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DESIGN OF ROBUST PREDICTIVE CONTROL LAWS USING SET

MEMBERSHIP IDENTIFIED MODELS†

M. Canale, L. Fagiano and M.C. Signorile

ABSTRACT

This paper investigates the robust design of Nonlinear Model Predictive
Control (NMPC) laws that employ approximated models, derived directly from
process input-output data. In particular, a Nonlinear Set Membership (NSM)
identification technique is used to obtain a system model and a bound of the
related uncertainty. The latter is used to carry out a robust control design,
via a min-max formulation of the optimal control problem underlying the
NMPC methodology. A numerical example with a nonlinear oscillator shows
the effectiveness of the proposed approach.
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I. INTRODUCTION

Nonlinear Model Predictive Control (MPC, see e.g.
[14]), also referred to as receding horizon control, is
a control technique in which the current control move
is computed by solving on-line a constrained Finite
Horizon Optimal Control Problem (FHOCP). In each
sampling period, a measure or estimate of the system
state is used as initial condition for the FHOCP and,
according to a Receding Horizon (RH) strategy, only
the first element of the solution sequence is applied
to the system. Then, the procedure is repeated in the
following sampling period, when a new measure of the
state is available. The model employed in the FHOCP is
typically a “physical” model (i.e. derived from physical
laws) or a nonlinear parametric function (e.g. a neural
network), whose parameters are identified by using
measured process data.
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In regard to the robustness analysis and robust design
of NMPC, much progress has been made but many
questions, such as uncertainty description and efficiency
of the on-line computation, remain still open. [17]
and [1] depicted the development of robust MPC,
describing the several solutions proposed during the
years. Using the contraction principle, [19] derived
some necessary and sufficient conditions for robust
stability, but they could result to be conservative and
difficult to verify. [7] assured robust stability through
the computation of some weights. Unfortunately, the
existence of such weights was only a sufficient
condition and consequently could be restrictive. [11]
introduced a procedure to guarantee robust stability
providing a non-restrictive result, which may turn out
to be unsuitable for on-line computation because of its
complexity. [20] proposed to achieve robust stability by
enforcing a robust state contraction constraint through
the optimization of a quadratic problem of medium size.
The problem of designing predictive controllers in the
presence of unmodeled dynamics was studied by [4]
and [12]. More recently, [13] carried out a regional
Input-to-State Stability (ISS) analysis of NMPC, [10]
derived a suboptimal NMPC law with ISS guarantees,
and [18] presented a robust NMPC scheme in the
presence of state-dependent uncertainties and additive
bounded perturbations. The concept of ISS has also
been successfully exploited in [5] where a min-max
MPC design approach has been introduced for the case
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of nonlinear time varying systems in the presence of
delays.
Although several methods, like those described above,
face the problem of robust stability, it has to be noted
that, to the best of the authors’ knowledge, in the
nonlinear case there is no rigorous procedure to obtain
a suitable description of the uncertainty associated
with the employed model. This issue hampers the
possibility to perform a systematic robustness analysis
or a synthesis procedure to derive robust NMPC control
laws. In fact, in most practical cases only a model
of the system to be controlled is available, without
any uncertainty description and/or estimate. Basically,
this issue is due to the difficulty to evaluate model
uncertainty when nonlinear parametric models, either
“physical” or “black–box”, are employed. Indeed, the
parameters of such models are usually identified from
system input/output data. With such a procedure it is
not easy, in general, to derive also some uncertainty
estimate to be used for robustness analysis or robust
control design.
In order to face these issues, this paper proposes an
approach, named Set Membership Predictive Control
(SMPC), to design a predictive control law directly
from measured input/output data. In SMPC, a Nonlinear
Set Membership (NSM) identification methodology
(see [15] for details), able to obtain both a “nominal”
system model and a bound on the related uncertainty, is
used. Such a bound can then be employed to analyze
a posteriori the robustness of a NMPC law designed
for the nominal model, as it has been done by [3], or
to design a priori a robust predictive controller for the
system. The latter option is pursued in this work, by
using a min-max formulation of the FHOCP. Finally, as
an example, the SMPC approach is applied here to a
nonlinear oscillator.

