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Abstract—Voltage and current sensors integrated in mod-
ern electrical equipment can enable extraction of advanced
information on the network and the connected devices. While
traditional methods for protection and network managements
rely upon processing of these signals at low speed, high-frequency
processing of the raw current and voltage signals can unveil
information about the type of electrical load in the networks. In
particular, the common case of three-phase induction machines
is considered in this paper. Motor parameters are instrumental
information for control, monitoring and diagnostic. A classical
approach is to measure motor parameters using off-line dedicated
measurements. In this paper, we propose a method for mo-
tor parameters estimation from electrical measurements during
motor start-up. Given samples of current and voltage signals
during motor start-up, the model parameters are identified using
classical non-linear system identification tools. While the classical
theory is developed using current sensors, in this paper the
method is extended to a common type of industrial current
sensors, i.e., Rogowski coil sensors, and signal processing methods
are presented to overcome the non-ideality caused by this type
of sensors. Numerical tests performed on real data show that
effective motor parameters identification can be achieved from
the raw current and voltage measurements.

I. INTRODUCTION

Electrical grids have recently undergone great advancement
in terms of monitoring and protection. One of the areas that
have seen major improvements is the availability of electrical
sensors. Modern electrical devices of electrical systems are
often equipped with voltage and current sensors. Their primary
purpose is to measure macro-parameters such as the root-
mean-square (RMS) values of the voltage and current, as
well as the active and reactive power. These data are usually
calculated at relatively low frequency, e.g., every second, and
transmitted to supervisory systems. On the other hand, modern
electrical devices are equipped with advanced sensors and
data acquisition systems that are able to sample the electrical
signals at a faster sampling rate (e.g., 1-10 kHz). Also, the
digital architecture of modern electrical devices allows them
to communicate and/or process these data at high speed.
Therefore, the availability of fast electrical data along with the
capability of communication/processing offers the possibility
to extract advanced information on the electrical system.

Induction machines are the workhorse in industry and con-
tribute to almost half of the total electrical energy consumed
[1]. Monitoring and control of the induction machines require
electrical parameters of the motor. Nowadays, this information

is obtained with the use of off-line dedicated electrical instru-
ments and ad-hoc tests; performing these measurements can
be a complex and time consuming task. Furthermore, motor
parameters might change with the aging of the equipment
and are affected by several uncertain aspects, like ambient
conditions and electrical connection. Therefore, repeated mea-
surements might be required. To overcome these challenges,
this paper presents signal processing techniques to estimate
motor parameters from the three-phase voltage and current
measurements acquired directly on the motor after installation,
during normal start-up.

In this paper, we focus our attention on three-phases induc-
tion machines, but the method can be extended to synchronous
and direct current (DC) machines [2]. The goal of this paper
is to present the signal processing methods to achieve motor
parameters identification with the minimum user intervention.
That is, solely upon the electrical signals and a few nameplate
data, one has to be able to estimate motor parameters in an
industrial plant. To achieve this goal, a model-based approach
is adopted. Each motor in the industrial plant is modeled with
a classical electrical machine model.

The identification procedure can be performed during the
first motor start-up, and can be periodically repeated at each
motor start-up to assess parameter variations. The current and
voltage transients of each motor start-up are stored, and the
motor model parameters are identified via classical non-linear
least-squares (NLS) identification methods. This problem was
already attacked in [3] with the focus on the identification of
motor parameters from electrical measurements taken using
lab equipment. The contribution of this paper is the extension
of the formalism in [3] to accommodate typical industrial
current measurements. In fact, while the classical motor model
theory is developed based on the current and voltage signals,
widespread industrial current sensors cannot directly sense
high currents. A typical example is the Rogowski coil sensor,
whose output is proportional to the current derivative instead
of the current [4]. Rogowski coils have been successfully
adopted for several classical applications involving RMS cal-
culation around the main electrical frequency, but utilization
of Rogowski coil data for transient applications is highly
unexplored. While the output signal of the Rogowski coil can
be integrated to estimate the current, the alternative approach
of modelling directly the current derivative is also considered
in this paper.
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The remainder of the paper is organized as follows: The
signal model and problem statement are described in Sec.
II. Non-linear parameter identification is presented in Sec. III
and extended in Sec. IV for Rogowski coil data. Numerical
tests performed on real data acquired with both high-quality
sensors and industrial sensors are presented in Sec. V. Finally,
concluding remarks are discussed in Sec. VI.

