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SUMMARY

A new approach to design a Nonlinear Model Predictive Control (NMPC) law, that employs an approximate

model derived directly from data, is introduced. The main advantage of using such models lies in the

possibility to obtain a finite computable bound on the worst–case model error. Such a bound can be exploited

in order to analyze robust convergence of the system trajectories to a neighborhood of the origin. The

effectiveness of the proposed approach, named Set Membership Predictive Control (SMPC), is shown in

a vehicle lateral stability control problem, through numerical simulations of harsh maneuvers. Copyright c⃝

0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In Nonlinear Model Predictive Control (NMPC) the current control action is computed by solving

on-line a constrained Finite Horizon Optimal Control Problem (FHOCP) according to the Receding

Horizon (RH) strategy, see e.g. [1]. A nonlinear model of the system to be controlled is employed
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in the FHOCP to predict the future state behavior, starting from the state value xt at time step

t. In most cases, such a model is based on first-principle laws, yielding a “physical model”; in

other cases it is a black-box model in the form of a nonlinear parametric function (e.g. a neural

network), whose parameters are identified from measured process data. However, since such models

only approximate the dynamic behavior of the system under control, in order to guarantee stability

of the controlled system, robustness issues should be taken into account in the design procedure.

Robust stability analysis and robust design of predictive controllers in the presence of modeling

uncertainty is a very active field of research and different approaches have been considered in this

context. A first contribution has been given in [2], where the contraction principle has been used

to derive necessary and sufficient conditions for robust stability. In [3] a sufficient condition has

been introduced by means of the computation of suitable weights in the cost functions, while in

[4] robust stability has been achieved by enforcing a robust state contraction constraint. A min-max

approach has been employed for the case of linear time varying systems in the presence of polytopic

and parametric uncertainties in [5] and [6] respectively. A robust design which adopts constraint

tightening techniques has been introduced in [7]. All the above contributions were developed for

linear systems. More recently, the attention moved to nonlinear systems. In this context, several

interesting results have been obtained within the framework of Input-to-State Stability (ISS). In

particular, in [8], an ISS approach has been employed in order to analyze the robustness of NMPC

schemes, in [9], a suboptimal NMPC law with ISS guarantees has been derived, while in [10], the

problem of robust NMPC design has been solved in the presence of state-dependent uncertainties

and additive bounded perturbations. Finally, in [11] a combined MPC and integral sliding mode

strategy has been introduced whose robust stability properties are proved through an ISS regional

analysis. The theory of invariant sets has been employed in [12] and [13] in order to obtain

robust stability through the use of interval arithmetic methodologies and a tube-based approach

respectively. As witnessed by the above review, several contributions have been introduced for the

robust analysis and design of nonlinear model based predictive controllers. A common feature of

the just mentioned papers is that the analysis/design procedures of the robust MPC controller have
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been performed by using a nominal nonlinear state space model and describing the uncertainty

through additive bounded disturbances whose characteristics, in general, do not depend on the

nominal model and they do not guarantee that the real plant belongs to such a description. This

issue stems from the difficulty to derive a useful description of the model uncertainty in nonlinear

parametric models, whose parameters are usually obtained via physical modeling or identified from

input/output data and, in such modeling procedures, it is not trivial to derive also some uncertainty

estimate. In order to deal with the above described issue, this paper investigates the robustness of

a new NMPC scheme in which a non-parametric model, identified directly from measured input-

output data, is used in the FHOCP. Such a model is derived via a Nonlinear Set Membership (NSM)

methodology (see [14] for details) thus the proposed approach will be referred to as Set Membership

Predictive Control (SMPC). As a matter of fact, Set Membership (SM) identification methods were

employed in [6] and [15] in order to derive parametric and non parametric uncertain linear models

respectively. Indeed, in this paper, a different SM setting is considered since a non parametric

approach and a nonlinear model are considered. In the NSM approach, an additive uncertainty

model is derived together with the model of the plant dynamics, and an upper bound on such

uncertainty can be computed. Then, by using the NSM model in the design of a SMPC control

law, many techniques for robustness analysis and robust design can be suitably used. In particular,

in this paper, a nominal (i.e. assuming zero uncertainty) controller design is carried out using the

identified model. Then, by exploiting the upper bound of the modeling error provided by the NSM

approach, a theoretical result is introduced which allows us to perform an a posteriori analysis of the

robust stability properties of the controlled system. In particular, such a result defines a relationship

between the bound on the modeling error and the asymptotic regulation accuracy of the closed loop

system. The effectiveness of the approach is tested on a vehicle stability control case study. The

paper is organized as follows. A summary of NMPC and of the NSM modeling approach is given in

Sections 2.1 and 2.2, respectively. The design of a SMPC law using a NSM model and the related

robust stability analysis are presented in Section 2.3. The automotive case study is treated in Section

3 and conclusions are included in Section 4.
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2. NONLINEAR MPC USING NONLINEAR APPROXIMATE MODELS

2.1. Nonlinear Model Predictive Control

Consider the following nonlinear discrete–time state space model:

xt+1 = fM (xt, ut) t ∈ Z (1)

where fM : Rm+1 → Rm is a nonlinear function, ut ∈ R and xt ∈ Rm are the system input and

state respectively.

