.4. Drivetrain Twist Rate (rad/s)

As another measure of loads, the following criterion
is considered to account for the fatigue on the drivetrain265

shaft:

DT =

∑T

t=1
|δ(t+ 1)− δ(t)|

T
. (22)

This is also equivalent to considering the variability of the
generator’s torque, since the latter is closely related to
drivetrain twist, see (8).

3.2.5. Frequency of Power Exceeding Nominal270

Only meaningful in Region 3, this criterion quantifies
how many times the power exceeds the rated value:

PEN =
∑T

t=1
χ(t), (23)

χ(t) =

{
1, if Pe(t) > Pe,nom,
0, if Pe(t) ≤ Pe,nom.

(24)

Clearly, it is not possible to obtain the best of every
criterion, since for example a lower power variation usually
implies a higher pitch usage. There is always a compromise275

which can be set by tuning the controller. The choice of
the control approach influences what are the achievable
tradeoffs (within the limits of what is physically possible)
and how easy it is to tune the control law.

3.3. Baseline Controller280

To have a term of comparison for the MPC controller,
a baseline controller is considered. The latter is a discrete-
time controller with sampling time Ts, which is the same as
that used by the MPC law. In particular, Ts is chosen such

that the sampling frequency is greater than the frequency285

of the fastest pole of the linearized model (eigenvalue λmax

of A in (29)), in the considered case 14.15 rad/s. Thus,
Ts = 0.1 s has been chosen here.

3.3.1. Region 2

The conventional controller used in Region 2 is torque-290

based control which tries to always operate the turbine at
the most efficient power coefficient, C∗p . λ∗ is the corre-
sponding tip speed ratio [2]:

Tg,ref =
0.5ρπR5λ∗3C∗pω

2
r

Ng
, θref = 0. (25)

3.3.2. Region 3

In Region 3, a PID controller is used. The pitch angle295

is controlled using proportional-integral-derivative action
on error in rotor speed tracking:

θref(t) = Kpωe(t) +Ki

∫ t

0

ωe(τ)dτ +Kd
dωe(t)

dt
, (26)

ωe(t) = ωr(t)− ωr,nom. (27)

The parameters Kp, Ki and Kd are designed using a sim-
ilar methodology as in [29]. The generator torque is con-300

trolled by a feedback of the generator speed:

Tg,ref(t) =
Pe,nom
ωg(t)

. (28)

The control signals of the PID controller are limited ac-
cording to the input constraints that are present (discussed
in section 4.3).

Equations (26)-(28) form the controller’s structure. The305

values of Kp, Ki and Kd depend on the wind speed and
can be designed by evaluating performance given by the
five criteria introduced above, for a wide range of gains.
For a particular wind scenario with mean wind speed of
15 m/s, Fig. 5 shows the dependence of performance on310

Kp and Kd. As a matter of fact, the integral gain does
not have much influence on the performance, so that the
value Ki = 1 was chosen such that the controller stabilizes
the system for a wide range of Kp and Kd. The values
for the latter have been selected (marked by ∗ in Fig. 5)315

to achieve similarly good performance across all measures
with slightly higher weight on power variation.

4. Design and tuning of Linear Model Predictive
Control

The central idea behind using MPC [30] is to solve a fi-320

nite time horizon optimal control problem in discrete time.
The ability of MPC to handle actuator and state con-
straints, especially in MIMO systems, provides a potential
advantage over traditional PID controllers. In this section,
a linear MPC formulation for a wind turbine is derived, by325

defining the model, the cost function and the constraints.
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Figure 5: Performance of a conventional PID controller in Region 3 as a function of Kp and Kd for Ki = 1

Once these ingredients have been set, the MPC law is im-
plemented through a receding horizon strategy, where at
the current time step only the first term of the solution
sequence is applied to the plant, and at the next time step330

the whole optimal control problem is solved again, once
the updated state variables have been measured.