II. NONLINEAR SET MEMBERSHIP
MODELS FOR NMPC

NMPC requires the on–line solution of a con-
strained FHOCP, in which the predicted system
behavior is computed using a model. To this end,
existing NMPC approaches use nonlinear models
such as “physical” models (i.e. derived from physical
laws) or nonlinear parametric functions (e.g. a neural
network). The novelty introduced in this work is that the
model embedded in the NMPC algorithm is identified
directly from measured input-output data, using a
NSM technique. Such methodology allows to obtain an
uncertainty bound useful for the robust control design,
as well as an “optimal” nominal model, i.e. a model

with minimal uncertainty bound w.r.t. the information
of the available data.
This Section presents details on the NSM approach and
its use to derive a model suitable for robust NMPC
design.

2.1. Nonlinear Set Membership identification

The NSM identification approach of this work is derived
from the methodology proposed in [15].
Suppose that the plant P to be controlled is a single-
input, single-output nonlinear discrete-time dynamic
system described in regression form:

yt+1 = P (yt,ut) t ∈ Z
yt = [yt; . . . ; yt−ny ]
ut = [ut; . . . ;ut−nu ]

(1)

where ut, yt ∈ R, P : Rn → R, n = ny + nu + 2.
Suppose that system P is not known, but a set of noise-
corrupted measurements is available

(ỹt, ũt) t ∈ T .
= {−T + 1,−T + 2, ..., 0} (2)

Let φ̃t
.
= [ỹt; ũt] where ỹt = [ỹt−1; . . . ; ỹt−ny ] and

ũt = [ũt; . . . ; ũt−nu ]. Then, P can be rewritten as

ỹt+1 = P (φ̃t) + st, t ∈ T (3)

where the term st accounts for the fact that yt and φt

are not exactly known.
The aim is to derive a model M of P from the
available measurements (ỹt, ũt). The estimate
M should be chosen to give small (possibly
minimal) Lp error ||P −M ||p, where the
symbol || · ||p denotes the spatial p−norm of
a given function F (φ) of the variable φ ∈ Rn

defined as ∥F∥p
.
=

[∫
ϕ
|F (φ)|p dφ

] 1
p

, p ∈ (1,∞) ,

∥F∥∞
.
= ess sup

φ∈Φ
|F (φ)|, | · | is the Euclidean norm and

Φ is a bounded set in Rn which belongs to the domain
of F (·).
Whatever estimate is chosen, no information on
the identification error can be derived, unless some
assumptions are made on the function P and the noise
s.
Prior assumptions on P : P ∈ F (γ)

F (γ)
.
= {F ∈ C0 : |F (φ)− F (φ̄)| ≤ γ|φ− φ̄|,

∀φ, φ̄ ∈ Φ ⊂ Rn}
(4)

Prior assumptions on noise:

|st| ≤ ε < ∞, t ∈ T . (5)
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Thus, F (γ) is the set of Lipschitz continuous functions
on Φ with Lipschitz constant γ. It is assumed that Φ is
a compact set.
A key role in this Set Membership framework is played
by the Feasible Systems Set, often called “unfalsified
systems set”, i.e. the set of all systems consistent with
prior information and measured data.

Definition 1 Feasible Systems Set:

FSS
.
= {F ∈ F (γ): |ỹt − F (φ̃t)| ≤ ε, t ∈ T }. (6)

�
The Feasible Systems Set FSS summarizes all the
information on the mechanism generating the data that
is available up to time t = 0. If prior assumptions are
“true”, then P ∈ FSS. Indeed, for a given estimate
M ≃ P , the related Lp error ∥P −M∥p cannot be
exactly computed, since P is not known, but its tightest
bound is given by

∥P −M∥p ≤ sup
F∈FSS

∥F −M∥p

This motivates the following definition of worst-case
identification error.

