
Approximate NMPC for vehicle stability:

design, implementation and SIL testing

Massimo Canale a,b Lorenzo Fagiano a Valentino Razza a

aDipartimento di Automatica e Informatica, Politecnico di Torino, Corso Duca

degli Abruzzi 24, 10129, Torino, Italy.

bCorresponding author. e-mail: massimo.canale@polito.it

Abstract

In this paper, Nonlinear Model Predictive Control is used to improve vehicle stability

and handling by means of a rear active differential. In order to allow on-line control

computations within the required sampling time, a Set Membership approximation

of the designed controller is employed. The real applicability and effectiveness of

such a technique, as well as the improvement over an existing control approach

based on Internal Model Control, is shown through the implementation on a com-

mercial embedded device with limited computational capacity and the testing via

software-in-the-loop simulations of demanding maneuvers, using an accurate non-

linear vehicle model.

Key words: Nonlinear model predictive control, Vehicle yaw control,

Software-in-the-loop test, Constrained control, Efficient model predictive control
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1 Introduction

Active vehicle control systems aim to enhance handling performance ensuring

stability in critical situations. Several solutions to active chassis control have

appeared in the last years. All of the proposed strategies modify the vehicle
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dynamics by means of suitable yaw moments that can be generated in dif-

ferent ways (see e.g. the works of Ackermann and Sienel (1993); Van Zanten

et al. (1995); Ackermann et al. (1995); Van Zanten (2000); Kohen and Ecrick

(2004); Güvenç et al. (2004); Canale et al. (2007)). Common to all solutions

is the fact that they are able to generate limited values of the yaw moment.

The immediate consequence is that the input variable may saturate and this

could deteriorate the control performance. Moreover, good damping proper-

ties and vehicle safety (i.e. stability) can be considered as well by imposing

suitable constraints on the yaw rate ψ̇(t) and on the sideslip angle β(t) values

as described by Kiencke and Nielsen (2000). Therefore, the presence of such

constraints motivates the employment of Nonlinear Model Predictive Control

(NMPC) (see e.g. the survey of Mayne et al. (2000)) techniques. However,

the realization of NMPC control laws requires the on-line solution of an op-

timization problem which may not be solvable within the sampling interval

required for such kind of application. Nevertheless, predictive control has been

successfully employed in vehicle lateral control and vehicle stability control

by means of suitable solutions aimed at improving the computational times.

In particular, Falcone et al. (2007) used predictive control techniques in ac-

tive steering control for an autonomous vehicle, where on-line linearization of

the vehicle model gave rise to an effective suboptimal solution which allowed

the real time implementation. Moreover, Tøndel and Johansen (2005) pro-

posed an interesting contribution to the problem of control allocation in yaw

stabilization by means of approximate nonlinear multi-parametric program-

ming, where an approximate solution obtained by means of a piecewise affine

function is used for the implementation of the controller. In this paper, the

problem of efficient NMPC implementation is solved using an approximated

control function, with lower required computational time with respect to on-

line optimization, derived using the Fast Model Predictive Control (FMPC)

methodology introduced and described by Canale et al. (2009). In this con-

text, the approximating function which realizes the predictive controller is

based on the off-line computation of a finite number ν of exact NMPC control

solutions and guarantees stability as well as constraint satisfaction. In order

to show in a realistic way the effectiveness of the proposed control approach,
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the approximate NMPC law is implemented on an embedded device with low

computational capacity and tested through extensive Software-In-the-Loop

(SIL) simulations in demanding driving situations, using a detailed nonlinear

14 degrees of freedom (d.o.f.) vehicle model. Moreover, improvements over a

well-assessed approach which employs an Internal Model Control (IMC) struc-

ture to handle input constraints are shown too.

The paper is organized as follows. Sections 2 and 3 introduce the control

problem and the design procedure of the nominal NMPC law respectively.

The adopted NMPC approximation technique and its implementation on the

embedded device are described in Sections 4 and 5. Finally, Section 6 describes

the SIL tests and conclusions are drawn in Section 7.

2 Vehicle modeling and control requirements

Vehicle dynamics can be described using the following nonlinear single track

model (see e.g. the book from Rajamani (2005)):

mv(t)β̇(t) + mv(t)ψ̇(t) = Fyf (t) + Fyr(t)

Jzψ̈(t) = aFyf (t)− bFyr(t) + Mz(t).

(1)

In (1) m is the vehicle mass, Jz is the moment of inertia around the vertical

axis, β(t) is the sideslip angle, ψ(t) is the yaw angle, v(t) is the vehicle speed,

a and b are the distances between the center of gravity and the front and rear

axles respectively. Fyf (t) and Fyr(t) are the front and rear tyre lateral forces,

which can be expressed as nonlinear functions of β(t), ψ̇(t), v(t) and of the

front steering angle δ(t) (see e.g. the work of Bakker et al. (1989) for more

details):

Fyf (t) = Fyf (β(t), ψ̇(t), v(t), δ(t))

Fyr(t) = Fyr(β(t), ψ̇(t), v(t), δ(t)).

(2)

Finally, Mz(t) in (1) is the yaw moment that can be generated by an active

device, through appropriate combinations of longitudinal and/or lateral tyre
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forces. In this paper, the yaw moment Mz(t) is supposed to be generated by

a Rear Active Differential (RAD). The considered device (see the paper from

Canale et al. (2007) for a more detailed description), which is the subject

of the patents of Ippolito et al. (1992); Frediani et al. (2002), is basically a

traditional bevel gear differential that has been modified in order to transfer

motion to two clutch housings, which rotate together with the input gear.