Notation. Column vectors are denotes with bold face, while
matrices are denoted with capital bold face. The symbol (·)T
denotes transposition, while tr(·) denotes the trace of a matrix.
The operator ẋ(t) represents time derivative if applied to a
univariate signal, and the component-wise derivative if applied
to a multivariate signal. IN represents the identity matrix of
size N ×N .

II. SIGNAL MODEL AND PROBLEM STATEMENT

A. Continuous-time motor model

The dynamic model of a three-phase asynchronous motor
will be presented starting from its phase relations, using the
classic model presented in [1, Ch. 4]. We assume linearity of
the inductances and a total lack of losses in the iron. The three
identical stator windings, symmetrically placed, create three
magnetic axes with a 2π/3 displacements. Similarly, the rotor
windings create three magnetic axes. Let us denote with θr =
θr(t) the angle between the a- stator axis and a- rotor axis.
The induction machine can then be described by following
equations [1, p. 142]:

vabc,s(t) = rsI3iabc,s(t) + λ̇abc,s(t) (1)

vabc,r(t) = rrI3iabc,r(t) + λ̇abc,r(t) (2)

where vabc,s(t) := [vas(t), vbs(t), vcs(t)]
T is the three-

phase stator voltage, iabc,s(t) := [ias(t), ibs(t), ics(t)]
T

is the three-phase stator current, vabc,r(t) :=
[var(t), vbr(t), vcr(t)]

T is the three-phase rotor voltage,
iabc,r(t) := [iar(t), ibr(t), icr(t)]

T is the three-phase rotor
current, λabc,s(t) = [λas(t), λbs(t), λcs(t)]

T is the three-
phase stator fluxes, and λabc,r(t) = [λar(t), λbr(t), λcr(t)]

T

is the three-phase rotor fluxes. rs and rr represent the constant
stator and rotor resistance, respectively. The flux linkage can
be written as [1, p. 143]

[λabc,s(t)
T ,λabc,r(t)

T ]T=

[
L1 L2

L2
T L3

]
[iabc,s(t)

T , iabc,r(t)
T ]T

(3)

where: L1 :=
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2Lms −1

2Lms
−1
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2Lms

−1
2Lms − 1

2Lms Lss + Lms

, L2 := Lsrcos(θr) Lsrcos(θr +
2π
3 ) Lsrcos(θr − 2π

3 )
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,

and L3 :=

Lrr + Lmr − 1
2Lmr −1

2Lmr
−1

2Lmr Lrr + Lmr −1
2Lmr

−1
2Lmr − 1

2Lmr Lrr + Lmr

 .
The torque equilibrium equation completes the model as
follows:

ω̇r(t) =
Np
2

Te(t)− Tℓ(t)

Jr
, where ωr(t) := θ̇(t). (4)

Te(t) is the produced torque and Tℓ(t) represents the torque
load which can be modeled with a linear coefficient of friction
a, i.e., Tℓ(t) = aω(t) [3].