Definition 2 The worst-case identification error of the
estimate M is

E(M)
.
= sup

F∈FSS
∥F −M∥p .

�
Looking for estimates that minimize the worst-case
identification error leads to the following optimality
concept.

Definition 3 An estimate F ∗ is optimal if

E (F ∗) = inf
M

E (M) = RI,p.
�

The quantity RI,p, called radius of information, gives
the minimal worst-case identification error that can
be guaranteed by any estimate based on the available
information.
Define the functions:

F (φ)
.
= min

t∈T

(
ht + γ|φ− φ̃t|

)
F (φ)

.
= max

t∈T
(ht − γ|φ− φ̃t|)

(7)

where ht
.
= ỹt + ε, ht .

= ỹt − ε. The next result shows
that the estimate:

Mc
.
=

1

2

(
F + F

)
(8)

is optimal for any Lp norm.

Theorem 1 Theorem 7 of [15].
For any Lp norm, with p ∈ [1,∞]:
i) The estimate Mc is optimal.
ii) E (Mc) =

1
2

∥∥F − F
∥∥
p
= RI,p.

iii) For any ϕ ∈ Φ

|Mc(ϕ)− P (ϕ)| ≤ 1

2
|F (ϕ)− F (ϕ)|.

�
Note that the model Mc can be expressed as a nonlinear
regression of the form:

yt+1 = Mc(yt; . . . ; yt−ny , ut; . . . ;ut−nu) t ∈ Z
(9)

where Mc is a Lipschitz continuous function with
Lipschitz constant γ (see [15]).

2.2. Pseudo-state representation of NSM models
and uncertainty description

For the SMPC approach employed in this paper a
state space representation of (1) and (9) is needed. In
particular, the regression (1) can be easily represented in
the context of state space equations. In fact, by choosing
a “pseudo-state” vector as:

xt = [yt . . . yt−nyut−1 . . . ut−nu ]
T =

= [x
(1)
t . . . x

(ny+1)
t x

(ny+2)
t . . . x

(ny+nu+1)
t ]T (10)

and as input the value ut, the regression form (1) can be
expressed as

xt+1 = fP (xt, ut) (11)

where:

fP (xt, ut) =

P (x
(1)
t , . . . , x

(ny+1)
t , ut, x

(ny+2)
t , . . . , x

(ny+nu+1)
t )

x
(1)
t
...

x
(ny)
t

ut

...
x
(ny+nu)
t


(12)

Note that, since P (·) is assumed to be Lipschitz
continuous with constant γ, function fP (·) in (12) is
Lipschitz continuous too with constant LP =

√
1 + γ2.

The same procedure, applied to the model Mc (9), leads
to the state space description:

xt+1 = fMc(xt, ut) (13)
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where:

fMc(xt, ut) =

Mc(x
(1)
t , . . . , x

(ny+1)
t , ut, x

(ny+2)
t . . . , x

(ny+nu+1)
t )

x
(1)
t
...

x
(ny)
t

ut

...
x
(ny+nu)
t


(14)

Indeed, based on the assumptions made in the
considered NSM identification setup, function fMc(·)
in (13) is Lipschitz continuous with the same
constant of fP (·) LP =

√
1 + γ2. Moreover, the NSM

identification procedure returns an estimate of the
uncertainty associated with the model (13), too. In fact,
with a slight abuse of notation, from (12) and (14), it
can be obtained that

fMc(xt, ut) − fP (xt, ut) =

=


Mc(xt, ut)− P (xt, ut)