Clutch friction discs are fixed on each differential output axle. The ratio be-

tween the input angular speed of the differential and the angular speeds of

the clutch housings is such that the latter rotate faster than their respective

discs in almost every vehicle motion condition (i.e. except for narrow corner-

ing at very low vehicle speed), thus the sign of each clutch torque is always

known and the torque magnitude only depends on the clutch actuation force,

which is generated by an electro-hydraulic system whose input current i(t)

is determined by the control algorithm. The main advantage of this system

with respect to conventional active differentials is the capability of generating

yaw moments of every value within the actuation system saturation limits,

regardless of the input driving torque value and the speed values of the rear

wheels. The yaw moment saturation value is ±2500 Nm, due to the physical

limits of its electro-hydraulic system. As a first approximation, the actuator

behavior can be described by the model:

Mz(t) = KAi(t− ϑ), (3)

where KA and ϑ are the actuator gain and delay respectively. As a matter

of fact, the actuator model considered by Canale et al. (2007) includes also a

first-order dynamic which is not considered here, since its bandwidth (about

11 Hz) is higher than the bandwidth of the vehicle considered in this work,

which is of about 2.2 Hz. Moreover, the use of a first-order actuator dynamic

would add one unmeasured state to the vehicle model: thus, a state observer

should be employed in order to compute the NMPC control moves, with con-

sequent possible problems related to observer accuracy and stability, due to

the system nonlinearities and the model uncertainty. Furthermore, the use of

a larger state dimension would also lead to an increase of the complexity of

the approximated NMPC approach employed in this paper since, in general, it
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grows exponentially with the state dimension. Anyway, it will be shown that

good performance are obtained even by neglecting the first-order actuator dy-

namics in the control design.

Equations (1), (2) and (3) can be rearranged in the state equation form:




ψ̈(t)

β̇(t)


 = f(ψ̇(t), β(t), δ(t), i(t− ϑ)). (4)

The current i(t) is the control input, while the steering angle δ(t) is assumed

to be commanded by the driver via a conventional steering system. It is also

assumed that δ(t) is measured through a standard steering angle sensor. The

improvements of the vehicle handling characteristics can be taken into account

in the control design by a suitable choice of a reference signal ψ̇ref(t), generated

by means of a nonlinear static map

ψ̇ref(t) = M(δ(t), v(t)), (5)

which uses as inputs the measured values of the steering angle and of the

vehicle speed. Details on the computation of the map M(·) can be found

in Canale et al. (2007). The tracking of ψ̇ref can be taken into account by

minimizing the amount of the error e(t):

e(t) = ψ̇ref(t)− ψ̇(t).

Good damping properties and vehicle safety (i.e. stability) performance can

be considered as well by imposing suitable constraints on the state variables,

i.e. the yaw rate ψ̇(t) and the sideslip angle β(t), as described by Kiencke

and Nielsen (2000). However, the value of the yaw moment generated by the

employed active device is subject to its physical limits. In particular, the con-

sidered active differential has an input current limitation of ± 1 A which

corresponds to the range of allowed yaw moment of ± 2500 Nm that can be

mechanically generated (see the patents of Ippolito et al. (1992) and Frediani

et al. (2002) for details). Thus, saturation of the control input (i.e. the actu-

ator current i(t)) has to be carefully taken into account in the control design.

Therefore, given the presence of state and input constraints, the employment
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of NMPC techniques (see e.g. the survey of Mayne et al. (2000)) appears to be

an appropriate method to solve the problem. In the next Section, the details

of the predictive approach to yaw control are introduced.

3 NMPC strategy for yaw control

This Section describes the design of a NMPC law for vehicle yaw control.

Although a specific actuator is considered in this paper (i.e. a rear active dif-

ferential), the described NMPC approach is quite general and can be adapted

with little modifications to other kinds of actuation devices. However, as it

will be highlighted at the end of this Section, the computational burden of

NMPC limits its application with the actual automotive Electronic Control

Units (ECU). In order to solve this issue, in this paper an efficient controller

implementation is obtained through an approximation of the exact NMPC

control law, as it will be described in Section 4. The approximated control law

is then implemented on an embedded device with low computational capacity

and tested through SIL simulations (as it will be described in Sections 5 and

6).

In the proposed NMPC approach for yaw control, the control move computa-

tion is performed at discrete time instants kTs, k ∈ N, defined by the sampling

period Ts and on the basis of the state equations (6) obtained by discretization

of (4), e.g. by means of forward difference approximation (for simplicity, the

notation k + j , (k + j)Ts will be used in the following):




ψ̇k+1

βk+1


 = f̃(ψ̇k, βk, δk, ik−r), (6)

where r is defined as:

r = int(ϑ/Ts) (7)

and int(·) denotes the nearest integer approximation. Note that if the delay

ϑ is not an integer multiple of the sampling time Ts, the use of the nearest

integer approximation leads to an error in the delay considered by the NMPC
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controller. Such an error is equal to Ts/2 in the worst case and do not lead

to significant performance degradation as long as the sampling frequency (i.e.