4.1. Linearization

The turbine model (16) is continuously linearized at the
current estimated wind speed ṽw to account for the non-335

linear system behavior. The linearization makes LMPC
computationally more tractable than NMPC. x̃ and ũ rep-
resent corresponding steady state and steady input, re-
spectively. Linearization of (17) can be expressed as

ẋ = A(ṽw)x̂+B(ṽw)û+Bd(ṽw)v̂w. (29)

where,340

x̂ = x− x̃, û = u− ũ, v̂w = vw − ṽw, (30)

A(ṽw) =
∂f

∂x

∣∣∣∣
(x̃,ũ,ṽw),

B(ṽw) =
∂f

∂u

∣∣∣∣
(x̃,ũ,ṽw),

(31)

Bd(ṽw) =
∂f

∂vw

∣∣∣∣
(x̃,ũ,ṽw).

The linear model is then discretized with sampling time
Ts by an explicit Euler method.

4.2. Cost Function345

The optimization is carried out with a quadratic cost
function which is optimized at each time step:

J = min
u

x̂NPx̂
T
N +

N−1∑
t=0

x̂Tt Qx̂t + ûTt Rût. (32)

Q and R are diagonal, positive definite weight matrices
that penalize the deviations from the steady state x̃t and
steady input ũt, respectively, over a horizon length N350

which can be tuned for desired performance. For a finite
horizon problem, a terminal cost x̂NPx̂

T
N , P � 0 can be

chosen such that feasibility is ensured at all times [30].

4.3. Constraints

The optimization is subject to constraints concerning355

both the states and the inputs. In particular, input con-
straints arise from actuator limitations: there is a limit on
how much and how fast the blades can pitch. Similarly, the
generator has a limitation on the maximum and minimum
torque it can provide:360

θmin ≤ θ ≤ θmax, (33)

θ̇min ≤ θ̇ ≤ θ̇max, (34)

Tg,min ≤ Tg ≤ Tg,max. (35)

The strength of rotor assembly dictates the maximum ro-
tational speed it can bear, and the minimum speed is dic-

6
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tated by the generator:

ωr ≤ ωr,max, (36)

ωg ≥ ωg,min. (37)

The input and state constraints mentioned above are hard
constraints on the turbine operation. They must be fol-365

lowed strictly to avoid any damage to the wind turbine sys-
tem. There are also soft constraints. For instance, when
operating in Region 3, power should not vary much above
the nominal power Pe,nom because overcurrents/overvoltages
can lead to thermal stresses [28]. So, imposing a power370

constraint is a reasonable approach to the problem:

ωgTg ≤ Pe,nom. (38)

This constraint is a bilinear relation between two of the
states which cannot be implemented as such in a linear
optimization problem. So, the power constraint was lin-
earized according to Fig. 6. This linearization is chosen375

such that it is tangent to the constant nominal power curve
at nominal set point (ωg,nom, Tnom), which is a slightly
conservative approximation. The area marked by dashed
lines denotes the feasible region. The linear approximation
(solid gray line in Fig. 6) is380

ω2
g,nomTg + Pe,nomωg ≤ 2Pe,nomωg,nom. (39)

While in Region 3, (39) plays an important role; in Region
2 it always remains inactive.

5. Tuning Procedure

The typical way to design the objective function is to
look for the weights Q and R on states and inputs, re-385

spectively, that achieve a satisfactory performance, via a
trial-and-error procedure. Such a procedure can be time-
consuming and non-trivial, especially when many different

aspects have to be balanced. We propose here a systematic
approach to tune the MPC law, such that the procedure390

is easier and the interpretation of weights becomes more
meaningful. This is done in two steps:

1) Modifying the cost function to account explicitly for
power maximization, and setting zero-terms in the weight
matrix395

In Region 2, the aim is power maximization and in Re-
gion 3, power limitation. So, maximizing power in both
regions superimposed with the power constraint (39) is an
approach suitable for both regions. In lieu of above ar-
gument, the objective function can be augmented with400

a power maximization term, xTt Sxt (compare equation
(32)):

J = min
u

x̂NPx̂
T
N +

N−1∑
t=0

x̂Tt Qx̂t + ûTt Rût − xTt Sxt. (40)

where S is a positive semi-definite matrix, nonzero only for
the terms corresponding to the product of ωg and Tg in the
state vector. This new term has a negative sign since the405

aim is to maximize power; moreover, since the generated
power is a concave function of the state, the cost function
J (40) is still convex. To this end, note that the new term
accounts for the whole state x (and not only its deviation
x̂ from the linearization point x̃).410

