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Abstract: The problem of driver assistance for the energy-efficient operation of trains is considered.
The goal is to control the traction/braking forces applied to the train, while satisfying speed limits
and reaching the next station at the prescribed arrival time. Moreover, the control input has to belong
to a discrete set of values and/or operating modes, which a human driver has to implement. A
nonlinear model predictive control (MPC) approach is proposed, featuring a shrinking horizon and an
input-parametrization strategy to retain a continuous optimization problem. Theoretical convergence
guarantees are derived, and the approach is tested in realistic simulations.
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1. INTRODUCTION

Railway is by far the most efficient means of transportation
from the point of view of energy consumption and therefore
a strategic sector in today’s society. The earliest existing works
on efficient train control include developing strategies by con-
sidering the problem as a bounded state variable one (see
Ichikawa (1968)) and development of numerical optimization
techniques such as the ones presented by Milroy (1981) and
Strobel and Horn (1973). In these approaches, linear expres-
sions of resistance, constant constraints, non dependency of
external forces on the train position, and constant slopes and
track curvatures were considered. In reality, all these factors
significantly affect the energy consumption. A method that
considered variable slopes has been developed for underground
trains with short station distance by Maksimov (1971). More
recently, several techniques have been developed considering
all these factors. A recent review of the existing techniques is
provided by Scheepmaker et al. (2017).
For the energy efficient operation of railways, Model Predictive
Control (MPC) is a suitable approach, thanks to its capability to
deal with state and input constraints and economic objectives.
MPC has been already applied in the context of this industrial
application, see e.g. Aradi et al. (2014).

In this paper, we present a study on the application of a new
MPC approach to the efficient operation of trains. In our re-
search, carried out in collaboration with Alstom rail transport,
the control input (usually the traction/braking force applied to
the train) is constrained to belong to a set of discrete values
or operating modes, which would naturally result in a mixed-
integer nonlinear program to be solved at each sampling instant.
To cope with this problem, the formulation we propose features
an input parametrization strategy that yields a continuous op-
timization program. Moreover, we adopt a shrinking horizon,
rather than the most common receding one. We named the
resulting approach Shrinking horizon Parametrized Predictive
Control (SPPC). We present both a nominal approach and two
relaxed ones, where state constraints are softened to retain re-

cursive feasibility. To the best of our knowledge, the combined
presence of nonlinear dynamics, shrinking horizon, and input-
parametrization strategy is new in the literature, and represents
the main theoretical contribution of this paper, in addition to the
application-specific content. Realistic simulation results show
the effectiveness of the approach in the considered application.

2. PROBLEM STATEMENT AND ABSTRACTION

Consider an electric train controlled by a digital control unit. In
this work, we consider space as the independent variable, while
time will be one of the system’s states. Thus, we denote with
k ∈ Z the discrete space variable, and with Ds the sampling
distance, so that the actual distance along the track at each
sampling instant is equal to kDs. This choice makes the control
problem formulation easier in some respect. We denote with
x(k) = [x1(k), x2(k)]T the state of the train, where x1 is its travel
time and x2 the train speed (·T denotes the matrix transpose
operator), and with u(k) ∈ [−1,1] a normalized traction force,
where u(k)= 1 corresponds to the maximum applicable traction
and u(k) = −1 to the maximum braking. The input u is the
available control variable. The train has to move from one
station at time x1 = 0 and reach the next one at time x1 = x f ,
covering the corresponding distance s f . For a given pair of
initial and final stations, the track features (slopes, curvature)
are known in advance. Thus, in nominal conditions (i.e. with
rated values of the train parameters, like its mass and the spec-
ifications of the powertrain and braking systems), according
to Newton’s laws and using the forward Euler discretization
method, the equations of motion of a reasonably accurate model
of this system read:

x1(k+1) = x1(k)+ Ds
x2(k)

x2(k+1) = x2(k)+Ds

(
FT (x(k),u(k))−FB(x(k),u(k))−FR(k,x(k))