100 Hz in our case) is sufficiently larger than the bandwidth of the vehicle

lateral dynamics (i.e. about 2.2 Hz with the commercial vehicle considered in

this paper). In this work, both state variables ψ̇ and β are assumed measurable

for control input computation. However, it is well true that, while a measure

of ψ̇ can be easily obtained using a gyroscope, a measure of the sideslip angle

β is much more difficult and expensive to obtain. On the other hand, quite

good and accurate solutions have been proposed in the literature (see, e.g.

the works of Van Zanten (2000), Ryu and Gerdes (2004) and Piyabongkarn

et al. (2006)), ensuring the reliability of suitable control techniques involving

a sideslip angle loop. According to the NMPC strategy, at each sampling time

k, the values of ψ̇k, βk, of the past input variables ik−1, . . . , ik−r and of the

value of the steering angle δk, are used to compute the control move, through

the solution of the following optimization problem:

min
[ik|k,...,ik+Nc−1|k]

Np∑

j=1

e2
k+j|k +

Np−r∑

j=0

ρi2k+j|k (8a)

subject to

|ik+j|k| ≤ i > 0, ∀j ∈ [0, Nc − 1] (8b)

ik+j|k = ik+Nc−1|k, ∀j ∈ [Nc, Np − 1] (8c)

|βk+j|k| ≤ β > 0, j ∈ [1, Np − 1], (8d)

where Np ∈ N is the prediction horizon, ρ ∈ R+ is a weighting factor, that

can be tuned to achieve a suitable tradeoff between tracking accuracy and

control effort, and ek+j|k is the jth step ahead prediction of the tracking error,

obtained as

ek+j|k , ψ̇ref,k − ψ̇k+j|k, j = 1, . . . , Np.

The value of ψ̇ref,k is computed using the actual values of δk and vk, through

the static map M (5). The predicted yaw rate ψ̇k+j|k is obtained via the state

equation (6), starting from the “initial conditions” ψ̇k|k = ψ̇k and βk|k = βk

7



and using the following sequences of steering angle δ and of the input i:




δk|k = δk+1|k = . . . = δk+Np−1|k = δk

ik−r, . . . , ik−1, ik|k, . . . , ik+Nc−1|k, . . . , ik+Np−1|k


 ,

where Nc ≤ Np is the control horizon and the assumption ik+j|k = ik+Nc−1|k, ∀j ∈
[Nc, Np− 1] is made, as highlighted in (8c). Note that the optimization of the

index (8a) is performed with respect to the variables [ik|k, . . . , ik+Nc−1|k], while

the value of the steering angle δ is kept constant at the value δk|k = δk, mea-

sured at time k, during the whole prediction horizon. Moreover, the initial

state ψ̇k can be expressed as:

ψ̇k = ψ̇ref,k − ek.

Therefore, since ψref,k is a function of δk and vk, the performance index (8a)

depends on the vector wk ∈ R4+r of the measured variables:

wk , [ek, βk, δk, vk, ik−r, . . . , ik−1]
T . (9)

Then, the predictive control law is computed using a receding horizon strategy:

1. At time instant k, get wk.

2. Solve the optimization problem (8)

3. Apply the first element of the optimal solution sequence [i∗k|k, . . . , i
∗
k+Nc−1|k]

as the actual control action ik = i∗k|k.

4. Repeat the whole procedure at the next sampling time k + 1.

Note that no constraints have been imposed on ψ̇, as its limitation on the ba-

sis of comfort and directional stability criteria similar to the ones introduced

by Kiencke and Nielsen (2000) have been implicitly taken into account in the

computation of ψ̇ref (for details see the paper from Canale et al. (2007)). On

the other hand, constraints (8d) on β and (8b) on i account for vehicle di-

rectional stability and actuator saturation respectively. Finally, it has to be

noted that Np has to be greater than the number of delay steps r, so that the

first predicted input ik|k can influence the cost function (8a).

The obtained predictive controller is a nonlinear static function κ of the vari-
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able wk defined in (9):

ik = κ(wk). (10)

For a given value of wk, the value of the function κ(wk) is implicitly computed

by solving at each sampling time k the constrained optimization problem (8).

Control law (10) results to be quite effective, as shown in the example of Fig.

1, that shows the course of the controlled vehicle yaw rate during a step steer

maneuver, simulated using a detailed nonlinear 14 degrees-of-freedom (d.o.f.)

model, together with the one obtained by the uncontrolled vehicle. It can be
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Fig. 1. Courses of the reference yaw rate (thin solid line) and of the yaw rate obtained

by the controlled vehicle (solid) and by the uncontrolled one (dotted) during a 50◦

step-steer maneuver at 100 km/h.

noted that a faster response and better damping are achieved by the controlled

vehicle. The test shown in Fig. 1 has not been performed in real-time, since no

strict sampling time was imposed and the numerical solver employed for the

simulation (i.e. Simulinkr with ode45 algorithm) “awaited” for the completion

of the numerical optimization (8) at each sampling time. As a matter of fact,

the on-line solution of the optimization problem (8) can not be solved at the

sampling period required for this application, which is equal to 10 ms, using

the actual commercial ECUs. In fact, the on-line computational time required

to solve (8), using a sequential quadratic programming algorithm (see e.g. the

book of Nocedal and Wright (2006)), is about 30 ms on a standard PC (i.e. an

Intelr CoreTM2 at 2.4 GHz with 2 GB RAM) and about 15 s on the embedded

device considered in this paper (described in Section 5). In order to overcome
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this problem and to allow the real-time implementation of the NMPC strategy,

in this paper an approximated controller κ̂ ≈ κ is derived, suitable for on-line

implementation. Function κ̂ is obtained using a finite number ν of values

of κ(wk), computed off-line and stored. Such an approach is presented and

discussed in the next Section.