0
...
0


.
= wt(xt, ut) (15)

thus the following equation can be derived:

xt+1 = fP (xt, ut) = fMc(xt, ut) + wt(xt, ut) (16)

i.e. the model uncertainty is described in terms
of an additive, input-and-state-dependent perturbation
wt(xt, ut) ∈ Rny+nu+1, whose elements are all equal
to zero except for the first one. Then, according to
Theorem 1-iii), it can be shown that the quantity
wt(xt, ut) is pointwise bounded as:

|wt(xt, ut)| ≤
1

2
|F (xt, ut)− F (xt, ut)|

.
= w(xt, ut), for any (xt, ut) ∈ Φ,

(17)

where the bound w(xt, ut) is computed in
the NSM approach together with the estimate
Mc(xt, ut). Note that, in (17), wt ∈ Rny+nu+1,
while F (xt, ut), F (xt, ut) ∈ R: yet, eq. (17) holds due
to the particular structure of wt (15).
In principle, one could use the nominal model (13) and
the uncertainty bound (17) to design a robust controller
for the system (11). However, the related control design

may be too complex. Thus, in this paper a “global”,
rather than pointwise, uncertainty bound is employed,
derived by using Theorem 1-ii) with the ∞-norm as a
measure of accuracy of the estimate M w.r.t. the real
system:

∀(x, u) ∈ Φ, w(x, u) =
1

2
|F (x, u)− F (x, u)|

≤ 1

2
∥F (x, u)− F (x, u)∥∞ = RI,∞

.
= µ.

(18)

Summing up, on the basis of eqs. (16)-(18) the pseudo-
state model to be employed in the robust NMPC design
is the following:

xt+1 = fMc(xt, ut) + wt, |wt| ≤ µ, (19)

where xt, wt ∈ Rnu+ny+1 = Rr and ut ∈ R. An esti-
mate of the bound µ can be computed e.g. by using the
approach of [16].

III. ROBUST CONTROL DESIGN FOR SMPC

In this Section, the robust design of a SMPC control law
is described.
In the following, the sequence of k control inputs
{ut}t1+k−1

t1
, starting from the generic time instant t =

t1 up to time instant t = t1 + k − 1, is indicated as
Uk
t1 . Similarly, W k

t1 indicates a sequence {wt}t1+k−1
t1

of
“disturbances” from time instant t1 up to time instant
t1 + k − 1. The set of all the possible state values at
time t1 + k, that originate from the generic state value
xt1 at time t1 by applying the input sequence Uk

t1 to
system (19), is defined as:

S(xt1 , U
k
t1)

.
= {{xt}t1+k

t1
:

xt1+k+1 = fMc(xt1+k, ut1+k) + wt1+k,

∀k ∈ [0, k − 1] , ∀wt1+k : |wt1+k| ≤ µ} (20)

while ϕ(xt1 , U
k
t1) indicates the nominal state value (i.e.

with wt = 0∀t) and ϕP (xt1 , U
k
t1) is the state value of

the real plant at time t1 + k, obtained starting at xt1 and
applying the input sequence Uk

t1 . Clearly, it holds that
{ϕ(xt1 , U

k
t1), ϕ

P (xt1 , U
k
t1)} ⊂ S(xt1 , U

k
t1). The Haus-

dorff distance (see e.g. [2]) between any two sets S ∈
Rr and X ∈ Rr is defined as:

d(S,X ) =

max

(
sup
x1∈S

inf
x2∈X

|x1 − x2|, sup
x1∈X

inf
x2∈S

|x1 − x2|
)
(21)
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It is assumed that the control problem is to robustly
asymptotically regulate the state of system (19) to
a convex and compact neighborhood of the origin,
indicated as Xf ⊆ Rr, under state and input constraints,
indicated respectively by a convex set X ⊆ Rr and a
convex, compact set U ⊆ R, both containing the origin
in their interiors. The notation Uk

t1 ∈ U indicates that
each one of the elements of the sequence Uk

t1 belongs to
U. The following assumption is considered for Xf :