Mx2(k)

)
(1)

where M is the total mass of the train, FT is the traction force,
FB is the braking force, and FR the resistive force. Functions
FT (x,u), FB(x,u) are nonlinear and they depend on the specific
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train and track profile. They include, for example, look-up
tables that link the traction and braking forces to the train speed
and to the control input value. These functions are derived
either experimentally or from complex models of the train and
its traction and braking systems. In our research, these are
provided by the business unit at Alstom. More details on these
functions are omitted for confidentiality reasons. The resistive
force FR(k,x) is also nonlinear, and it is the sum of a first
term Rv(x2), accounting for resistance due to the velocity, and
a second term Rg(k), accounting for the effects of slopes and
track curvature:

FR(k,x) = Rv(x2)+Rg(k)

Rv(x2) = A+Bx2 +Cx2
2

Rg(k) = Ms

(
g tan(α(k))+

D
rc(k)

) (2)

where the parameters A,B,C,D are specific to the considered
train, Ms is the static mass of the train, i.e. the mass calculated
without taking into account the effective inertia of the rotating
components, rc(k) and α(k) are, respectively, the track curva-
ture and slope at position k, and g is the gravity acceleration.
Besides the prescribed arrival time x f and position s f , there are
additional state constraints that must be satisfied. These pertain
to the limit on the maximum allowed velocity, x2(k), which
depends on the position k, since a different velocity limit is
imposed for safety by the regulating authority according to the
track features at each position. Overall, by defining the terminal
space step as k f

.
=
⌊
s f /Ds

⌋
(where b·c denotes the flooring

operation to the closest integer), the state constraints read:

x(0) = [0, 0]T

x(k f ) = [x f , 0]T
x2(k) ≥ 0, k = 0, . . . ,k f
x2(k) ≤ x2(k), k = 0, . . . ,k f

(3)

The control objective is to maximize the energy efficiency of
the train while satisfying the constraints above. To translate this
goal in mathematical terms, different possible cost functions
can be considered. In our case, we consider the discretized
integral of the absolute value of the traction power over space
(with a constant scaling factor D−1

s ):

J =

k f

∑
k=0
|FT (x(k),u(k))| . (4)

This choice tends to produce controllers that minimize the
traction energy injected into the system. The braking energy
is not penalized, since in our case there is no restriction to the
use of the braking system.
As already pointed out, the input variable is also constrained in
the interval u∈ [−1,1]. However, in a driver assistance scenario
which is the main focus of this work, the control algorithm is
developed to assist a human driver with a suggested value of
the input handle, in which case only a smaller set of possible
values can be delivered by the controller, in order to facilitate
the human-machine interaction. In particular, in this scenario
the input constraints are further tightened according to four
possible operating modes prescribed by our industrial partner:

• Acceleration: in this mode, the input takes the maximum
value, i.e. u = 1.
• Coasting: this mode implies that the traction is zero, i.e

u = 0.
• Cruising: in this mode, the train engages a cruise control

system that keeps a constant speed, i.e. u is computed

by an inner control loop in such a way that FT = FR for
positive slopes and FB = FR for negative slopes.

• Braking: in this mode the maximum braking force is used,
i.e. u =−1.

Finally, a further feature of this application is a relatively small
sampling space Ds with respect to the imposed overall space
horizon s f , resulting in a rather large number of sampling
periodsin the interval [0, s f ].

2.1 Problem Abstraction

The control problem described above can be cast in a rather
standard form:

min
u

k f

∑
k=0

`(x(k),u(k)) (5a)

subject to

x(k+1) = f (x(k),u(k)) (5b)

u(k) ∈U, k = 0, . . . ,k f −1 (5c)

x(k) ∈ X , k = 1, . . . ,k f (5d)

x(0) = x0 (5e)