5.1. Region 3

Table 1 presents the sensitivity of the four performance
measures for a wind profile in Region 3, if the objective
function is based on (32). Unlike all the performance crite-
ria listed in Table 1, the frequency of power exceeding the415

nominal value shows bidirectional behavior, in the sense
that if it increases with increase in some weight, it might
decrease when the same weight is further increased. So,
it has been excluded in evaluating the sensitivity table.
Nevertheless, this indicator provides useful insight while420

comparing PID with MPC. All the cost weights in (32)
were initially set to 1

x̃2 or 1
ũ2 to normalize the contribution

of each state and input to the cost function. This choice
is referred to as “base weights” here. The weights were
then increased (↑) or decreased (↓) by a factor α (10 in425

this case) one at a time, and Table 1 shows how much a
performance measure changed when a specific weight was
modified with respect to the base value. As a matter of
fact, changing the weights on ωr, ωg, ẋt and Tg did not
change the performance significantly in any of the criteria.430

So, these terms are excluded from the cost function. The
effect of input weights is not shown in the table for space
limitations but the same behavior as the corresponding
states has been observed. Excluding the redundant states
from the cost function, (40) can be redefined with 4 states,435

2 inputs and 1 power maximization term:

Q = diag(0, 0, qδ, qξ, 0, qθ, qθ̇, 0), (41)

R = diag(rθref , rTg,ref
). (42)
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Table 1: Sensitivity of performance measures on state weights with J(32) and base at steady state in Region 3

ωr ωg δ ξ ξ̇ θ θ̇ Tg

Criteria ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓
PV 5.26 0.00 5.05 0.00 1.06 0.25 22.22 0.00 1.95 -0.01 2.54 0.03 0.49 3.42 1.63 0.15
PU 0.05 0.00 0.05 0.00 0.05 0.00 22.38 -0.25 4.17 -0.04 13.82 -0.17 -0.98 3.20 0.05 0.00
TD 0.03 0.00 0.03 0.00 -0.07 0.00 -0.48 0.02 -0.03 0.00 -0.46 0.01 0.04 -0.41 0.03 0.00
DT 0.00 0.00 0.00 0.00 -0.04 0.01 2.24 0.00 0.07 0.00 0.03 0.00 0.00 -0.01 0.00 0.00

The sensitivity analysis with this objective function is shown
in Table 2. The weights which are the most favorable for
performance are highlighted in bold and the most unfa-
vorable in italic.

Table 2: Sensitivity of performance measures on state
weights with J(40) and base at steady state in Region 3

Pe δ ξ θ θ̇

Criteria ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓
PV -0.02 0.00 0.04 0.00 -0.25 0.04 -0.42 0.68 0.82 -0.43
PU 0.00 0.00 0.00 0.00 0.59 -0.06 0.26 -0.10 -0.21 0.39
TD 0.00 0.00 0.00 0.00 -0.07 0.01 -0.09 0.09 0.11 -0.11
DT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

440

2) Finding appropriate weights for non-zero terms in the
cost function

Once all the nonzero weight terms are identified, the
next step is iterating between sensitivity tables defined
at new set points, in order to find suitable values for such445

weights. For instance, Table 2 is calculated with respect to
the base values. To reduce the pitch usage, the weight on θ̇
may be increased or θ may be decreased by α. This forms
a new base and a new sensitivity table can be calculated
for it by again increasing and decreasing each weight by450

new α. The local validity of the sensitivity table makes it
necessary to recompute it again after a change has been
made.

Table 2 also illustrates the trade-off between different
performance measures. If the weight on the pitch rate455

is increased, pitch usage is reduced but power variation
and tower displacement both increase. This effect can be
explained by the fact that higher pitch rate weight re-
stricts the actuator from quickly adjusting the pitch with
the changing wind speed.460

Table 2 has been calculated for mean wind speed of
15 m/s. Next, we analyze the correlation of this sensitiv-
ity table with another one calculated for different mean
wind speed (18 m/s) in Table 3. A correlation matrix was
calculated by dividing the corresponding sensitivity values465

from the two tables. The sensitivity values are very highly
correlated for all the performance measures across all the
weights. A negative correlation is observed only when the
corresponding sensitivity values are very small low, which
is irrelevant anyways.470

5.2. Region 2
In Region 2, only 3 performance measures are relevant:

PA, TD and DT because power output is always below

Table 3: Correlation of sensitivity between different wind
scenarios, mean speed of 15 (m/s) and 18 (m/s)