Assume that the problem is to regulate the system state to the origin under some input and state

constraints. By defining the prediction horizon Np and the control horizon Nc ≤ Np, it is possible

to define a cost function Jt(U, xt|t) of the form

Jt(U, xt|t) =

Np−1∑
j=0

L(xt+j|t, ut+j|t) + Ψ(xt+Np|t) (2)

The per-stage cost function L(·) and the terminal state cost Ψ(·) are suitably chosen and tuned

according to the desired control performance. L(·) is typically continuous and convex in its

arguments. The cost function Jt(·) is evaluated on the basis of the predicted state values xt+j|t,

j ∈ [1, Np] obtained using the model (1), the input sequence Ut = [ut|t . . . ut+Nc−1|t] and the initial

state xt|t = xt. The sequence Ut is a decision variable in the problem, while the remaining input

values [ut+Nc|t, ..., ut+Np−1|t] can be fixed according to different strategies [1], [16].

The Nonlinear Model Predictive Control (NMPC) control is computed according to the Receding

Horizon (RH) strategy:

1. At time instant t, get the state xt|t
.
= xt
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2. Solve the optimization problem

min
U

Jt(U, xt|t) (3a)

subject to

xt+j+1|t = fM (xt+j|t, ut+j|t), j ∈ [0, Np− 1] (3b)

xt+j|t ∈ X, j ∈ [1, Np] (3c)

ut+k|t ∈ U, k ∈ [0, Np − 1] (3d)

stabilizing constraints (3e)

where the input and state constraints are represented by a set X ⊆ Rm and a compact set

U ⊆ R, both containing the origin in their interiors; denote with U∗
t = [u∗t|t . . . u

∗
t+Nc−1|t] the

minimizer of (3)

3. Apply the first element of U∗
t as the actual control action ut = u∗t|t.

4. Repeat the whole procedure at the next sampling time t+ 1.

Possible additional stabilizing constraints (e.g. state contraction, terminal set) can be included in

(3e) in order to ensure stability of the controlled system.

A model derived from physical laws is usually employed as model of the plant (1) to be controlled.

In this work, instead, an approximate model derived from data by means of the Nonlinear Set

Membership (NSM) methodology is used. In the sequel, a brief overview of the NSM technique

is presented.

2.2. Nonlinear Set Membership identification

Suppose that the plant to be controlled P is a nonlinear discrete-time dynamic system described by

the following regression:

yt+1 = P (yt,ut) t ∈ Z (4)

yt = [yt; . . . ; yt−ny ]

ut = [ut; . . . ;ut−nu ]
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where ut, yt ∈ R, P : Rn → R, n = ny + nu + 2.

Suppose that P is not known, but a set of noise-corrupted measurements is available

(ỹt, ũt) t ∈ T .
= {−ν + 1,−ν + 2, ..., 0} (5)

Measurements (5) can be collected in a initial experiment on the plant to be controlled. Note that

such measurements are needed also in the case of physical models, in order to tune the model

parameters. Let φ̃t
.
= [ỹt; ũt] where ỹt = [ỹt; . . . ; ỹt−ny

] and ũt = [ũt; . . . ; ũt−nu
].

Then, (4) can be re-written as

ỹt+1 = P (φ̃t) + dt, t ∈ T (6)

where the term dt accounts for the fact that yt and φt
.
= [yt;ut] are not exactly known.

The aim is to derive a model M of P from the available measurements (ỹt, ũt). The estimate

M should be chosen to give small (possibly minimal) Lp error ||P −M ||p , where the p−norm

of a given function F (φ) is defined as ∥F∥p
.
=

[∫
ϕ
|F (φ)|p dφ

] 1
p

, p ∈ [1,∞] , where ∥F∥∞
.
=

ess sup
φ∈Φ

|F (φ)|, | · | denotes the Euclidean norm and Φ is a bounded set in Rn.

Whatever estimate is chosen, no information on the identification error can be derived, unless some

assumptions are made on the function P and on the noise d.

Assumption 1

aa

• P ∈ F (γ)

F (γ)
.
= {F ∈ C0 : |F (φ)− F (φ̄) | ≤ γ|φ− φ̄| ∀φ, φ̄ ∈ Φ ⊂ Rn}

• |dt| ≤ ε <∞, t ∈ T .

Thus, F (γ) is the set of Lipschitz continuous functions on Φ with Lipschitz constant γ. It is

assumed that Φ is a compact set. Assumption 1 represents the only restriction imposed on the

model “structure” in this approach.
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A key role in the SM framework is played by the Feasible Systems Set, often called “unfalsified

systems set”, i.e. the set of all systems consistent with prior assumptions and measured data.