x(k f ) ∈ X f (5f)
where x ∈ X ⊂ Rn is the system state, x0 is the initial con-
dition, u ∈ U ⊂ Rm is the input, f (x,u) : X× U → X is a
known nonlinear mapping representing the system dynamics,
and l(x,u) : X×U → R is a stage cost function defined by
the designer according to the control objective. The symbol
u = {u(0), . . . ,u(k f − 1)} ∈ Rmk f represents the sequence of
current and future control moves to be applied to the plant. The
sets X ⊂ X and U ⊂ U represent the state and input constraints
(including the discrete set of allowed inputs or input modes
as described above), and the set X f ⊂ X the terminal state
constraints, which include a terminal equality constraint as a
special case.
We recall that a continuous function a : R+ → R+ is a K -
function (a ∈ K ) if it is strictly increasing and a(0) = 0.
Throughout this paper, we consider the following continuity
assumption on the system model f .
Assumption 1. The function f enjoys the following continuity
properties:
‖ f (x1,u)− f (x2,u)‖ ≤ ax

(
‖x1− x2‖

)
, ∀x1,x2 ∈ X,u ∈ U

‖ f (x,u1)− f (x,u2)‖ ≤ au
(
‖u1−u2‖

)
, ∀u1,u2 ∈ U,x ∈ X

(6)
where ax, au ∈K . �

In (6) and in the remainder of this paper, any vector norm
‖ · ‖ can be considered. Assumption (1) is reasonable in most
real-world applications, and it holds in the railway application
considered here.

3. NOMINAL SPPC APPROACH

To solve problem (5), we resort to Nonlinear Model Pre-
dictive Control (NMPC) with shrinking horizon and input-
parametrization strategy to reduce the computational burden
required by the feedback controller as well as to enforce the
discrete constraints on the input while retaining a continuous
optimization program, instead of the mixed-integer one that
would result from direct optimization of the input.



3.1 Parametrization Setup

We adopt a parametrization of the control input that allows us
to naturally incorporate the presence of the discrete (switched)
driving modes described in Section 2. The main idea is to first
split the track (i.e. the whole prediction horizon from 0 to k f )
into sectors. Then, in each sector, we pre-define a switching
sequence of the four driving modes, and we optimize over
the switching (space) instants of the sequence. In this way,
we retain a continuous vector of optimization variables, thus
improving the computational efficiency, while still providing
the controller with enough degrees-of-freedom to optimize the
predicted system behavior. Specifically, we consider a number
sn ∈ N of sectors, each one with length Γi, such that

sn

∑
i=1

Γi = s f . (7)

The choice of sectors is carried out by considering character-
istics such as the presence of constant velocity limits and the
resistance force due to the slopes and track curvature Rg(k),
which are known in advance, see Fig. 1 for an example. Regard-
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Fig. 1. Example of sector choice for a track with s f = 15 and sn=
7. Possible sectors based on similar characteristics such as
velocity limits and Rg values are depicted.

ing the switching sequence (“driving style”) adopted in each
sector, denoted with udi , we choose the following:

udi = { u(i,1), u(i,2), u(i,3), u(i,4) }
= { 1, uCR, 0, −1 }, ∀i ∈ [1, . . . ,sn]

(8)

where u(i,`) is the input issued in the `−th phase of the i−th sec-
tor (with ` ∈ {1,2,3,4}) and uCR identifies the cruising mode
(see Section 2), i.e. where the actual input u(k) is computed by
a cruise control system in order to maintain a constant speed.
The chosen switching sequence is such that in each sector, the-
oretically, the controller can choose to have a traction phase, a
cruising one, a coasting one, and finally a braking phase. Thus,
the maximum number of operating modes that can be set in
the whole optimization horizon is equal to 4sn. As anticipated,
our optimization variables will be the switching instants, or
more precisely the duration of each phase within each switching
sequence. We denote these quantities with δ s(i,`), such that:

0≤ δ s(i,`) ≤ Γi

4

∑
`=1

δ s(i,`) = Γi.
(9)

As an example, values of (s(i,1),s(i,2),s(i,3),s(i,4)) equal to
(0,0,Γi,0) correspond to the train coasting throughout sector
i, and so on.
Remark 1. The presented parametrization provides the con-
troller with enough degrees of freedom to choose a single
mode or multiple modes of operation in each sector, in order
to compensate the presence of uncertainty and to adapt to the
track features and constraints. Additionally, the constraint on
prescribed arrival position needs to be satisfied: this is done
implicitly by imposing (9) for each sector, which implies (7).