Pe δ ξ θ θ̇

Criteria ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓
PV 0.58 0.59 0.52 0.50 0.99 1.07 0.75 0.35 0.39 0.81
PU 1.42 1.41 24.33 14.58 1.86 1.88 0.77 0.71 1.16 1.31
TD -2.52 -2.34 -3.12 -4.25 1.72 1.42 0.63 0.06 0.19 0.98
DT 0.20 -0.13 1.21 1.18 1.88 1.76 -0.36 -0.87 1.00 1.03

nominal limit and the pitch is always fixed. A similar
analysis (Table 4) in this region reveals that the sensitiv-475

ity of these three measures on the weights is very low as
compared to Region 3. Now, the contribution of tower dis-
placement and tower velocity to performance becomes in-
significant and therefore, ξ and ξ̇ can be removed from the
objective function. The weights on ωr and ωg have similar480

effects and can be assigned an equal weight. Again, after
removing the redundant terms from the cost function, the
Q and R matrices can be rewritten as:

Q = diag(qω, qω, qδ, 0, 0, 0, 0, qTg ), (43)

R = diag(0, rTg,ref
). (44)

As seen before, the inclusion of the generated power in the
cost function helps to increase the power output. This is485

taken into account for further computations in section 6.

6. Results

In order to evaluate the performance of the MPC law
tuned with the described approach, two simulation sce-
narios have been considered. The first one has mean wind490

speed of 8 m/s and turbulence of 7% which lies completely
in Region 2 and the other one, lying in Region 3, has mean
wind speed of 15 m/s and turbulence of 3%. The direction
of the wind in both the scenarios is perpendicular to the
surface of the rotor. Both the cases were simulated for495

600s with a time horizon of 2s in MPC. This length of
prediction horizon is sufficiently long when wind
preview is not considered in the control problem.
The convex optimization problem was solved using Gurobi
[31]. In practice, MPC with quadratic cost function500

and affine constraints, as in this case, can be im-
plemented real-time reliably, either by optimizing
online [32] or by computing offline the correspond-
ing explicit controller [33].
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Table 4: Sensitivity of performance measures on state weights with J(32) and base at steady state in Region 2

ωr ωg δ ξ ξ̇ Tg

Criteria ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓
AP 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
TD -0.009 0.001 -0.009 0.001 -0.003 0.001 -0.001 0.000 0.000 0.000 0.004 -0.002
DT -0.022 0.002 -0.022 0.002 0.074 -0.021 -0.003 0.000 0.002 0.000 0.042 -0.021

6.1. Region 2505

The comparison of performance between MPC and that
of the torque-based control in Table 5 shows that it is in-
deed difficult to outperform the latter, especially without
preview. This result is also supported by [23, 24]. This can
be attributed to the fact that all the constraints in below510

rated conditions are inactive, and it is only in the presence
of constraints that MPC is most effective. For MPC, the
data in Table 5 (and 6) represent the absolute values of the
performance indices calculated with base values and with
tuned values for the cost weights, the latter obtained ob-515

tained after several iterations of the procedure described
in section 5. With initial tuning, the baseline controller
performs better in all the considered criteria. The final,
tuned weights are such that a reasonable comparison can
be made with the baseline controller, but there always ex-520

ists a room for trade off between different performance
measures.

Table 5: Performance comparison of MPC and PID in
Region 2

AP [kW] TD [m] DT [rad/s]

Torque based 1763.8 0.0041 2.1e-5
MPC (Initial) 1719.8 0.0194 1.8e-4
MPC (Final) 1763.4 0.0040 1.7e-4

The comparison was done for mean wind speed of 8
m/s. Quantitatively, both power output and tower dis-
placement are more or less the same but the drivetrain525

twist rate is much larger with MPC (with tuned weights).
Sensitivity on weights for the final tuning parameters can
be used to further investigate the possibility of finding a
different trade-off with MPC.