4 Fast MPC (FMPC) implementation

The problem of efficient NMPC implementation is tackled in this paper using

an approximated control function, with lower required computational time,

derived by means of Set Membership (SM) techniques as described by Canale

et al. (2009). In particular, under this context, the “Nearest Point” (NP)

approach will be employed. It has to be remarked that the use of the NP

technique for function approximation is well-assessed in different applications

(see e.g. the book from Fukunaga (1990)). The novelty of the approach as it

is presented by Canale et al. (2009) lies in the accuracy analysis, carried out

in the framework of SM approximation theory, and in the consequent analysis

of the closed loop properties.

4.1 Prior information

The approximating function κNP is computed over a compact subsetW ⊂ R4+r

of the domain of the exact function κ. Note that, due to the input constraints

(8b), the image set of function κ(w) is [−i, i]. Moreover, it is assumed that the

function κ is continuous in W . Such property depends on the characteristics

of the optimization problem (8): results on this aspect can be found e.g. in

the works of Mayne and Michalska (1990), Meadows (1994) and Spjøtvold

et al. (2007) and the references therein. Continuity of the nominal control law

can be also evaluated a posteriori via numerical analyses. Note that stronger

regularity assumptions (e.g. differentiability) cannot be made, since even in the

simple case of linear dynamics, linear constraints and quadratic cost function,

κ is a piece-wise affine continuous function (see e.g. the papers from Bemporad
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et al. (2002) and Seron et al. (2003)). Inside W , a finite number ν of points

w̃h, h = 1, . . . , ν < ∞ is suitably chosen, giving rise to the set:

Wν = {w̃h ∈ W , h = 1, . . . , ν}. (11)

For each value of w̃ ∈ Wν , the corresponding value ĩ = κ(w̃) is computed by

solving off-line the optimization problem (8), so that:

ĩ = κ(w̃), ∀w̃ ∈ Wν . (12)

Such values of w̃, ĩ are stored to be used for the on-line computation of κNP.

The set Wν is supposed to be chosen such that the following property holds:

lim
ν→∞ dH(W ,Wν) = 0, (13)

where dH(W ,Wν) is defined as:

dH(W ,Wν) = sup
w∈W

inf
w̃∈Wν

(‖w − w̃‖2). (14)

Condition (13) ensures that as ν → ∞ the set W is densely covered. Since

both W and the set [−i, i] are compact, it follows that function κ is Lipschitz

continuous:

‖κ(w1)− κ(w2)‖2 ≤ γ‖w1 − w2‖2, ∀w1, w2 ∈ W . (15)

All this prior information can be summarized by concluding that κ belongs to

the Feasible Function Set (FFS) defined as:

κ ∈ FFS
.
= {κ ∈ Aγ : κ(w̃) = ĩ, ∀w̃ ∈ Wν}, (16)

where Aγ is the set of all continuous functions κ : W → I, such that (15)

holds.
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4.2 Nearest Point approximation

The approximating function κNP is computed as follows. For any w ∈ W ,

denote with w̃NP a value such that:

w̃NP = arg min
w̃∈Wν

‖w̃ − w‖2. (17)

Then, the NP approximation κNP(x) is defined as:

κNP(w) = κ(w̃NP). (18)

As shown in the work of Canale et al. (2009), such approximation has the

following properties:

i) the input constraints are always satisfied:

κNP(w) ∈ I, ∀w ∈ W ; (19)

ii) for a given ν, a bound ζNP(ν) on the pointwise approximation error can

be computed:

‖κ(w)− κNP(w)‖2 ≤ ζNP = γ dH(W,Wν), ∀w ∈ W; (20)

iii) ζNP(ν) is convergent to zero:

lim
ν→∞ ζNP = 0. (21)

It can be proved that, if properties (19)-(21) hold, then there exists a finite

value of ν such that closed loop stability can be guaranteed also using the

approximated controller. In particular, the considered stability properties are

the boundedness of the system trajectories, their convergence to an arbitrarily

small neighborhood of the origin (or, more in general, of a given set-point)

and an arbitrarily small distance with respect to the closed loop trajectories

obtained by the exact control law. Unfortunately, at present there are no

techniques to find out a priori the number and the values of the vector w̃ to be

considered in the off-line computations in order to guarantee given closed-loop

performance (e.g. an upper bound on the steady-state tracking error norm).

Such a drawback is shared by all of the present approaches to approximate
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NMPC. However, for a given value of ν it is possible to estimate a posteriori

the performance of the approximated control law. Thus, in the design of the

control law κNP an iterative procedure can employed, as described by Canale

et al. (2009), where the value of ν is gradually increased until the required

performance is achieved. As to the Lipschitz constant γ, which is needed to

compute the approximation error bound ζNP, an estimate γ̂ can be derived as:

γ̂ = inf
(
γ̃ : ĩh + γ̃‖w̃h − w̃k‖2 ≥ ĩk, ∀k, h = 1, . . . , ν

)
. (22)

Such estimate guarantees that FFS 6= ∅ (since it follows as an extension of

Theorem 1 in the paper from Milanese and Novara (2004)). In the work of

Canale et al. (2009) it has been shown that:

lim
ν→∞ γ̂ = γ. (23)

Note that, for a given value of ν, the estimate γ̂ can be far away from γ.

However, usually in practice the estimate (22) converges in a fast and reliable

way by iteratively increasing ν.