We are now in position to introduce the optimal control prob-
lem to be solved at each time step in our shrinking horizon
approach. We named the resulting control approach Shrink-
ing horizon Parametrized Predictive Control (SPPC), presented
next.

3.2 Shrinking horizon Parametrized Predictive Control (SPPC)

We start by defining the optimization variables available at each
step k. The set of indexes identifying the current and future
sectors, from the current position kDs until the end of the track
s f , is given by:

{i : i(k)+1≤ i≤ sn}, (10)
where

i(k) .
=

max
i≥1

i s.t.
i

∑
i=1

Γi < kDs, if Γ1 < kDs

0, otherwise

Then, the number N(k) of free variables to be computed corre-
sponds to the number of remaining sectors, equal to (sn− i(k)),
times the number of modes in each sector, i.e. 4 in our case.
Therefore, we have N(k) = 4(sn− i(k)). We denote the vector
of optimization variables with

vN(k)
.
= {δ s(i(k)+1,1), . . . ,δ s(i(k)+1,4), . . . ,δ s(sn,4)}

T ∈ RN(k).
(11)

Let us indicate with u( j|k) the input vector at each space sample
k + j predicted at step k. Considering the parametrization de-
scribed in Section 3.1, we can define the function g(vN(k), j,k)
that links, at each step k and for each j = 0, . . . ,k f − k−1, the
optimization variables vN(k) with the predicted input u( j|k):

u( j|k) = g(vN(k), j,k) .
= u(î( j,k), ˆ̀(vN(k), j,k))

, (12)

where (compare with (8)):

î( j,k) .
= min

i=1,...,sn

i

s.t.
i

∑
i=1

Γi ≥ (k+ j)Ds

and
ˆ̀(vN(k), j,k) .

= min
`=1,...,4

`

s.t.
î( j,k)
∑

i=1
Γi +

`

∑
`=1

δ s(î( j,k),`) ≥ (k+ j)Ds.

Note that the evaluation of (12) is very efficient, since it just
amounts to finding, for each space sample k + j, the indexes
of the corresponding sector and phase and then to apply the
corresponding pre-defined driving mode from (8). Finally, let us
denote with x( j|k), j = 0, ...,k f − k the state vectors predicted



at space sample k+ j starting from the one at step k. At each
step k ∈ [0, k f −1], we formulate the following FHOCP:

min
vN(k)

k f−k

∑
j=0

`(x( j|k),u( j|k)) (13a)

subject to

u( j|k) = g(v,vN(k), j,k), j = 0, . . . ,k f − k−1 (13b)

x( j+1|k) = f (x( j|k),u( j|k)), j = 0, . . . ,k f − k−1 (13c)

u( j|k) ∈U, j = 0, . . . ,k f − k−1 (13d)

x( j|k) ∈ X , j = 1, . . . ,k f − k (13e)

x(0|k) = x(k) (13f)

A(k)vN(k) ≤ b(k) (13g)

x(k f − k|k) ∈ X f (13h)

Where the matrices A(k), b(k) in (13g) are built to enforce the
constraints (9). We denote with v∗N(k)= {δ s∗(i(k)+1,1), . . . ,δ s∗(sn,4)

}T

a solution (in general only locally optimal) of (13). Moreover,
we denote with x∗(k) and u∗(k) the corresponding predicted
sequences of state and input vectors:

x∗(k) = {x∗(0|k), . . . ,x∗(k f − k|k)} (14a)

u∗(k) = {u∗(0|k), . . . ,u∗(k f −1− k|k)} (14b)

where

x∗(0|k) = x(k)

x∗( j+1|k) = f (x∗( j|k),u∗( j|k)) (14c)

u∗( j|k) = g(v∗N(k), j,k) (14d)