6.2. Region 3530

Table 6 compares the performance of MPC against a
PID controller which was tuned for a particular wind pro-
file with mean wind speed of 15 m/s. With the base weight
values, MPC performed worse in 4 out of 5 criteria. Table
2 is used to tune MPC with the objective of reduc-535

ing power variation. The sensitivities of increasing
the pitch angle and decreasing the pitch rate are
the most negative with respect to power variation.
We chose to increase the weight on pitch angle be-
cause its sensitivity with respect to pitch usage is540

lower. Also, increasing the weight on power term
doesn’t have influence on any other performance

criteria, so it can be increased as well. In subsequent
steps, weights on power term and pitch were increased to
reach the final tuning where MPC performs better in 3 out545

of 5 criteria. The comparison shows that MPC performs
much better in reducing the power variation and limiting
the frequency of exceeding nominal power with final tun-
ing. MPC can achieve almost half power variation while
exceeding the nominal power only two-third times of PID550

(total simulation time steps are 600s/Ts). Tower displace-
ment in both the cases is very much comparable. The
benefits with MPC come at an expense of higher pitch us-
age. Drivetrain displacement is very small in both cases
but nonetheless, the PID controller performs slightly bet-555

ter in this criterion.

Table 6: Performance comparison of MPC and PID in
Region 3

PV [W] PU [deg/s] TD [m] DT [rad/s] PEN [-]

PID 1407 0.53 0.0067 7.95e-5 2976
MPC (init.) 1863 1.07 0.0082 8.14e-5 958
MPC (final) 735 1.35 0.0066 8.14e-5 1936

Table 7 shows the sensitivity of changing the weights
for the final tuning. It suggests that a decrease in the
pitch usage is possible by decreasing the weight on pitch
angle or increasing the weight on pitch rate, but both of560

these would have an adverse effect on power variation as
well as tower displacement. Also, Fig. 5-(a) suggests that
the power variation that MPC is able to achieve seems
unattainable with PID for any combination of gains. This
shows the trade-off between different measures and is an565

indication of the fact that MPC cannot outperform PID in
all the measures simultaneously. However, the pitch usage
with MPC is still much lower than the limits imposed by
the pitch actuator.

Table 7: Sensitivity of performance measures on state
weights with base at final tuning in Region 3

Pe δ ξ θ θ̇

Criteria ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓
PV -0.01 0.00 0.01 0.00 -0.37 0.06 -0.61 0.68 0.86 -0.63
PU 0.00 0.00 0.00 0.00 0.55 -0.06 0.26 -0.11 -0.22 0.39
TD 0.00 0.00 -0.01 0.00 -0.13 0.02 -0.20 0.11 0.15 -0.22
DT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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7. Conclusions570

The paper presented an approach for designing and
tuning linear MPC for wind turbines. The performance
of MPC can be very sensitive to cost weights which were
selected by trading off five underlying criteria: Power Out-
put/Power Variation, Tower Displacement, Pitch Usage,575

Drivetrain Twist Rate and Frequency of violating nomi-
nal power limit. These factors are very much related and
there is always a compromise between them. It has been
observed that even without preview, a well-tuned MPC,
by means of multiobjective optimization, can outperform580

a conventional controller like PID in above rated condi-
tions. However, in below rated conditions, MPC doesn’t
prove to be beneficial over the baseline torque-based con-
trol. Overall, the presented study indicates that a rela-
tively systematic procedure can be set-up to properly tune585

the MPC controller, and that MPC can yield a higher flex-
ibility than conventional controllers when the power out-
put needs to be limited to a certain value. Considering
the trend of modulating and controlling the power output
of wind farms in order to meet grid stability requirements,590

this feature may prove to be crucially important in the
next future.

Appendix: Model Parameters

ρ = 1.225 [kg/m3]

Pe,nom = 5e6 [W]

Ng = 97 [−]

ωr,nom = 1.26 [rad/s]

ωg,nom = 122.91 [rad/s]

ωg,min = 70.16 [rad/s]

Jr = 5.9154e7 [kgm2]

Jg = 500 [kgm2]

Ks = 8.7354e8 [Nm/rad]

Ds = 8.3478e7 [kgm2/rad/s]

R = 63 [m]

H = 90 [m]

Mt = 4.2278e5 [kg]

Kt = 1.6547e6 [Nm/rad]

Dt = 2.0213e3 [kgm2/rad/s]

ωn = 0.88 [rad/s]

ζ = 0.9 [−]

τT = 0.1 [s]

θmin = 0 [deg]

θmax = 25 [deg]

θ̇min = −8 [deg/s]

θ̇max = 8 [deg/s]
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