4.3 Design procedure

The overall design procedure for the fast NMPC approach proposed in this

paper can be resumed as follows:

1. Design the nominal NMPC control law according to (8), tuning the pa-

rameters ρ, Np, Nc through simulation tests.

2. Choose the set W where the FMPC control law is defined and collect the

values w̃j, ĩj, j = 1, . . . , ν (12) such that (13) holds, e.g. by performing

simulations of suitably chosen maneuvers using the closed loop model

with the nominal NMPC controller.

3. Implement on-line the NP approximated control law using (17) and (18).

4. If needed, tune the number ν of off-line computed values in order to find

a satisfactory tradeoff between computational time, memory usage and

performance.
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5 Controller implementation on a low performance embedded pro-

cessor

5.1 Hardware description and SIL test setup

In order to show the effectiveness of the FMPC approach described in the

previous Section, the control law is implemented on a commercial embed-

ded device and it is tested through SIL simulations. The experiments have

been performed at the laboratory of Politecnico di Torino, where a Rabbit

BL2600r device is available (for detailed characteristics see the data-sheet

Rabbit Semiconductor (2006)). Such an embedded platform is provided with

a CISC 8-bit processor working at 44 MHz, with reduced computational ca-

pacity with respect to other processors used in automotive ECUs. In fact,

differently from other micro-controllers employed in automotive applications,

such as the Siemens 80C166r (see Siemens (2005)) and the Motorola 68336r

(see Freescale Semiconductor (2000)), the Rabbit is not provided with a float-

ing point execution unit and its processing time is four times higher on aver-

age. The BL2600r is equipped with a memory reader slot that supports up to

128 MB. Such a memory can be employed to save the off-line sampled values

needed to implement the designed NP approximation.

The SIL test setup is reported in the picture of Fig. 2. A detailed 14 d.o.f.

Fig. 2. Software-in-the-loop test setup.
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vehicle model (described in Section 6), running under MatLabr Simulinkr on

a Personal Computer (PC), simulates the real vehicle. The Rabbit BL2600r

hosts the controller. The communication between the embedded device and

the PC is performed with a 100 Mb Ethernet interface and the TCP/IP pro-

tocol. Although the Ethernet transmission data rate is higher than the one of

the Car Area Network (CAN), usually employed on vehicles, the amount of

the data to be transmitted, given simply by the vector wk and by the control

input κNP(wk), is such that also on a CAN bus the transmission time would

be negligible with respect to the control computation time.

The aim of such an experimentation is twofold. First of all, it allows to show

that an advanced control technique like NMPC, usually limited to “slow” pro-

cesses and/or processors with high computational capacity, can be practically

employed with fast sampling rate, using a commercial device with poor com-

putational performance. Moreover, with the chosen device it can be shown

that with the SM approximation techniques a suitable compromise can be set

up, between computational efficiency and memory usage, in order to adapt

the control law implementation to the hardware characteristics.

5.2 Control law implementation

In order to implement the approximated NMPC law i = κNP(w) on the Rabbit

BL2600r device, the values of w̃, ĩ in (12) have been computed using uniform

gridding over the setW . The latter has been chosen through an extensive num-

ber of simulations tests, using the nominal NMPC controller and a detailed

vehicle model, aimed at finding the operational limits of each component of

the vector w. Thus, the chosen compact set W can be indicated as:

W .
=

{
w : wl ¹ w ¹ wu

}
⊂ R4+r, (24)

where the symbol ¹ indicates element-wise inequalities and wl and wu rep-

resent, respectively, the chosen lower and upper bound of w. Then, for each

component w`, ` = 1, . . . , 4 + r of w, the corresponding grid step value ∆w`

has been chosen in order to achieve a suitable tradeoff between accuracy and

memory usage. On the basis of the grid step ∆w`, the number of samples of
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each component w` within the interval [wl
`, w

u
` ] is given by:

n` =

(
int

(
wu

` − wl
`

∆w`

)
+ 1

)
, (25)

where int (·) is the nearest integer approximation. Therefore, in the case of

uniform gridding of W , the size νUG of the set (11) is:

νUG =
4+r∏

`=1

n`. (26)

Once the elements w̃h, h = 1, . . . , νUG of the set (11) have been defined, the

corresponding values ĩh (see (12)) are computed. The data obtained in such

a way can be sorted in a unique matrix WUG, as illustrated in the example

reported below, referred to the case of i = κ(w), w = [w1, w2] ∈ R2 with

n1 = 3 and n2 = 4 (i.e. νUG = 12):

WUG =




w̃1
1 w̃1

2 ĩ1 = κ(w̃1
1 , w̃1

2)

w̃1
1 w̃2

2 ĩ2 = κ(w̃1
1 , w̃2

2)

w̃1
1 w̃3

2 ĩ3 = κ(w̃1
1 , w̃3

2)

w̃1
1 w̃4

2 ĩ4 = κ(w̃1
1 , w̃4

2)

w̃2
1 w̃1

2 ĩ5 = κ(w̃1
1 , w̃1

2)

w̃2
1 w̃2

2 ĩ6 = κ(w̃2
1 , w̃2

2)

w̃2
1 w̃3

2 ĩ7 = κ(w̃2
1 , w̃3

2)

w̃2
1 w̃4

2 ĩ8 = κ(w̃2
1 , w̃4

2)

w̃3
1 w̃1

2 ĩ9 = κ(w̃2
1 , w̃1

2)

w̃3
1 w̃2

2 ĩ10 = κ(w̃3
1 , w̃2

2)

w̃3
1 w̃3

2 ĩ11 = κ(w̃3
1 , w̃3

2)

w̃3
1 w̃4

2 ĩ12 = κ(w̃3
1 , w̃4

2)




.