Assuming that the motor is balanced, it holds that ias(t) +
ibs(t) + ics(t) = 0 and iar(t) + ibr(t) + icr(t) = 0, and the
same conditions are enforced to voltage and fluxes. In this
case, the motor model equations can be simplified. Let us
define a constant matrix

C :=
2

3

 1 −0.5 −0.5

0 −
√
3/2

√
3/2

0.5 0.5 0.5

 .
Given a vector sabc := [sa, sb, sc]

T ∈ R3, the follow-
ing transformation sqd0 = Csabc can be applied, with
sqd0 := [sq, sd, s0]

T ∈ R3. If the vector sabc represents
either the current or the voltage signal of a balanced three-
phase induction machine, then s0 = 0, and the original
vector can be represented by only the qd-components, i.e.,
sqd := [sq, sd]

T ∈ R2. The aforementioned transform is
known in literature as Clarke transform and it simplifies
the dynamical analysis of a balanced three-phase induction
machine [1]. Applying the Clarke transform to the stator
voltage and current signals (which can be measured), yields
u(t) := [vqs(t), vds(t)]

T and y(t) := [iqs(t), ids(t)]
T .

Let us denote with ψqs(t) = ωeλqs(t), ψds(t) = ωeλds(t),
ψqr(t) = ωeλqr(t), and ψdr(t) = ωeλdr(t) the fluxes per unit
of time, and ωe the nominal electrical frequency.

Let x(t) ∈ R5 denote a (time-varying) state variable
defined as x(t) := [ψqs(t), ψds(t), ψqr(t), ψdr(t), ωr(t)]

T .
Finally, let p denote the (constant) vector of unknown
model parameters, where p ∈ R7, is defined as p =
[Rs, Rr, Xℓs, Xℓr, Xm, Jr, a]

T , where Xℓs, Xℓr, and Xm are
the reactances calculated at the nominal frequency ωe.

Given the aforementioned definition, the balanced three-
phase induction machine model can be compactly written as
follows:

ẋ(t) = f(x(t),u(t),p), (5)

y(t) = g(x(t),p), (6)

where f and g are nonlinear functions which can be repre-
sented in a matrix form as

ẋ(t) = A(t)x(t) +Bu(t) + c(t) (7)

where A(t), B, and c(t) are defined in eq. (8) and

y(t) =
1

Xℓs

[
1− Xmq

Xℓs
0 −Xmq

Xℓr
0 0

0 1− Xmd

Xℓs
0 −Xmd

Xℓr
0

]
x(t).

It is worth point out that the system is non-linear since A(t)
and c(t) depend on x(t).

Defining ψmq(t) = Xmq

(
ψqs(t)
Xℓs

+
ψqr(t)
Xℓr

)
,

ψmd(t) = Xmd

(
ψds(t)
Xℓs

+ ψdr(t)
Xℓr

)
, and Xmq = Xmd =

1/
(

1
Xm

+ 1
Xℓs

+ 1
Xℓr

)
, the relationships between currents

and fluxes are iqs(t) =
ψqs(t)−ψmq(t)

Xℓs
, ids(t) =

ψds(t)−ψmd(t)
Xℓs

,
iqr(t) =

ψqr(t)−ψmq(t)
Xℓr

, and idr(t) =
ψdr(t)−ψmd(t)

Xℓr
.
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,B=


ωe 0
0 ωe
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0 0
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, c(t)=


0
0
0
0

Np(Te(t)−Tℓ(t))
2Jr

 (8)

The produced torque is: Te =
3Np

4ωe
(ψqr(t)idr(t) −

ψdr(t)iqr(t)), where Np is the number of poles.
Due to the nature of the model, it is not possible to identify

Xℓs and Xℓr separately. In the equivalent circuit formulation
of the model they are connected in a series and are usually
replaced with one single parameter equal [3]. Therefore, we
have set Xℓs = Xℓr = Xℓ.

B. Problem statement and Discrete-time model

We are now in the position for stating our problem. Given
the stator voltage and current signals u(t) and y(t), the prob-
lem is to estimate the constant motor vector p. Before solving
this problem, a discrete-time model of eqs. (5) and (6) is
required. In fact, since stator voltage and current measurements
can be taken at discrete time, the model in (5) and (6) has to be
discretized in order to be adopted for parameter identification
purposes.