Assumption 1 a
∀xt ∈ Xf , ∀k ∈ [1,∞), ∃Uk

t ∈ U : S(x,Uk
t ) ∈ Xf ,

i.e. there exists a feasible control sequence that robustly
keeps the state inside the set Xf for any future time step.
The set Xf ⊂ X is a design parameter that has to be
chosen according to a tradeoff between better regulation
precision and NMPC problem feasibility, as it will be
clear in the following. Obviously, Xf can not be chosen
arbitrarily small, due to the presence of the uncertainty
w. By indicating as N ∈ N the prediction horizon, the
following cost function J can be defined:

J(xt, U
N
t ) = d(xt,Xf ) +

N−1∑
k=1

d(S(xt, U
k
t ),Xf ) (22)

then, the FHOCP to be solved in the SMPC approach
is:

J∗(xt) = min
UN

t

J(xt, U
N
t ) (23a)

subject to

S(x, Uk
t ) ∈ X, ∀k ∈ [1, N ] (23b)

UN
t ∈ U (23c)

S(x, UN
t ) ∈ Xf (23d)

A (possibly local) optimal control sequence is indicated
as UN∗

t (xt). The following assumption is considered
about the constrained FHOCP (23):

Assumption 2 There exists a set F ∈ Rr such that the
FHOCP (23) is feasible ∀x ∈ F .

Remark 1 The feasibility of (23) depends on many
factors, such as the model (19), the related uncertainty
bound, the constraint sets and the choice of the terminal
set Xf . In the quite general settings of this paper, it is
difficult to derive sufficient conditions on these factors
to satisfy Assumption 2 and to evaluate the feasibility
set F ∈ Rr. These aspects are beyond the scope of this
paper and are subjects of future research.

The FHOCP (23) is typically solved numerically. In
particular, it is assumed that the employed algorithm,
denoted as UN∗

t (xt) = λ(xt), enjoys the following
properties:

Assumption 3 For any x ∈ F , λ(x) returns a (eventu-
ally local) minimum J∗(x) and the related minimizer
UN∗
t (x)

Assumption 4 a
(a) For any predicted time instant t+ k and any control

sequence U
k
t ∈ U such that S(xt, U

k
t ) ∈ Xf , the

algorithm λ(xt) is able to compute a control
sequence Û

N−k
t+k ∈ U, such that

S(S(xt, U
k
t ), Û

k
t+k) ∈ Xf , ∀k ∈ [1, N − k].

(b) The minimizer UN∗
t (xt) provided by λ(xt)

is such that, for any predicted time instant
t+ k : S(xt, U

k∗
t ) ∈ Xf , k ∈ [0, N ], it happens

that
S(xt, U

k+k∗
t ) ∈ Xf , ∀k ∈ [1, N − k], i.e. the

state trajectories are robustly kept inside the
terminal set Xf .

Remark 2 Assumptions 3-4 are quite mild, provided
that Assumptions 1-2 hold. In particular, with the
settings of this paper Assumption 3 is satisfied if the
problem is feasible and the solver is initialized with a
feasible solution (or is able to find a feasible solution).
Assumption 4(a) can be satisfied if Assumption 1 holds
(so that there exists a sequence that robustly keeps the
state inside the terminal set) and if the algorithm λ(xt)

is able to find a sequence Û
N−k
t+k and a scalar t̂ = 0 that

solve the following optimization problem:(
t̂, Û

N−k
t+k

)
= arg min

t,U
N−k
t+k

t

s.t.
S(S(xt, U

k
t ), Û

k
t+k) ≤ t, ∀k ∈ [1, N − k].

Finally, it can be noted that Assumption 4(b) holds
as a consequence of Assumption 4(a), by considering
that, according to the chosen cost function (22), the
stage cost related to any predicted set S(xt, U

k
t ) :

S(xt, U
k
t ) ∈ Xf is zero (i.e. minimal).