Such an ordering of the data is useful to efficiently find out, for a given value

w ∈ W , the corresponding nearest point w̃NP
UG ∈ Wν . In fact, w̃NP

UG can be
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computed as:

w̃NP
UG =




∆w1int
(

w1−wl
1

∆w1

)
+ wl

1

...

∆w4+rint
(

w4+r−wl
4+r

∆w4+r

)
+ wl

4+r.




Moreover, the index nNP of the row containing the nearest point w̃NP
UG inside

the matrix WUG can be computed using the following formula:

nNP =
4+r∑

`=1

(
int

(
w` − wl

`

∆w`

)
M`

)
+ 1, (27)

where

M` =
4+r∏

q=`+1
nq

M4+r = 1.

(28)

Thus, the control input corresponding to a given value w is κNP(w) = ĩn
NP

.

At the generic step k, the computation of the control input ik = κNP(wk) can

be then performed using the following algorithm:

1. Acquire wk

2. Compute the index nNP

3. Apply ik = ĩn
NP

.

(29)

Note that the values of w̃ are not needed in the computation of nNP. Thus, it

is possible to reduce the memory usage by storing only the minimal needed

information, i.e. the values ĩj, j = 1, . . . , νUG, wl (24) and M`, ` = 1, . . . , 4 + r

(28).
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6 SIL test results

6.1 Design of the nominal and approximated NMPC laws

The nominal predictive controller κ has been designed using model (1)-(3)

with the nominal parameter values indicated in Table 1. In order to be used

Table 1

Vehicle model parameters

Variable name Description Value

m Vehicle mass 1715 kg

Jz Moment of inertia 2700 kgm2

a Distance from the center of the gravity and the front axle 1.07 m

b Distance from the center of the gravity and the rear axle 1.47 m

ϑ Actuator delay 20 ms

KA Actuator gain 2500 Nm/A

for the predictions in the optimization algorithm, the vehicle model has been

discretized using forward difference approximation, with sampling time Ts =

10 ms. Therefore, since the nominal actuator delay value is ϑ = 20ms = 2 Ts,

according to (7) r = 2, i.e. at the generic time step k the past input values

ik−1, ik−2 have to be used to compute the predicted vehicle behavior. The

weight ρ in cost function (8a) has been chosen as ρ = 10−6 and the employed

state and input constraints are β = 5◦ and i = 1 A. The chosen prediction and

control horizons are Np = 10 and Nc = 5 respectively. The nominal off-line

control move computation has been performed using a sequential constrained

Gauss-Newton quadratic programming algorithm (see e.g. the book from No-

cedal and Wright (2006)), where the underlying quadratic programs have been

solved using the MatLabr optimization function quadprog. Note that such a

method is a local solver and it might not provide the global minimum in the

case the optimization problem (8) is not convex. However, in this particular

case, the numerical optimization has been solved in an efficient and reliable
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way for all of the considered values of w and the change in the optimal so-

lution due to a “small” perturbation of w was always small, leading us to

infer that the nonlinear program (8) was convex and that the global solu-

tion has been therefore computed (up to the numerical precision of MatLabr)

for every considered value of w. As it has been described in Section 3, the

nominal control law at sampling time k results to be a static function of the

variable wk = [ek, βk, δk, vk, ik−1, ik−2]
T ∈ R6. The set W (24) has been com-

puted by performing simulations involving an extensive set of handwheel steps

and sinusoids maneuvers. In order to improve the regulation performance and

to “optimize” memory occupation, two different sets Wν (11), namely W1
ν

and W2
ν , have been considered inside the set W . In particular, the set W1

ν ,

characterized by larger gridding intervals, is used when the tracking error is

sufficiently far from zero; on the other hand the set W2
ν , with smaller gridding

intervals, is employed when the tracking error approaches the zero value. The

sets W1
ν and W2

ν are defined as:

W1
ν =

[
−0.43, −0.08, −0.1, 22, −1, −1

]T

︸ ︷︷ ︸
wl,1

¹ w ¹
[

0.43, 0.08, 0.1, 33, 1, 1

]T

︸ ︷︷ ︸
wu,1

,

W2
ν =

[
−0.03, −0.08, −0.1, 22, −1, −1

]T

︸ ︷︷ ︸
wl,2

¹ w ¹
[

0.03, 0.08, 0.1, 33, 1, 1

]T

︸ ︷︷ ︸
wu,2

,

where the superscript symbol T stands for transpose operation. The corre-

sponding gridding intervals are:

∆w1 =

[
0.08, 0.04, 0.01, 5.55, 0.5, 0.5

]T

,

∆w2 =

[
0.005, 0.0175, 0.001, 2.77, 0.5, 0.5

]T .

Note that the sets W1
ν and W2

ν differ by the considered range of values of the

first component of w (i.e. the tracking error ek) and by the employed gridding

intervals. In particular, the set W2
ν , characterized by a smaller tracking error

range and by a finer gridding of all of the components of w, is more suitable to

be employed when the tracking error is close to zero. In order to allow the NP

algorithm to use the most appropriate set between W1
ν and W2

ν , the following
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variable is computed at each sampling time:

ck = |ek| − 0.03.

If ck ≥ 0, the NP algorithm (29) is applied to the set W1
ν , otherwise the set

W2
ν is used.