Let us assume that three-phase current and voltage measure-
ments can be taken with sampling period ts. Let us denote with
N the total number of samples. Let us define

Vabc:=

vas(ts) . . . vas(Nts)vbs(ts) . . . vbs(Nts)
vcs(ts) . . . vcs(Nts)

 , Iabc:=
ias(ts) . . . ias(Nts)ibs(ts) . . . ibs(Nts)
ics(ts) . . . ics(Nts)

 .
Both voltage and current signals are transformed using Clarke
transform as follows:

Vqd :=

[
vqs(ts) . . . vqs(Nts)
vds(ts) . . . vds(Nts)

]
∈ R2×N , Vdq = CVabc,

Iqd :=

[
iqs(ts) . . . iqs(Nts)
ids(ts) . . . ids(Nts)

]
∈ R2×N ., Iqd = CIabc.

In order to simply the notation, let us denote with s[k], the
kth sample taken at time kts of the generic continuous-time
signal s(t), i.e., s[k] := s(kts). Applying forward Euler rule
to the continuous-time dynamical model in (5) and (6), yields,

x̂[k + 1] = x̂[k] + tsf(x̂[k],u[k],p) (9)

ŷ[k] = g(x̂[k],p). (10)

In most of the scenarios, the motor is starting at standstill,
therefore, x̂[0] = [0, 0, 0, 0, 0]T . Clearly, u[k] represents
the kth column of Vqd, while, ŷ[k] represents the predicted
qd-components of the stator current signal at discrete time k
from a model with parameter p and input u[k].

III. NON-LINEAR PARAMETER IDENTIFICATION

Let Ŷ(p,Vqd) := [ŷ[1], . . . , ŷ[N ]] denote the predicted
stator current from the discrete-time model in (9)-(10). It is
natural to estimate the unknown motor parameter vector p as
the solution of the following least square (LS) problem:

p̂ = argmin
p∈P

tr
((

Iqd − Ŷ(p,Vqd)
)(

Iqd − Ŷ(p,Vqd)
)T)

,

(11)
where P is the set of possible parameters, defined with various
constraints on the basis of prior information (e.g., resistances
and reactances are positive). The problem in (11) amounts
to a non-linear least square (NLS) problem. Despite that on-
line sequential optimization algorithms could be envisioned
for solving the problem in (11), we have resorted to classical
optimization tools that work on data batch. Presenting the
solver of the problem in eq. (11) is out of the scope of this
paper. Several off-the-shelf softwares can be used for solving
(11). The results presented in this paper have been obtained
using fmincon function from Matlab [5], but other solvers have
achieved comparable performance.

It is known that a careful initialization close to the solution
is required to avoid that the algorithm is trapped in a local
minimum far form the solution. We have encountered this
problem in some of our tests. Nevertheless, we have observed
that starting the algorithms with a few initialization points
randomly drawn within the feasible set, ends up in estimates
of the motor parameters that were always meaningful.

IV. SIGNAL PROCESSING OF ROGOWSKI COIL DATA

As mentioned before, many industrial electrical devices
are equipped with Rogowski coil sensors, which measure the
current derivatives. This is not ideal for our purposes, as the
model uses the currents. We propose two possible approaches
to cope with the Rogowski coil sensors, which we test with
real-world data in Section V:

• Data Integration (DI), where the data are integrated at
first, and then used in the cost in eq. (11) with currents
predicted from the model in eqs. (9)-(10);

• Model Derivation (MD), where the cost in eq. (11) is
modified to accept current derivatives and the predicted
current derivatives are calculated from the model in eqs.
(9)-(10).

The two methods are further described below.

A. Data integration

Ideal data integration via, e.g., cumulative sum of the current
measurements, results in a large drift in the output due to the



intrinsic bias of the sensor. An effective method is to perform
a band pass filtering followed by an ideal integration.

In this paper, we followed the alternative approach to
design this integration filter in a data-driven manner. We have
performed a short measurement of the real current via a
wideband Hall effect sensor that measures directly the current.
We have performed this measurement for only one phase.
Then, we computed the optimum finite impulse response (FIR)
filter that minimizes the LS cost between the direct current
measurement and the filtered current derivative. The problem
of finding the optimal FIR filter that minimizes the least square
cost between the output and the filtered version of the input
is often encountered in signal processing and control, and it
is referred to as linear deconvolution or input-output linear
system identification [6, Ch. 5], and it amounts to a linear LS
problem.