Definition 1

Feasible Systems Set:

FSS
.
= {F ∈ F (γ): |ỹt − F (φ̃t)| ≤ ε, t ∈ T }. (7)

�

If Assumption 1 is “true”, then P ∈ FSS.

For a given estimate M ≃ P , the related Lp error ∥P −M∥p cannot be exactly computed, but its

tightest bound is given by

∥P −M∥p ≤ sup
F∈FSS

∥F −M∥p

This motivates the following definition of worst-case identification error.

Definition 2

The worst-case identification error of the estimate M is

E(M)
.
= sup

F∈FSS
∥F −M∥∞ .

�

Looking for estimates that minimize the worst-case identification error leads to the following

optimality concept.

Definition 3

An estimate F ∗ is optimal if

E (F ∗) = inf
M
E (M) = RI .

�

The quantity RI , called radius of information, gives the minimal worst-case identification error that

can be guaranteed by any estimate based on the available information.

Let us define the following functions:
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F (φ)
.
= min

t∈T

(
ht + γ|φ− φ̃t|

)
F (φ)

.
= max

t∈T
(ht − γ|φ− φ̃t|)

ht
.
= ỹt + ε

ht
.
= ỹt − ε (8)

The next Theorem shows that the estimate

Mc
.
=

1

2
(F + F ) (9)

is optimal for any Lp norm.

Theorem 1

(Theorem 7 in [14]).

For any Lp norm, with p ∈ [1,∞]:

• Mc ∈ FSS

• The estimate Mc =
1
2 (F + F ) is optimal

• The worst case identification error E (Mc) is given by:

E (Mc) =
1

2

∥∥F − F
∥∥
∞ (10)

The model Mc (9) can be written as a nonlinear regression:

yt+1 =Mc(yt; . . . ; yt−ny , ut; . . . ;ut−nu) t ∈ Z (11)

where Mc is a Lipschitz continuous function with Lipschitz constant γ (see [14] for more details).

The next Subsection focuses on the proposed Set Membership Predictive Control (SMPC). In such

a methodology a nonlinear predictive controller is designed using the model (11) to predict the state

behavior in the FHOCP, while the worst-case error E(Mc) (10) is employed in order to perform an

“a-posteriori” robust stability analysis of the SMPC closed loop system.
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2.3. Set Membership Predictive Control

In order to employ a NSM model within the context of NMPC, the plant P (4) and the model Mc

(11) are re-written here in state space form, by using ut as input value and xt as pseudo–state:

xt
.
= [yt · · · yt−nyut−1 · · ·ut−nu ]

= [x
(1)
t · · ·x(ny+1)

t x
(ny+2)
t · · ·x(ny+nu+1)

t ] ∈ Rn−1 (12)

The state space equation of the plant (4) results to be

xt+1 = fP (xt, ut) (13)

where fP : Rn → Rn−1 is defined as:

fP (xt, ut)
.
=



P (x
(1)
t , . . . , x

(ny+1)
t , ut, x

(ny+2)
t , . . . , x

(ny+nu+1)
t )

x
(1)
t

...

x
(ny)
t

ut

...

x
(ny+nu)
t



(14)

Note that since P (·) is assumed to be Lipschitz continuous with constant γ, function fP (·) in (14)

results to be Lipschitz continuous too, with constant LP =
√

1 + γ2:

||fP (x1, u1)− fP (x2, u2)||22 =

= ||P (·)− P (·)||22 + ||x(1)1 − x
(1)
2 ||22 + . . .+ ||u1 − u2||22 + . . .+ ||x(nu+ny)

1 − x
(nu+ny)
2 ||22 =

≤ (1 + γ2)
(
||x(1)1 − x

(1)
2 ||22 + . . .+ ||u1 − u2||22 + . . .+ ||x(nu+ny)

1 − x
(nu+ny)
2 ||22

)
=

= (1 + γ2)
(
||x1 − x2||22 + ||u1 − u2||22

)
= L2

P

(
||x1 − x2||22 + ||u1 − u2||22

)
(15)

Applying the same procedure to the model Mc (11) leads to the state space description

xt+1 = fMc(xt, ut) (16)
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where

fMc(xt, ut)
.
=



Mc(x
(1)
t , . . . , x

(ny+1)
t , ut, x

(ny+2)
t , . . . , x

(ny+nu+1)
t )

x
(1)
t

...

x
(ny)
t

ut

...

x
(ny+nu)
t



(17)

By construction, taking into account Theorem 1, function fMc(·) in (17) is also Lipschitz continuous

with constant LM =
√

1 + γ2 (i.e. LM = LP ).