It has to be noted that more sophisticated gridding choices could have been

employed (e.g. adaptive gridding) in order to achieve higher accuracy (with

respect to uniform gridding) for a given value of ν. However, uniform gridding

is much simpler to implement and it is a feasible approach on processors with

low computational power, like the one employed in this paper. This aspect

also motivates the choice of the NP approach over more complex methods (e.g.

piece-wise affine approximations like the one considered by Johansen (2004),

or the optimal SM approach described by Canale et al. (2009)), that are able

to achieve higher accuracy with lower memory usage, at the cost of increased

on-line computational time. More in general, a tradeoff between accuracy,

memory usage and on-line computational time has to be achieved when the

approximated NMPC law is derived, also taking into account the features of

the employed hardware. In this work, the Rabbitr processor has very poor

computational power and quite high memory capacity: thus, we chose a very

simple but computationally efficient uniform gridding approximation, with two

different sets of data in order to achieve a better accuracy when the tracking

error is small.

With the above-described choice of the off-line computed control moves, a total

value of νUG = ν1
UG + ν2

UG =' 2.2 106 is obtained. The corresponding memory

occupation is 2.2 MB: such a memory requirement is in agreement with the size

of flash memory available on recent ECUs for automotive applications, like the

Fujitsu MB91F467BAr micro-controller or the Freescale Power Architecturer

Mobile Control Units. Moreover, on-board flash memory on vehicles grows by

a factor of about 10 every 3-4 years (see e.g. the work of Damm (2006)),

meaning that in the next future there will be sufficient memory to host the

required data.
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6.2 SIL simulation settings

SIL simulations according to the setup described in Section 5 have been per-

formed using a detailed nonlinear 14 d.o.f. Simulinkr model, which gives an

accurate description of the vehicle dynamics as compared to actual measure-

ments and includes nonlinear suspension, steer and tyre characteristics, ob-

tained on the basis of measurements on the real vehicle. The model degrees of
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Fig. 3. Front tyre friction ellipses considered in the 14 degrees of freedom model,

with different values of lateral slip angle α, for a constant vertical load of 4 kN.

freedom correspond to the standard three chassis translations and yaw, pitch

and roll angles, the four wheel angular speeds and the four wheel vertical

movements with respect to the chassis. Nonlinear characteristics obtained on

the basis of measurements on the real vehicle have been employed to model the

tyre, steer and suspension behavior. The employed tyre model, described e.g.

in the book from Genta (2003), takes into account the interaction between lon-

gitudinal and lateral slip, as well as vertical tyre load and suspension motion,

to compute the tyre longitudinal and lateral forces and self-aligning moments.

An example of the employed tyre friction ellipses is shown in Fig. 3, where

the lateral friction coefficient is reported as a function of the exploited longi-

tudinal friction (during traction) and of the tyre slip angle α. Unsymmetrical

friction ellipses for traction/braking longitudinal forces is also considered. The

comparisons between yaw rate and lateral acceleration measured on the real

vehicle, during a track test, and the ones obtained in simulation with the con-
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Fig. 4. Comparison between real data (dashed) and simulation results obtained

with the 14 d.o.f. model (solid) during a track test. (a) Front steering angle δ (used

as input for the 14 d.o.f. model), (b) vehicle speed v, (c) yaw rate ψ̇, (d) lateral

acceleration ay.

sidered model, reported in Fig. 4(a)-(d), show the good accuracy properties

of the employed 14 d.o.f. model.

The following open loop maneuvers (i.e. without driver’s feedback) have been

chosen to test the control effectiveness:

• steer reversal test with handwheel angle of 50◦ performed at 100 km/h, with

a steering wheel speed of 400◦/s. This test aims to evaluate the controlled
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car transient and steady state performances: the employed handwheel course

is shown in Fig. 5;
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Fig. 5. Handwheel angle input (deg) for the steer reversal test.

• µ-split braking maneuver performed at 100 km/h with dry road on one

side and icy road on the other, with braking pedal input corresponding to

a deceleration value of 0.5 g on dry road. The objective of this test is to

evaluate the system response in the presence of strong disturbances. Note

that the µ-split maneuver implies a differential left-right change in the tyre-

road friction coefficients, which was not taken into account in the control

design, since the maneuvers considered in the off-line computation of the

control moves were performed with a single track model;

• steering wheel frequency sweep performed at 90 km/h in the frequency range

0-7 Hz with steering wheel angle amplitude of 30◦;

• constant speed steering pad at 100 km/h: the handwheel angle is increased

slowly (1◦/s) to evaluate the steady state tracking behavior.

The performance obtained with the approximated predictive controller has

been compared with those of the uncontrolled vehicle, of the vehicle controlled

with the nominal NMPC law and of the vehicle controlled using an advanced

IMC structure, which proved its good effectiveness in the same control problem

(see the paper from Canale et al. (2007)). Only the approximated controller has

been implemented on the Rabbitr processor and tested with strict sampling

time, while the simulations with the exact NMPC law have been computed on
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a standard PC without strict sampling time, in order to allow the completion

of the numerical optimization procedure at each sampling interval.