The SPPC strategy is obtained by recursively solving (13), as
described by the following pseudo-algorithm.
Algorithm 1. Nominal SPPC strategy

(1) At sampling instant k, measure or estimate the state x(k)
and solve the FHOCP (13). Let v∗N(k) be the computed
solution;

(2) Apply to the plant the first element of the control sequence
u∗(k), i.e. u(k) = u∗(0|k) = g(v∗N(k),0,k);

(3) Repeat the procedure from 1) at the next sampling period.
�

Algorithm 1 defines the following feedback control law:

u(k) = µ(x(k)) = u∗(0|k), (15)

and the resulting model of the closed-loop system is:

x(k+1) = f (x(k),µ(x(k)) (16)

The recursive feasibility of (13) and convergence of the state
of (16) to the terminal set is established by construction of
the nominal SPPC strategy. In the next section, we introduce
a model of uncertainty, whose form is motivated again by the
application described in Section 2, and a possible variation
of Algorithm 1 to deal with it, along with its guaranteed
convergence properties. We term this variation the “relaxed”
approach, since it involves the use of suitable soft (i.e. relaxed)
constraints to guarantee recursive feasibility.

4. RELAXED SPPC APPROACH: ALGORITHM AND
PROPERTIES

To model uncertainty and disturbances we consider an additive
term d(k) acting on the input vector, i.e.:

ũ(k) = u(k)+d(k) (17)

where ũ(k) is the disturbance-corrupted input provided to the
plant. This model represents well all cases where plant un-
certainty and exogenous disturbances can be translated into
an effect similar to the control input (the so-called matched
uncertainty). For example, in our application, equation (17) can
describe uncertainty in the train mass, drivetrain specs, track
slope and misapplication of the computed input by the human
operator in a driver assistance scenario (see Section 2).
We consider the following assumption on d:
Assumption 2. The disturbance term d belongs to a compact set
D⊂ Rm such that:

‖d‖ ≤ d, ∀d ∈ D (18)

where d ∈ (0,+∞). �

This assumption holds in many practical cases and in the
considered train application as well. We indicate the perturbed
state trajectory due to the presence of d as:

x̃(k+1) = f (x̃(k), ũ(k)), k = 0, . . . ,k f

where x̃(0) = x(0). To retain recursive feasibility in presence of
the disturbance, we soften the constraints in the FHOCP. Since,
in our railway application the terminal state constraint is the
most important one from the viewpoint of system performance,
to be more specific we restrict our analysis to the terminal state
constraint in (5f), i.e. x(k f )∈ X f without loss of generality. The
other constraints (velocity limits) are always enforced for safety
by modulating traction or by braking.

Let us denote the distance between a point x and a set X as:

∆(x,X) = min
y∈X
‖x− y‖.

Then, we want to derive a modified SPPC strategy with soft-
ened terminal state constraint (to ensure recursive feasibility)
that guarantees a property of the following form in closed loop:

∆(x̃(k f ),X f )≤ β (d), β ∈K . (19)

That is, the distance between the terminal state and the terminal
constraint is bounded by a value that decreases strictly to
zero as d → 0. In order to obtain this property, we propose a
relaxed SPPC approach using a two-step constraint softening
procedure, described next.

4.1 Two-step relaxed SPPC strategy

At each step k we consider a strategy consisting of two opti-
mization problems to be solved in sequence:

a) we compute the best (i.e. smallest) achievable distance
between the terminal state and the terminal set, starting
from the current perturbed state x̃(k):



γ = arg min
vN(k),γ

γ

subject to
u( j|k) = g(vN(k), j,k), j = 0, . . . ,k f − k−1

x( j+1|k) = f (x( j|k),u( j|k)), j = 0, . . . ,k f − k−1
u( j|k) ∈U, j = 0, . . . ,k f − k−1

x( j|k) ∈ X , j = 1, . . . ,k f − k
x(0|k) = x̃(k)