Moreover, it can be shown that the estimation error is upper bounded by RI :

∥fP − fMc∥∞ ≤ RI . (18)

The SMPC law is derived according to the RH strategy described in Section 2.1, by using the model

(11). The resulting controller is a static function of the pseudo–state xt, i.e. ut = κ(xt), defined on

a compact set X of values of x where the optimization problem is feasible. Note that X ⊆ Rn−1 is

a subset of Φ ⊆ Rn. Now, from (18) the following bound on the model uncertainty can be obtained:

sup
x∈X

∥fP − fMc∥2 ≤ RI (19)

Note that the bound (19) can be derived because only the first components of the model equations

(14) and (17) are different, so that the 2-norm of the difference fP (x)− fMc(x) is equivalent to the

absolute value of the difference P (ϕ)−Mc(ϕ).

When the predictive controller ut = κ(xt) is applied to the systems (13) and (16), the following

autonomous systems are obtained

xt+1 = fP (xt, κ(xt)) = FP (xt) (20)

xt+1 = fMc(xt, κ(xt)) = FMc(xt) (21)
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Now, notations ϕP (t, x0) = FP (FP (. . . FP︸ ︷︷ ︸
t times

(x0) . . .)) and ϕMc(t, x0) =

FMc(FMc(. . . FMc︸ ︷︷ ︸
t times

(x0) . . .)) denote the state trajectories of systems (20) and (21), respectively.

Moreover, the following assumptions are made:

Assumption 2

The control law ut = κ(xt) is continuous over X .

Assumption 3

The autonomous system (21) is uniformly asymptotically stable at the origin for any initial condition

x0 ∈ X , i.e. it is stable and

∀ϵ > 0,∀ξ > 0 ∃ τ ∈ N s.t. ||ϕM (t+ τ, x0)||2 < ϵ, ∀t ≥ 0,∀x0 ∈ X : ||x0||2 ≤ ξ (22)

Assumption 2 is related to the structure of the optimization problem (i.e. the regularity of model

(18) and employed cost function and constraint sets, see e.g. [17, 18, 19]). According to the optimal

control theory (see e.g. [20]), the higher is the weight on the control input, the smoother is the

derived control law. On the contrary, if such a weight is not introduced, the control law could be

discontinuous. An example of this phenomenon is given in [21], where a numerical example is

reported, in which the absence of weights on the input leads to discontinuities in the controller, while

an even small quadratic cost on the input makes the control law continuous again. Another well-

known condition for the continuity of the control law is the joint convexity of cost and constraints

as a function of both the state and the input [22], yet this condition is also hard to check, except for

cases like linear quadratic MPC. Assumption 3 can be satisfied with a suitable choice of the cost

function Jt (2) and of the stabilizing constraints (3e) (see e.g. [1]-[16]).

Define the closed loop one step prediction error as

e(xt)
.
= xPt+1 − xMc

t+1 =

= fP (xt, κ(xt))− fMc(xt, κ(xt)). (23)

Due to (19), the prediction error (23) results to be bounded:

∥e(xt)∥2 ≤ RI = µ (24)
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According to Assumption 2, compactness of X implies that function κ is uniformly continuous over

X , so that there exists a class-K∞ function ακ such that (see e.g. [23])

|κ(x1)− κ(x2)| ≤ ακ(∥x1 − x2∥), ∀x1, x2 ∈ X . (25)

Recall that a class-K∞ function α : [0,+∞) → [0,+∞) is a monotonically increasing function such

that α(0) = 0 and lim
d→∞

α(d) = +∞.

Moreover, the function FMc(x) also results to be uniformly continuous over the compact set X ,

being the composition of a Lipschitz continuous function with a continuous one. Therefore, there

exists a corresponding class-K∞ function αFMc with properties analogous to (25):

∥FMc(x1)− FMc(x2)∥2 ≤ αFMc (∥x1 − x2∥2), ∀x1, x2 ∈ X . (26)

2.4. SMPC robustness analysis

In this Subsection, a Theorem showing that the trajectory ϕP of system (20), converges to a

neighborhood of the origin, whose size depends on the accuracy of the model fMc in (21), will be

introduced. Before stating the Theorem, the following candidate Lyapunov function V : X → R+

for system (21) is defined:

V (x)
.
=

T̂−1∑
j=0

∥ϕMc(j, x)∥2 (27)

where T̂ ≥ T and T = inf
x∈X

(
T ∈ N : ∥ϕMc(t+ T, x)∥2 < ∥x∥2, ∀t ≥ 0

)
.

V (x) is given by the sum of a finite number of compositions of function FMc . Since the latter is

uniformly continuous over the compact X , V (x) is also uniformly continuous over X , hence there

exists a class-K∞ function αV such that:

|V (x1)− V (x2)| ≤ αV (∥x1 − x2∥), ∀x1, x2 ∈ X . (28)

Moreover, due to the bound (24) the following inequality holds

∀x ∈ X , ∀e : (FMc(x) + e) ∈ X

V (FMc(x) + e) ≤ V (FMc(x)) + αV (e) ≤ V (FMc(x)) + αV (µ) (29)
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Furthermore,

∥x∥2 ≤ V (x) ≤ sup
x∈X

V (x)

∥x∥2
∥x∥2 = b ∥x∥2, ∀x ∈ X (30)

V (FMc(x))− V (x) = ∆V (x) = −∥x∥2 − ∥ϕMc(T̂ , x)∥2
∥x∥2

∥x∥2 ≤ −K∥x∥2, ∀x ∈ X (31)

where

b = sup
x∈X

V (x)

∥x∥2
(32)

and

K = inf
x∈X

∥x∥2 − ∥ϕMc(T̂ , x)∥2
∥x∥2

, 0 < K < 1 (33)

Note that b in (32) exists finite by definition of V (x).