6.3 SIL simulation results

The results of the 50◦ steer reversal test are reported in Fig. 6-8. In Fig. 6 it can

be noted that the yaw rate courses obtained with the approximated NMPC

controller (solid line) and the nominal one (dash-dotted) are practically su-

perimposed, with only a slight difference due to the presence of moderate

oscillations caused by the control law approximation. Such yaw rate oscil-

lations are too small to be perceived by the driver, so the driving comfort

is preserved. The IMC structure achieves slightly worse performance in the

second part of the maneuver (at about 4.4 s), with a higher overshoot. The

0 2 4 6 8
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

  Time (s)

  Y
aw

 R
at

e 
(r

ad
/s

)

Fig. 6. 50◦ steer reversal test at 100 km/h. Comparison between the reference (thin

solid line) vehicle yaw rate course and those obtained with the uncontrolled vehicle

(dotted), the nominal NMPC (dash-dotted) and FMPC (solid) controlled vehicles

and with the IMC structure (dashed).

steady state yaw rate reference is reached and, according to the reference map

(see Canale et al. (2007)), it is higher than the uncontrolled vehicle yaw rate,

thus improving the car maneuverability. The obtained sideslip angle β(t) (Fig.

7) is kept inside the considered constraint, with a maximum absolute value

of 2.8◦. Constraints on the input variable i are satisfied too (see Fig. 8, solid
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Fig. 7. 50◦ steer reversal test at 100 km/h. Comparison between the vehicle sideslip

angle obtained with the uncontrolled vehicle (dotted) and those obtained the nom-

inal NMPC (dash-dotted) and FMPC (solid) controlled vehicles and with the IMC

structure (dashed).
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Fig. 8. 50◦ steer reversal test at 100 km/h. Comparison between the input variable

u obtained with the nominal NMPC (dash-dotted), the FMPC (solid) and the IMC

(dashed) controllers.

line). Note that some chattering of the input variable occurs with the FMPC

control law: such phenomenon can be mitigated by increasing the number ν of

off-line computed control moves. Indeed, the choice of the value of ν is a crucial

point. A higher value of ν leads to better accuracy, but also to higher memory

requirements. With the uniform gridding approximation and the implementa-

tion presented in Section 5.2, the on-line computational time is independent
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on ν. The obtained average computational time for the FMPC control law

on the Rabbitr processor, considering extensive series of SIL simulations, is

2.8 ms with a maximal value of 3 ms, including also the communication delay

between the Rabbitr device and the PC. Such computational time is much

lower than the chosen sampling interval (i.e. 10 ms). On the other hand, as

anticipated in Section 3, the on-line computational time of the exact NMPC

law is about 30 ms on a standard PC and about 15 s on the Rabbitr processor,

thus hampering the possibility to compute the exact NMPC law in real-time.

As to the considered µ-split braking maneuver, Fig. 9 shows the vehicle tra-

jectories obtained in the uncontrolled case (black), with the IMC controller

(white) and with the FMPC controller (gray). It can be noted that the ap-

proximated predictive control law achieves the best performance, in terms of

trajectory deviation. The steering wheel frequency sweep maneuver (Fig. 10)
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Fig. 9. µ-split braking maneuver at 100 km/h. Comparison between the trajectories

obtained with the uncontrolled vehicle (black) and the FMPC (gray) and IMC

(white) controlled ones.

aims at evaluating the improvement achieved by the FMPC controlled vehicle

in terms of resonance peak reduction and bandwidth increase. In particular,

the frequency course of the transfer ratio: Tm(ω) = (ψ̇(ω))/(ψ̇(0)) has been

analyzed, where ψ̇(ω) is the steady state yaw rate amplitude obtained in the

presence of the sinusoidal 30◦ handwheel input at frequency ω, and ψ̇(0) is

the steady state yaw rate in presence of a constant handwheel input of 30◦.

The FMPC controlled vehicle achieves a lower resonance peak (1 dB) and

higher bandwidth (3.4 Hz) with respect to the case of the uncontrolled vehicle

(2.8-dB resonance peak and 2.2-Hz bandwidth). The vehicle controlled by the

nominal NMPC law has the same behavior as the FMPC controlled one, while

the vehicle controlled with the IMC structure achieves a higher resonance peak

(about 1.9 dB) and slightly lower bandwidth (about 3 Hz).
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Fig. 10. Steering wheel frequency sweep test at 100 km/h. Comparison between

the frequency response obtained with the uncontrolled vehicle (dotted) and those

obtained the nominal NMPC (dash-dotted) and FMPC (solid) controlled vehicles

and with the IMC structure (dashed).

All the presented results show that the designed FMPC law improves the

closed loop performance with respect to the IMC structure. Finally, the re-
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Fig. 11. Steering pad test at 100 km/h. Comparison between the reference curve

(thin solid line) and those obtained with the uncontrolled vehicle (dotted), with the

nominal NMPC (dash-dotted) and FMPC (solid) controlled vehicles and with the

IMC structure (dashed).

sults of the steering pad test, shown in Fig. 11, indicate that the steady state

behaviors obtained with all of the considered controllers are practically super-

imposed and correspond to the desired one.
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7 Conclusions

A NMPC strategy for vehicle yaw control has been introduced, and the de-

signed NMPC law has been approximated by means of SM techniques via a

Nearest Point approach, using a finite number of exact off-line solutions. SIL

results, performed with a commercial embedded processor with low compu-

tational performance and an accurate model of the considered vehicle, show

the effectiveness of the NMPC approach and of the proposed approximation

technique. In particular, it has been shown that a highly damped behavior in

steer reversal maneuvers has been obtained; stability is guaranteed in presence

of demanding driving conditions like µ-split braking and resonance peak has

been significantly reduced in the frequency response. Finally, improvements

over a well assessed approach which employs an enhanced IMC structure have

been shown too.
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