A(k)vN(k) ≤ b(k)
∆(x(k f − k|k),X f )≤ γ

(20)
b) we optimize the input sequence using the original cost

function, and softening the terminal constraint by γ:

min
vN(k)

k f−k

∑
j=0

`(x̃( j|k),u( j|k))

subject to
u( j|k) = g(vN(k), j,k), j = 0, . . . ,k f − k−1

x( j+1|k) = f (x( j|k),u( j|k)), j = 0, . . . ,k f − k−1
u( j|k) ∈U, j = 0, . . . ,k f − k−1

x( j|k) ∈ X , j = 1, . . . ,k f − k
x(0|k) = x̃(k)

A(k)vN(k) ≤ b(k)
∆(x(k f − k|k),X f )≤ γ

(21)

By construction, both problems are always feasible (with the
caveat that state constraints are considered to be always feasi-
ble, as discussed above, otherwise the softening shall be applied
to these constraints as well). We denote with vr

N(k), x
r(k) and

ur(k) the optimized sequences of decision variables, state and
inputs resulting from the solution of (21). The sequences xr(k)
and ur(k) are computed from vr

N(k) and x̃(k) as reported in (14).
The resulting relaxed SPPC strategy is implemented by the
following pseudo-algorithm.
Algorithm 2. Two-stage relaxed SPPC strategy

(1) At sampling instant k, measure or estimate the state x̃(k)
and solve in sequence the optimization problems (20)-
(21). Let vr

N(k) be the computed solution;
(2) Apply to the plant the control vector u(k) = ur(0|k) =

g(vr
N(k),0,k);

(3) Repeat the procedure from (1) at the next sampling period.
�

Algorithm 2 defines the following feedback control law:
u(k) = µ

r(x̃(k) = ur(0|k), (22)
and the resulting closed-loop dynamics are given by:

x̃(k+1) = f (x̃(k),µr(x̃(k))+d(k)). (23)

The next result shows that the closed-loop system (23) enjoys
a uniformly bounded accuracy property of the form (19), pro-
vided that the nominal SPPC problem (13) is feasible at k = 0.
Theorem 1. Let Assumptions 1 and 2 hold and let the FHOCP
(13) be feasible at step k = 0. Then, the terminal state x̃(k f ) of
system (23) enjoys property (19) with

∆(x̃(k f ),X f )≤ β (d) =
k f−1

∑
k=0

βk f−k−1(d) (24)

where
β0(d) = au(d)
βk(d) = au(d)+ax(βk−1(d)), k = 1, . . . ,k f −1

(25)

�

The proof is by induction and is very similar to the proof of
Theorem 1 in Farooqi et al. (2018) and hence has been removed
for brevity. Theorem 1 indicates that the worst-case distance
between the terminal state and the terminal set is bounded by
a value which is zero for d = 0 and increases strictly with the
disturbance bound. In the considered railway application this
means that, for example, the worst-case accuracy degradation
in reaching the terminal station on time due to the changing
mass of the train which is a function of the passenger load,
is proportional to the largest difference between the nominal
mass and its change due to the varying passenger load. This
result provides a theoretical justification to the proposed two-
step relaxed SPPC approach. The bound (24) is conservative,
since it essentially results from the accumulation of worst-
case perturbations induced by the disturbance on the open-loop
trajectories computed at each k. As we show in our simulation
results, in practice the resulting closed-loop performance are
usually very close to those of the nominal case, thanks to
recursive optimization in the feedback control loop.