Therefore, V (x) is a Lyapunov function for system (21) over X .

Theorem 2

Suppose that Assumptions 2 and 3 hold, then ∀x0 ∈ X such that ϕP (t, x0) ∈ X ∀t ≥ 0 :

i) the trajectory distance d(t, x0) = ∥ϕP (t, x0)− ϕMc(t, x0)∥2 is bounded by ∆ which increases

monotonically with the bound µ introduced in (24), i.e.

∥ϕP (t, x0)− ϕMc(t, x0)∥2 ≤ ∆ = ∆(µ)

ii) the trajectory ϕP asymptotically converges to a neighborhood of the origin whose size grows

monotonically with the value of µ introduced in (24) (i.e. the worst-case accuracy of the

model fMc)

lim
t→∞

∥ϕP (t, x0)∥2 ≤ q(µ); , q(0) = 0; µ1 > µ2 ⇐⇒ q(µ1) > q(µ2)

Proof
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i) Choose any x0 ∈ X as initial condition for system (20) and model (21). On the basis of (24) and

of the uniform continuity of fMc it can be noted that:

d(1, x0) = ∥ϕP (1, x0)− ϕMc(1, x0)∥2 ≤ µ

d(2, x0) = ∥ϕP (2, x0)− ϕMc(2, x0)∥2 =

= ∥FP (FP (x0, κ(x0)))− FMc(FMc(x0, κ(x0)))∥2 ≤

≤ ∥FMc(FP (x0)) + e− FMc(FMc(x0))∥2 ≤

≤ ∥FMc(FP (x0))− FMc(FMc(x0))∥2 + ∥e∥2 ≤

≤ αFMc (∥FP (x0)− FMc(x0)∥) + µ ≤

≤ αFMc (µ) + µ

d(3, x0) = ∥ϕP (3, x0)− ϕMc(3, x0)∥2 =

= ∥FP (FP (FP (x0)))− FMc(FMc(FMc(x0)))∥2 ≤

≤ . . . ≤ α2
FMc (µ) + αFMc (µ) + µ

d(t, x0) = ∥ϕP (t, x0)− ϕMc(t, x0)∥2 ≤
t−1∑
k=0

αk
FMc (µ),

with the convention that α0
FMc (µ) = µ and αk

FMc (µ) = αFMc (αFMc (. . . (µ) . . .))︸ ︷︷ ︸
k times

.

Thus, the following upper bound of the distance between trajectories ϕP (t, x0) and ϕMc(t, x0)

is obtained:

d(t, x0) ≤
t−1∑
k=0

αk
FMc (µ) = ∆1(t, µ) , ∀x0 ∀t ≥ 1 (34)

The quantity
t−1∑
k=0

αk
FMc (µ) = ∆1(t, µ) is generally not bounded as t→ ∞, so it cannot be

proved, on the basis of inequality (34) alone, that the trajectory distance d(t, x0) is bounded.

However, by means of the properties of the Lyapunov function (27), a second upper bound

∆2(t, µ) of d(t, x0) can be computed. In fact, through equations (29) and (31) the following

inequality holds:

V (FMc(x) + e) ≤ V (x)−K∥x∥2 + αV (µ) (35)
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then, on the basis of (30) and (35), the state trajectory ϕP (t, x0) is such that:

∥ϕP (t, x0)∥2 ≤ V (ϕP (t, x0)) = V (FP (ϕP (t− 1, x0))) =

= V (FMc(ϕP (t− 1, x0)) + e(ϕP (t− 1, x0))) ≤

≤ V (ϕP (t− 1, x0))−K∥ϕP (t− 1, x0)∥2 + αV (µ) ≤

≤ V (ϕP (t− 1, x0))−
K

b
V (ϕP (t− 1, x0)) + αV (µ) =

=

(
1− K

b

)
V (ϕP (t− 1, x0)) + αV (µ) =

= ηV (ϕP (t− 1, x0)) + αV (µ) ≤

≤ ηtV (x0) +

t−1∑
j=0

ηjαV (µ) ≤

≤ ηtV (x0) +
αV (µ)

1− η
(36)

with η =

(
1− K

b

)
< 1. Thus, the following result is obtained:

∥ϕP (t, x0)∥2 ≤ ηtV (x0) +
b

K
αV (µ) (37)