B. Model derivation

An alternative approach to data integration is to calculate
the derivative of the model in (6). From the current model in
Sec. II-A, the current derivative can be obtained as i̇qs(t) =
1
Xℓs

(ψ̇qs(t) − ψ̇mq(t)), and i̇ds(t) = 1
Xℓs

(ψ̇ds(t) − ψ̇md(t)),
where the derivative of the fluxes are readily available from
the dynamical equation in (5). If we assume that the data from
the Rogowski coil are representative of the current derivatives,
and if we arrange the data in a matrix İqd ∈ R2×N , estimates
of the motor parameters can be obtained solving the following
problem:

p̂ = argmin
p∈P

tr
((

İqd − ˆ̇Y(p,Vqd)
)(

İqd − ˆ̇Y(p,Vqd)
)T)

,

(12)
where ˆ̇Y(p,Vqd) are the stator current derivatives generated
by the dynamical model with a fixed parameter vector p and
voltage input Vqd.

V. EXPERIMENTAL RESULTS

Real data were gathered in an rig containing two induction
machines connected to two compressors implementing an
air flow process. The first motor is a 2-pole 15kW ABB
M3AA160MLB2 three-phase induction machine star con-
nected, denoted as Motor A. The second motor is a 2-pole
18.5kW ABB M3AA160MLC23GAA three-phase induction
machine delta connected, denoted as Motor B. Each motor is
connected to the electrical grid via contactors to control the
switch of the motors (direct on-line start-up).
Two types of data are gathered:

• High-quality current and voltage measurements obtained
via a custom made measurement device equipped with
wideband Hall effect sensors, LEM LF 205-S and LEM
LV 25-P, for current and voltage measurements, respec-
tively. These data are available at 5kHz. Two measure-
ment devices were installed to measure the fed voltage
and the absorbed current of each motor;

• Industrial voltage sensors and Rogowski coils to measure
the current derivatives. The signals can be sampled at a

TABLE I
MOTOR A. IDENTIFIED PARAMETERS. HIGH-QUALITY CURRENT

MEASUREMENTS.

Data Rs Rr Xℓ Xm Jr a NMPE
D1MAS1 0.51 0.24 0.61 5.46 0.27 0.047 0.072
D2MAS1 0.51 0.24 0.61 5.44 0.27 0.040 0.073

speed of maximum 9.6kHz even if most of our measure-
ments were taken at 4.8kHz in order to fairly compare
the two types of measurements. This device measures the
network three phase line-to-line voltage, and the sum of
the currents of the two motors.

Two types of measurements are analyzed in this paper:
• Motor A start-ups while Motor B is off;
• Motor B start-ups while Motor A is off.

Also, measurements includig both motors start-ups at the same
time or with different delays were performed, but this type
of data require a different signal processing for background
subtraction and they are not treated in this paper.

A. Parameter identification of Motor A

We have first processed the data from Hall current sensors,
and we have identified the model parameters via the optimiza-
tion in (11). To measure the quality of the fitting, we also
calculate the normalized mean prediction error, defined as

NMPE =

√√√√√√ tr
((

Iqd − Ŷ(p̂,Vqd)
)(

Iqd − Ŷ(p̂,Vqd)
)T)

tr
(
IqdITqd

) .

(13)
The identified parameters for two start-ups are listed in Table
I. Data D1MAS1 and D2MAS1 are two independent start-
ups in same conditions. A transient of 1.6s was adopted for
the identification, which consists of 8000 data points. Figure
1 shows the Q component of the measured stator current of
D1MAS1 along with the reconstructed Q components of the
stator current. It can be appreciated how the reconstructed
current after fitting resembles the measured one, except for a
few peaks at the inception of the start-up. In all the cases, the
NMPE is below 10%.