Assumptions 4(a)-(b) can be replaced by assuming that
a terminal control policy is known, under which the set
Xf is robustly positively invariant (see e.g. [14]). In
some sense, in this paper the terminal control policy
is not known a priori, while it is assumed that the
algorithm λ(xt) is able to derive it.
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According to the RH strategy, the SMPC controller
is implemented as follows:

Algorithm 1 a

1. At time instant t, get xt.
2. Solve (23), by initializing the algorithm λ(xt)

with the optimal sequence ŨN∗
t , computed at time

instant t− 1 and suitably shifted.
3. Apply the first element of the solution sequence

UN∗
t as the actual control action ut.

4. Repeat the whole procedure at time t+ 1.

The control law resulting from Algorithm 1 is
indicated here as ut = κ∗(xt), and the related sequence,
starting from the generic time instant t1 up to time
t1 + k − 1, is denoted as Kk

t1 = {κ∗(xt)}t1+k−1
t1

. The
following stability result holds.

Theorem 2 Under Assumptions 1-4, the distance
between the state of system (19), controlled by the
feedback law κ∗, and the terminal set Xf asymptotically
robustly converges to zero for any initial condition xt ∈
F , i.e.:

∀xt ∈ F , lim
k→∞

d(S(xt,K
k
t ),Xf ) = 0

Proof 1 See the appendix.

Remark 3 Theorem 2 also implies that the distance
between the state ϕP (xt1 , U

k
t1) of the controlled system

and the set Xf asymptotically converges to zero.

Remark 4 In order to reduce the conservativeness of
the presented approach and to improve the feasibility
of (23), the FHOCP can be generalized by optimizing
over control policies κ, i.e. UN

t1 = {κ(xt)}t+N−1
t1

+

V t+N−1
t1

, so that the predictions involved in (23) can
be carried out in a closed-loop fashion. It is widely
recognized (see e.g. [8]) that this approach leads to
better performance and reduced feasibility problems.
Optimization over control policies has not been adopted
in the theoretical framework of this paper just for
simplicity of notation, yet it can be straightforwardly
used and indeed it has been employed in the numerical
example of Section IV. Another approach that can be
successfully exploited for the special case of linear
systems, involves the use of parameter dependent open
loop optimization as introduced in [6].

Remark 5 It has to be noted that the set F has to be a
subset (with lower dimension) of the set Φ, over which
the NSM identification procedure is applied.

IV. NUMERICAL EXAMPLE

Consider the following two-dimensional, discrete-time
nonlinear oscillator obtained from the Duffing equation
(see e.g. [9]):

ξt+1 =

[
1 Ts

−Ts ω
2 1− 2 ζ Ts

]
ξt+

[
0 0

−Ts 0

]
ξ3t +

[
0
Ts

]
ut

yt =
[
1 0

]
ξt + vt

(24)

where ξt = [ξ
(1)
t ξ

(2)
t ]T is the system state (the symbol

·T denotes the transpose operator), vt ∈ [−0.01, 0.01] is
an unknown-but-bounded measurement noise, ζ = 0.3,
ω = 1 and Ts = 0.05 s.
The control objective is to regulate the output y to the
origin, under the following output and input constraints:

|y| ≤ 3 |u| ≤ 5 (25)

The system (24) is supposed to be unknown, but a
set of noise-corrupted measurements can be collected
through preliminary experiments. Note that the origin
of system (24) is an open-loop asymptotically stable
fixed point for any initial condition ξ0 ∈ R2, so that
the preliminary experiment can be carried out in open-
loop fashion. In particular, 30 experiments have been
carried out, starting from 30 different initial conditions
ξ0 ∈ R2 : ∥ξ0∥∞ ≤ 3. In each one of these experiments,
a uniformly distributed random sequence {ũt}1·10

3

0 :
∀t, |ũt| ≤ 5 has been used as input, and a second
uniformly distributed random sequence {ṽt}1·10