∥ϕMc(t, x0)∥2 ≤ ηtV (x0) (38)

By means of inequalities (37) and (38), an upper bound ∆2(t, µ) can be computed as:

d(t, x0) = ∥ϕP (t, x0)− ϕMc(t, x0)∥2 ≤

≤ ∥ϕP (t, x0)∥2 + ∥ϕMc(t, x0)∥2 ≤

≤ 2 ηtV (x0) +
b

K
αV (µ) ≤

≤ 2 ηt sup
x0∈X

V (x0) +
b

K
αV (µ) =

= ∆2(t, µ) , ∀x0 ∀t ≥ 0 (39)

Note that, since µ <∞ and X is compact

∆2(t, µ) <∞, ∀t ≥ 0

lim
t→∞

∆2(t, µ) =
b

K
αV (µ) = q(µ)

q < ∆2(t, µ) <∞, ∀t ≥ 0
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Thus, as t increases towards ∞, the bound ∆2(t, µ) (39) decreases monotonically from a finite

positive value equal to 2 sup
x0∈X

V (x0) +
b

K
αV (µ) towards a finite positive value q(µ), while

the bound ∆1(t, µ) (34) generally increases monotonically from 0 to ∞. Therefore, for a fixed

value of µ there exists a finite discrete time instant t̂ > 0 such that ∆1(t̂, µ) > ∆2(t̂, µ). As a

consequence, by considering the lowest bound between ∆1(t, µ) and ∆2(t, µ) for any t ≥ 0,

the following bound ∆(µ) of d(t, x), which depends only on µ, is obtained:

∆(µ) = sup
t≥0

min(∆1(t, µ),∆2(t, µ))

q(µ) ≤ ∆(µ) <∞

∥ϕP (t, x0)− ϕMc(t, x0)∥2 ≤ ∆(µ), ∀x0 ∈ X ∀t ≥ 0

Since both ∆1(t, µ) and ∆2(t, µ) increase monotonically with µ, also their pointwise

minimum w.r.t. to t does.

ii) On the basis of (37) it can be noted that

lim
t→∞

∥ϕP (t, x0)∥2 ≤ lim
t→∞

ηtb∥x0∥2 +
b

K
αV (µ)

=
b

K
αV (µ) = q(µ), ∀x0 ∈ X . (40)

The claim follows by the properties of the class-K∞ function αV .

Remark 1

In the proof of Theorem 2, the case of diverging bound ∆1(µ) has been considered. Depending on

the properties of function αFMc and on the value of µ, in principle the quantity
t−1∑
k=0

αk
FMc (µ) =

∆1(t, µ) can also converge, as t→ ∞, to some finite quantity q1(µ). The latter would still be

monotonically strictly increasing with µ and such that q1(0) = 0. In this case, all the results of

the Theorem would still hold true; eventually the bound q(µ) =
b

K
αV (µ) would be replaced by

q1(µ) = lim
t→∞

t−1∑
k=0

αk
FMc (µ), whichever is smaller.
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In the sequel, the following notation will be used:

B(A, r) =
∪
x∈A

B(x, r) A ⊂ Rn

where B(x, r) .= {ξ ∈ Rn : ∥x− ξ∥2 ≤ r}.

Proposition 1

Suppose there exists a positively invariant set G ⊂ X such that:

1. ϕMc(t, x0) ∈ G, ∀x0 ∈ G,∀t ≥ 0

2. B(G,∆) ⊂ X

then points i) and ii) of Theorem 2 hold ∀x0 ∈ G.

The main consequence of Proposition 1 is that for any initial condition x0 ∈ G it is guaranteed that

the state trajectory is kept inside the set X and converges to the set B(0, q), whose size depends

on the accuracy of the model fMc . Theorem 2 is to be intended mainly as a qualitative result that

establishes local robust attractivity of the origin of the closed-loop system. The difficulty of using

this result also for quantitative analysis lies in the practical computation of the involved quantities

and in the related conservativeness. On the other hand, to find non-conservative and practically

useful results for nonlinear systems is quite a hard task, unless some more restrictive assumptions

on the structure of the system and of the problem are made.

Remark 2

If the control law κ is Lipschitz continuous with constant Lκ (i.e. if stronger regularity properties

than those of Assumption 2 are assumed), the results of Theorem 2 can be refined into linear

relationships between the trajectory bounds and the worst-case modeling error µ. More specifically,

in this case function FMc is also Lipschitz continuous, with constantLMCL
=

√
(1 + L2

κ)(1 + L2
M ),

and so is the Lyapunov function V , with constant LV =
T̂−1∑
j=0

(LMCL
)j . Then, the bounds involved in

Theorem 2 become:

∆1(t, µ) =

(
t−1∑
k=0

(LMCL
)k
)
µ

∆2(t, µ) = 2 ηt sup
x0∈X

V (x0) +
b

K
LV µ

q(µ) =
b

K
LV µ.
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Lipschitz continuity is indeed a strong assumption in the case of general nonlinear systems. In some

cases, a numerical procedure can be used to check numerically whether such condition holds.