Next, we want to assess the differences in performance in
term of parameters estimates for various data type and iden-
tification method which also include processing of Rogowski
coil data.

In Tab. II, we considered a Motor A start-up and we perform
model identification using the data from Hall effect and
Rogowski coil sensors, using both the DI and MD methods.
The MD method estimates parameters that are very similar
to the Hall effect sensor, while the DI method has identified
slightly different parameters. Despite these differences, the
three models show a NMPE below 10%. Figure 2 depicts
the (scaled) data obtained from a Rogowski coil (i.e., data
D3MAS2 considered in Tab. II) vs the current reconstructed
via the MD method in (12). It can be seen that the MD method
reconstructs effectively the current derivatives.
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B. Parameter identification of Motor B

We have also tested the identification method on the Motor
B with the goal of assessing the repeatability of the identifica-
tion routine. As we have seen from Table II that the identified
parameters change slightly for different identification methods,
we aim at assessing whether the identification is stable, i.e.,
if the parameters change within different realizations using
the same method. For this purpose, we only considered the

TABLE II
MOTOR A. IDENTIFIED PARAMETERS. HIGH-QUALITY CURRENT

MEASUREMENTS VS ROGOWSKI COIL MEASUREMENTS.

Data Rs Rr Xℓ Xm Jr a NMPE
D3MAS1 0.50 0.24 0.61 5.40 0.27 0.039 0.070
D3MAS2(DI) 0.78 0.23 0.47 5.46 0.26 0.050 0.061
D3MAS2(MD) 0.53 0.24 0.60 5.20 0.26 0.039 0.081

TABLE III
MOTOR B. IDENTIFIED PARAMETERS FOR VARIOUS INDEPENDENT
MEASUREMENTS. HIGH-QUALITY CURRENT MEASUREMENTS VS

ROGOWSKI COIL DATA.

Data Rs Rr Xℓ Xm Jr a NMPE
D1MBS1 1.21 0.60 1.44 14.09 0.29 0.036 0.085
D2MBS1 1.21 0.60 1.44 14.20 0.29 0.036 0.085
D3MBS1 1.21 0.60 1.44 14.25 0.29 0.036 0.087
D1MBS2 1.89 0.57 1.12 14.03 0.28 0.048 0.065
D2MBS2 1.90 0.57 1.12 14.11 0.28 0.048 0.065
D3MBS2 1.89 0.57 1.12 14.14 0.28 0.048 0.064

data integration method for the Rogowski coil data. Three
independent start-ups of Motor B where considered. D1MBS1,
D2MBS1, and D3MBS1 denotes the data obtained with the
high-quality Hall effect current sensor and the respective pa-
rameters are obtained solving (11), while D1MBS2, D2MBS2,
and D3MBS2 are the data obtained from the Rogowski coil
current sensor pre-processed via data-driven integration and
successively fed to (11) to perform parameter estimation.
The parameter estimates are depicted in Table III. It can
be observed that there are some changes in the parameters
obtained using the integrated Rogowski coil data vs. using
the high-quality current measurements. However, there are
minimal changes in the parameters identified from different
experimental realizations using the same methods. This means
that if we consider Rogowski coil data only and fix the
identification method, say DI, we can expect that the results
from different realizations are repeatable.

VI. CONCLUSIONS

In this paper the problem of motor identification from
electrical measurements during the start-up of the motor
was treated. Only induction machines were considered in
this paper, but the method can be extended for other motor
types. The induction machines were modeled with a classical
dynamical model. To perform the identification, real data from
high-quality current sensors and from Rogowski coils were
processed. In order to cope with the non-ideality of Rogowski
coil data, data integration and model derivation strategies were
proposed. We have observed that, the parameters identified
from the Rogowski coil differ from those identified from the
high-quality current measurements. Nevertheless, the fitting
error is comparable and the results are repeatable, which
shows that with Rogowski coil data effective motor parameter
identification can be achieved.
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