3

0 :
∀t, |ṽt| ≤ 0.01 has been employed as measurement
noise. The overall collected data form a set of 3 ·
104 samples (ỹ, ũ) (2), which has been split in an
identification set of 2.5 · 104 samples, to be used in the
NSM identification procedure, and in a validation set
containing the remaining 5 · 103 samples. The number
of output and input regressors, ny and nu respectively,
have been chosen in order to achieve a suitable tradeoff
between model complexity and accuracy, while the
values of the Lipschitz constant γ and of the noise
bound ε have been estimated from the data in order
to achieve a non-empty FSS (for more details on the
regressor’s choice and on the computation of γ and ε,
the interested reader is referred to [15]). In this case, the
values ny = 2, nu = 2, γ = 2.3 and ε = 0.02 have been
chosen. The obtained NSM model has the form (19):

xt+1 = fMc(xt, ut) + wt
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where

xt =

 x
(1)
t

x
(2)
t

x
(3)
t

 =

 yt
yt−1

ut−1

 (26)

fMc(xt, ut) =

 Mc(xt, ut)

x
(1)
t

ut

 (27)

and Mc(xt, ut) is the identified NSM model (see
(14)). The estimated uncertainty bound µ results to be
equal to 0.1. The derived model is then employed to
design the SMPC law, according to Algorithm 1, by
optimizing over linear feedback control policies of the
form ut = K xt + u′

t (see Remark 4). In particular, the
horizon N = 30 and the terminal set Xf = {x ∈ R3 :
|x(1)|, |x(2)| ≤ 0.1; |x(3)| ≤ 2} have been employed.
Finally, on the basis of the constraints (25) on the actual
system and of the pseudo-state choice (26), the sets X
and U are selected as follows:

X =
{
x ∈ R3 : |x(1)|, |x(2)| ≤ 3; |x(3)| ≤ 5

}
U = {u ∈ R : |u| ≤ 5}

The obtained results, starting as an example from the
initial state ξ0 = [1.85, −3.41]T (and initial pseudo-
state x0 = [1.85, 2, 0]T ), are shown in Fig. 1-3, where
they are compared to the results achieved in an “ideal”
case, i.e. with a NMPC law designed and implemented
assuming exact knowledge of the system equations (24)
and measurement of the whole state with zero noise.
In particular, Figs. 1 and 2(a)-(b) show the trajectories
of the system output y and state ξ respectively. It can be
noted that quite good regulation precision is achieved by
the SMPC law (see Fig. 2(b)), while its performance in
the transient phase are worse w.r.t. the standard NMPC
law, due to the conservativeness of the robust design
employed in SMPC and the presence of measurement
noise. The courses of the input u are shown in Fig.
3, where it can be noted that the input constraints are
always satisfied by both controllers.

V. CONCLUSIONS

The robust design of Nonlinear Model Predictive
Control laws that employ approximated models,
derived directly from input-output data, has been
studied in this paper. Such models are identified by
means of a Nonlinear Set Membership identification
technique which is able to provide an estimate of the
uncertainty associated to the model. The obtained
uncertainty bound is employed to design a robust
predictive controller by using a min-max formulation
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1

1.5

2

O
ut

pu
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y t

Time step t

Fig. 1. Numerical example: courses of the system output y with the
SMPC control law (∗) and with a state-feedback NMPC law (◦).
Initial state: ξ0 = [1.85, −3.41]T , initial pseudo-state: x0 =
[1.85, 2, 0]T .
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Fig. 2. Numerical example: (a) Trajectories of the system state ξ with
the SMPC control law (∗) and with a state-feedback NMPC law
(◦). (b) Zoom of the trajectories close to the origin. Initial state:
ξ0 = [1.85, −3.41]T , initial pseudo-state: x0 = [1.85, 2, 0]T .

of the finite horizon optimal control problem. The
effectiveness of the approach has been shown through
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Fig. 3. Numerical example: courses of the system input u with the
SMPC control law (∗) and with a state-feedback NMPC law (◦).
Initial state: ξ0 = [1.85, −3.41]T , initial pseudo-state: x0 =
[1.85, 2, 0]T .

a nonlinear oscillator example.