3. APPLICATION TO VEHICLE YAW CONTROL

In order to show the effectiveness of the proposed SMPC methodology, an application to a vehicle

yaw stability control system is presented here.

3.1. Control Requirements

Yaw stability control systems have been introduced in order to significantly enhance safety and

handling properties of vehicles (see e.g. [24] and [25]) by modifying their passive dynamic behavior

using suitable control structures and actuation devices. In particular, in this paper, a vehicle equipped

with a front steer-by-wire actuator, based on a classical rack and pinion steering system (see e.g.

[26]) is considered.

The control objective is the tracking of a reference yaw rate value ψ̇ref(t), whose course is designed

in order to improve the vehicle maneuverability, and to assist the driver in keeping directional

stability under different driving conditions. In the considered situation, the vehicle front steering

angle δ represents the control input, while the yaw rate ψ̇ is the controlled output.

A feedback control law receives as input the reference yaw rate value, together with the measured

yaw rate ψ̇, and computes a suitable command current for the steer-by-wire device, that imposes

accordingly the pinion angle and, consequently, the steering angle δ of the front wheels. The desired

vehicle behavior is taken into account in the control design by a suitable choice of the reference

signal ψ̇ref. Details on the computation of the ψ̇ref can be found in [25]. The tracking of ψ̇ref can be

taken into account by minimizing the amount of the tracking error e, defined as:

e = ψ̇ref − ψ̇

The value of the front steering angle δ, generated by the employed active device, is subject to its

physical limits. In particular, the range of allowed front steering angles that can be mechanically
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generated is ± 35◦, thus, saturation of the control input (i.e. the angle δ) has to be taken into account

in the control design.

3.2. Vehicle model identification and SMPC design

A set of measured values of ˜̇
ψt and δ̃t are collected in order to identify the NSM vehicle model Mc

(11).

The number of output and input regressors, ny and nu, have to be chosen in order to achieve a

suitable tradeoff between model complexity and accuracy, while the values of the Lipschitz constant

γ and of the noise bound ε are estimated from the data in order to achieve a non-empty FSS (for

more details on the regressor choice and on the computation of γ and ε, the interested reader is

referred to [14]).

According to equation (12) the pseudo–state results to be:

xt =

[
ψ̇t . . . ψ̇t−nyδt−1 . . . δt−nu

]
∈ Rn−1 (41)

The control move is obtained, according to the RH strategy (Section 2.1), by optimizing the

following cost function:

min
U

Np∑
j=1

Qe2t+j+1|t +Rδ2t+j|t (42)

subject to

xt+j+1|t = fMc (xt+j|t, δt+j|t), j ∈ [0, Np− 1] (43)

U ∈ U =
{
δt+j|t : |δt+j|t| ≤ δ̄, j ∈ [1, Nc]

}
(44)

et+Np|t = 0 (45)

ut+Nc|t, . . . , ut+Np−1|t = ut+Nc−1|t (46)

where Q, R ∈ R+ are suitable weights, et+j|k is the jth step ahead prediction of the tracking error

obtained as

et+j|t
.
= ψ̇ref,t − ψ̇t+j|t

Copyright c⃝ 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)

Prepared using rncauth.cls DOI: 10.1002/rnc



20

The terminal state (45) equality constraint induces asymptotic closed loop stablity of the nominal

model as required by Assumption 3, since, in the presence of this constraint, the optimal cost

function turns out to be a Lyapunov function for the tracking error’s dynamics. Please refer to [27]

for more details.

The saturation value δ̄ is the maximum steering angle that can be mechanically generated i.e.

δ̄ = ±35◦. The values of Q, R, Np, Nc are design parameters suitably chosen in order to achieve a

good compromise between closed loop stability and performance (see e.g. [1]).

3.3. Simulation results

In order to evaluate the effectiveness of the proposed approach in a realistic way, a detailed 14

degrees of freedom (d.o.f.) Simulinkr vehicle model is employed. Such a model gives an accurate

description of the vehicle dynamics as compared to actual measurements and includes nonlinear

suspension, steer and tyre characteristics, obtained on the basis of measurements on the real vehicle

(see [25] for a detailed description of such a model). The 14 d.o.f. model has been employed at

first stance to generate ˜̇
ψt and δ̃t data with sampling time Ts = 0.01 s, by simulating a series of

standard maneuvers. Then, such data have been divided into two subsets: i.e. the identification

and the validation data. The identification data have been employed to derive the NSM vehicle

model (11) while the validation ones to evaluate its accuracy and to tune the values of nu, ny, γ

and ε. In particular, after a series of trial-and-error iterations, the values ny = 1, nu = 3, γ = 3

and ε = 0.02 rad/s have been chosen. The SMPC law has then been designed using the following

parameters Np = 30, Nc = 3, Q = 10 and R = 5.