4.2 Multi-objective relaxed SPPC strategy

As an alternative to the two-step approach described above, one
can also consider a multi-objective minimization:

min
vN(k),β

k f−k

∑
j=0

`(x̃( j|k),u( j|k))+ωγ

subject to
u( j|k) = g(vN(k), j,k), j = 0, . . . ,k f − k−1

x( j+1|k) = f (x̃( j|k),u( j|k)), j = 0, . . . ,k f − k−1
u( j|k) ∈U, j = 0, . . . ,k f − k−1

x( j|k) ∈ X , j = 1, . . . ,k f − k
x(0|k) = x̃(k)

A(k)vN(k) ≤ b(k)
∆(x(k f − k|k),X f )≤ γ

(26)

where ω is a positive weight on the scalar γ . Problem (26)
can be solved in Algorithm (2) in place of problems (20)-
(21). In this case, the advantage is that a trade-off between
constraint relaxation and performance can be set by tuning
ω . Regarding the guaranteed bounds on constraint violation,
with arguments similar to those employed in Fagiano and Teel
(2013) one can show that, at each k ∈ [0,k f − 1], for any
ε > 0 there exists a finite value of ω such that the distance
between the terminal state and the terminal set is smaller than
γk f−k−1(d)+ε . Thus, with large-enough ω , one can recover the
behavior obtained with the two-step relaxed SPPC approach.
The theoretical derivation is omitted for the sake of brevity, as
it is a rather minor extension of the results of Fagiano and Teel
(2013).

5. SIMULATION RESULTS

We tested the proposed strategies in realistic simulations with
real train data provided by Alstom for a section of the Ams-
terdam metro rail, in particular the track between Rokin and
Central Station. The parametric values of the train used in the
controller are (see (1)-(2)) M = 142403kg, Ms = 131403kg,
A = 3975.9N, B = 24.36Nsm−1 and C = 4.38Nsm−2, while
the maximum traction and braking forces allowed for this par-
ticular train are in the form of look up tables (see Fig. 2).
These forces are of the form FT (x(k),u(k))=FT max(x2(k))u(k),



and FB(x(k),u(k)) = FBmax(x2(k))u(k). The input variable is
constrained in the set [−1, 1].
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Fig. 2. Maximum traction force FT max(dashed) and braking
force FBmax (dotted) allowed for the train considered in the
simulation.

The considered track has zero curvature, slopes as plotted in
Fig. 3, and velocity limits reported in Fig. 4.
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Fig. 3. Slopes of the Amsterdam metro track segment consid-
ered in the simulation.

The train has to reach the next station at s f = 1106m in x f =
76s. The track is divided into sn = 15 sectors. The employed
sampling distance is Ds = 18.4m.
We compare a nominal situation, where Algorithm 1 is applied
and no model uncertainty is present, with a case where we
employ Algorithm 2 (with both the two-stage approach and the
multi-objective optimization variants) in presence of random
parameter uncertainty (±10% of each model parameter). For
the multi-objective approach, we set ω = 160 (see (26)).
The obtained velocity profiles are presented in Fig. 4. From the
plots, it is evident that in order to save energy, after accelerating
to a certain velocity, the train mostly coasts or cruises taking
advantage of the slopes. All the velocity constraints are always
satisfied.

Regarding the obtained final time between the terminal state
and the target one at k = k f , in the presence of uncertainty this
is delayed by 2s (i.e. x f = 78s) for both the 2-stage approach
and the multi-objective one. This result is perfectly compatible
with the desired performance in this application. Fig. 4 presents
also the “all-out” solution, which achieves the shortest arrival
time compatible with all the constraints. This corresponds to
x f = 74.2s.
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Fig. 4. Simulation results. Velocity profiles as a function of
the train position obtained with different SPPC strategies:
nominal (dotted line), two-step relaxed (dashed), multi-
objective (dash-dot). The “all-out” solution (x f = 74.2s)
is shown with a thick solid line, and velocity limits with a
thin solid line.

6. CONCLUSIONS

We considered the problem of energy-efficient train operation,
involving a finite terminal position and corresponding state con-
straint, and a discrete set of allowed input values or operating
modes. To address this problem, we proposed a MPC approach
with a shrinking horizon and a particular input parametrization,
which allows one retain a continuous optimization problem at
each step. We derived convergence guarantees in both nominal
conditions and under uncertainty, and showcased the technique
in realistic simulations.
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