Appendix - Proof of Theorem 2
At first, the recursive feasibility of Algorithm 1 is
analyzed. Take any xt ∈ F . Assumptions 2 and 3 imply
that the algorithm λ(xt) is able to find a feasible,
locally optimal solution sequence. Such a sequence
is indicated here as UN∗

t|t ∈ U, to highlight that it is
the solution of (23) at time t. By applying the first
element of such a sequence to the system, the state
xt+1 = ϕP (xt, U

1∗
t|t ) is obtained at the following time

step, t+ 1. By initializing the algorithm λ(xt+1) with
the shifted optimal sequence UN−1∗

t+1|t computed at time
step t, it can be noted that S(xt+1, U

k∗
t+1|t) ∈ X, ∀k ∈

[0, N − 1) and that the set S(xt+1, U
N−1∗
t+1|t ) ∈ Xf , i.e.

at the second last prediction step the state trajectory is
robustly inside the terminal set Xf . Then, according to
Assumptions 1 and 4, the algorithm λ(xt+1) is able to
find a control input ût+N ∈ U so that S(xt+1, Û

N∗
t+1|t) ∈

Xf , where the sequence ÛN∗
t+1|t ∈ U is constructed by

using as first N − 1 components the elements {u∗
t }Nt+1|t

of the optimal sequence UN∗
t|t , and as the last component

the value ût+N . The sequence ÛN∗
t+1|t provides a feasible

input sequence for the problem (23) at time xt+1. Such
a reasoning can be iterated for any time instant t+
k, k ∈ [2,∞), so that recursive feasibility is proved. The
asymptotic convergence of the distance
d(S(xt,K

k
t ),Xf ) to zero, as k → ∞, will be now

proved. For any state value xt ∈ F , consider the
optimal cost J∗(xt), computed at time t by algorithm
λ(xt), corresponding to the optimal solution sequence

UN∗
t|t (xt). For the sake of simplicity of notation, define

d(xt)
.
= d(xt,Xf ). From the definition of the cost

function J (22), it can be noted that

0 ≤ d(xt) ≤ J∗(xt), (28)

i.e. the distance between the state xt and the set
Xf is upper-bounded by J∗(xt). Moreover, due to
Assumptions 1 and 4,

J∗(xt) = 0 ⇐⇒ d(xt) = 0 (29)

so that J∗(xt) = 0 if and only if xt ∈ Xf . Finally,
consider the difference J∗(xt+1)− J∗(xt). Since the
algorithm λ(xt+1) at time t+ 1 is provided with the
feasible input sequence ÛN∗

t+1|t, which is suboptimal, it
holds that:

J∗(xt+1) ≤ J(xt+1, Û
N∗
t+1|t). (30)

J(xt+1, Û
N∗
t+1|t) is such that:

J(xt+1, Û
N∗
t+1|t) ≤ J∗(xt)− d(xt) (31)

By combining eqs. (30) and (31), it can be noted that:

J∗(xt+1)− J∗(xt) ≤ −d(xt) (32)

with:

J∗(xt+1)− J∗(xt) = 0 ⇐⇒ d(xt) = 0, (33)

in which case J∗(xt+1) = J∗(xt) = 0, due to Assump-
tion 4. Thus, it holds that:

J∗(xt+1)− J∗(xt) < 0∀xt ∈ F \Xf

J∗(xt+1)− J∗(xt) = 0 ⇐⇒ xt ∈ Xf
(34)

Equations (28) and (34) are sufficient to prove robust
asymptotic convergence of d(xt) to 0:

lim
t→∞

d(xt) ≤ lim
t→∞

J∗(xt) = 0, ∀x0 ∈ F (35)
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