The performance of the proposed SMPC approach have been compared with the one of a NMPC

controller designed using the nonlinear single–track vehicle model described by the state equations
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(47) (see [24] and Figure 1 for more details):

mv(t)β̇(t) +mv(t)ψ̇(t) = Fyf (t) + Fyr(t)

Jzψ̈(t) = aFyf (t)− bFyr(t) (47)

where m is the vehicle mass, Jz is the moment of inertia around the vertical axis, β is the sideslip

angle, ψ is the yaw angle, v is the vehicle speed, a and b are the distances between the center of

gravity and the front and rear axles respectively.

l

a

bR

δ

β

δ

G

v

O

ψ, Mz

Figure 1. Single track model schematic.

The nominal parameter values used are: m = 1715 kg Jz = 2700 kgm2 a = 1.07m b = 1.47m.

The sampling time Ts = 0.01 s is used to discretize the model by means the forward difference

approximation. Fyf and Fyr are the front and rear tyre lateral forces, which can be expressed as

nonlinear functions of the state, the input and of the vehicle speed (see [25] and [28] for more

details):

Fyf = Fyf (β, ψ̇, v, δ)

Fyr = Fyr(β, ψ̇, v, δ) (48)

At first, the NMPC parameters Q, R, Np and Nc, were set to be the same of the SMPC ones.

In such a way, the performance of the NMPC controller was significantly worse than that of the

SMPC. After that, in order to make a fair comparison, the NMPC parameters have been tuned

via a trial-and-error procedure in order to improve the performance. The final choice was: Q = 2,
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R = 10, Np = 80 and Nc = 2.

In both cases the control move computation has been performed using the MatLabr optimization

function fmincon.

Assumptions 1-3 have been checked through numerical inspection using an approach similar to the

estimation of the Lipschitz constant proposed in [14] and [29].

An open loop (i.e. without driver’s feedback) maneuver has been chosen to test the control

effectiveness and to compare the two approaches. In particular, a 50◦ handwheel step at 100 km/h,

with a handwheel speed of 400◦/s has been performed in different conditions:

• with nominal vehicle parameters

• with increased vehicle mass, +100 kg, with consequent variations of the other involved inertial

and geometrical characteristics

• with a lateral wind gust, which exerts on the vehicle a lateral force and a moment of 800 N

and 500 Nm, respectively, for a period of 1 s

Such tests aimed at evaluating both the transient and steady state performance of the controlled

vehicle.

The obtained results in nominal conditions (i.e. when the parameters of the 14 d.o.f. model match

with those of the physical model (47)) are reported in Figure 2. It can be noted that the NMPC law

based on the physical model achieves a steady–state regulation error of about 3%. This is due to

the neglected dynamics and under-modeling of the physical model. On the other hand, the SMPC

approach, by employing a model identified directly from data, achieves better regulation precision

with 0.9% steady–state tracking error. The advantages of the SMPC technique are also evident in

an handwheel step test with increased vehicle mass. The result of this test is shown in Figure 3:

while the SMPC law is able to keep a nearly zero tracking error (0.9%), the NMPC law based on

the physical model achieves a slightly higher steady–state tracking error (1.9%) w.r.t the SMPC law.

Further, Figure 4 shows that the SMPC controller is more robust w.r.t. with the NMCP controller

when an external disturbance occurs (0.9% versus 3.8%).
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Figure 2. Results of the 50◦ handwheel step test with nominal parameters. Uncontrolled vehicle yaw rate

(dotted), reference yaw rate (thin solid line), and yaw rate obtained with the SMPC (solid) and NMPC based

on a physical model (dashed) control laws.

Thus, the presented simulation results highlight that the proposed SMPC methodology improves

both robustness and regulation precision of the closed loop system w.r.t. NMPC one, based on

physical modelling of the system.

4. CONCLUSIONS

The paper presented a novel approach, denoted as Set Membership Predictive Control (SMPC), to

design a predictive control law. The proposed SMPC technique relies on a model derived using

a Nonlinear Set Membership (NSM) identification method and input/output data collected during

preliminary tests. The NSM approach is able to provide a model with a bounded model uncertainty,

by exploiting this feature, a theoretical result which allows an a-posteriori analysis of the robust

stability of the closed loop system has been introduced. The effectiveness of the proposed approach

has been shown in a vehicle lateral stability control problem.
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Figure 3. Results of the 50◦ handwheel step test with increased mass. Uncontrolled vehicle yaw rate (dotted),

reference yaw rate (thin solid line), and yaw rate obtained with the SMPC (solid) and NMPC based on a

physical model (dashed) control laws.
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Figure 4. Results of the 50◦ handwheel step test when a blust of wind occurs at 1 s. Uncontrolled vehicle

yaw rate (dotted), reference yaw rate (thin solid line), and yaw rate obtained with the SMPC (solid) and

NMPC based on a physical model (dashed) control laws.
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