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Abstract

Polynomial Chaos Expansions represent a powerful tool to simulate stochastic models of dy-

namical systems. Yet, deriving the expansion’s coefficients for complex systems might require a

significant and non-trivial manipulation of the model, or the computation of large numbers of

simulation runs, rendering the approach too time consuming and impracticable for applications

with more than a handful of random variables. We introduce a novel computationally tractable

technique for computing the coefficients of polynomial chaos expansions. The approach exploits a

regularization technique with a particular choice of weighting matrices, which allow to take into

account the specific features of Polynomial Chaos expansions. The method, completely based on

convex optimization, can be applied to problems with a large number of random variables and uses

a modest number of Monte Carlo simulations, while avoiding model manipulations. Additional

information on the stochastic process, when available, can be also incorporated in the approach

by means of convex constraints. We show the effectiveness of the proposed technique in three

applications in diverse fields, including the analysis of a nonlinear electric circuit, a chaotic model

of organizational behavior, finally a chemical oscillator.
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I. INTRODUCTION

In most science and engineering applications, there is the need to simulate mathematical

models of the process under study, in the form of ordinary or partial differential equations,

with the aim to figure out the time (or space) course of a variable of interest v for analysis,

decision-making and control. In many cases, in order to take into account the presence of

uncertainty, unknown external inputs and in general any effect that produces a mismatch

between the model equations and reality, the model to be simulated is not fully deterministic:

uncertainty and disturbance are often modeled as quantities with stochastic nature, named

here “input random variables” and indicated with θ, hence the name stochastic models. In

these cases, v(θ) is a random variable, too, and one is interested in computing its statistics.

The issue of simulating complex, nonlinear stochastic models with sufficiently high accuracy

and low computational effort is still a challenge in important and diverse fields, like analysis

of large power grids, weather forecasts at different scales and simulation of biological systems,

to name just a few. The typical approach followed to simulate a stochastic model is the

well-known Monte Carlo (MC) technique, which relies on the sampling of a finite number

M of values of θ, according to its distribution. With sufficiently large M , the MC approach

gives good statistical estimates (e.g. first and second order moments) of the variables of

interest, and also of its probability density function (pdf). However, the application of MC

simulations with the system model may be too computationally demanding, particularly in

those cases when the model is complex and the inherent variables have large dimensions.

Polynomial Chaos Expansions (PCEs) (see e.g. [1–9]) provide a useful tool to significantly

reduce the computational effort required to simulate a stochastic system, by conceptually

replacing the mapping between θ and v, implicitly defined by the integration of the model’s

differential equations, with an explicit function v̂(θ), which takes the form of a truncated

series of polynomials. The polynomials in the PCE are orthogonal, so that the statistical

moments of v̂(θ) can be computed directly from the expansion’s coefficients. Moreover, the

computational effort required to evaluate a PCE is often orders of magnitude lower than

the one required to simulate the system model: therefore, it is possible to estimate the

pdf of v by using a Monte Carlo approach with the PCE, instead of the system model,

with significant time savings. As an example, in the first case study considered in this

paper, 100,000 Monte Carlo simulations with the system model require 3,800 s, while the
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same number of PCE evaluations are obtained in 24 s, with the same hardware and software.

PCEs have been used with good results in a number of different areas, including experimental

modeling, materials, mechanics, power systems, systems biology, and control, see e.g. [10–

22]. Yet, the computation of the PCE’s coefficient may not be a trivial task when the model

is nonlinear and/or the dimension n of random input variables is relatively high. In these

cases, the existing approaches may require a significant and non-trivial manipulation of the

model, or the computation of large numbers of simulation runs, such that the advantages

of the method with respect to standard MC simulations might be lost. We propose here

a novel approach to derive the PCE’s coefficients, based on convex optimization. Under

mild assumptions, this method can be easily applied to any existing model, since it just

requires the preliminary computation of a small number of sampled values of v. In this

approach, a relatively large order of the polynomial chaos is initially chosen, hence a high

number of terms in the expansion, and the PCE’s coefficients are then computed by means

of a single multi-objective optimization problem, exploiting ℓ1 regularization techniques (see

e.g. [23],[24]). We provide a new, systematic way, particularly suited to the properties of

Polynomial Chaos Expansions, to choose the weighting matrices in the cost function of the

optimization problem. Moreover, we show how different kinds of available information on

the stochastic model, including bounds on v and on its variance, can be easily taken into

account as convex constraints in the optimization. As a result, the method is able to provide

an accurate description of the statistics of v(θ), with few simulation runs. We present three

case studies in a broad range of different fields, to demonstrate the effectiveness of the

method and its ease of implementation.

II. PROBLEM SETTINGS

We consider a time-invariant system in state-space form:

dx(t)

dt
= f (x(t),w(t), c, t)

v = v(T ) = h (x(T ),w(T ), c, t)

(1)

where t ∈ R is the time variable, x(t) ∈ R
nx is the system state, w(t) ∈ R

nw is an unknown

input, c ∈ R
nc is an unknown parameter vector, finally v ∈ R is a variable of interest,
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evaluated at a given time instant T . w(t) and c are assumed to have stochastic nature, in

a sense that will be better detailed afterwards. Bold symbols indicate vectors of variables,

e.g. x = [x1, . . . , xnx
]T , where T is the vector transpose operation. The aim is to derive an

approximation of the first and second order moments and the pdf of v, starting from (possi-

bly stochastic) initial conditions x(0, c), by using the model (1). The variable c accounts for

uncertainty both in the model equations (e.g. due to uncertain physical parameters) and in

the initial state x(0, c), while w(t) accounts for unknown external inputs, like disturbances.

The parameters c and the unknown input w(t), t ∈ [0, T ] in (1) can be typically expressed as

functions of a n-dimensional vector θ ∈ Kn of independent and identically distributed (iid)

random variables θi, with known pdf fθ, such that θi ∈ K ⊂ L2(Ω,F , P ), ∀i ∈ {1, . . . , n}.
Here, (Ω,F , P ) is a probability space, Ω is the set of elementary events, F is the σ−algebra

of the events and P is the probability measure. The expectation (or first-order moment) of

a generic random variable θ : A → R is denoted as E [θ]
.
=
∫

Ω
θ(ω)dP (ω) =

∫

A
θdFθ, where

Fθ(k)
.
= P{θ < k} is the probability distribution function of θ over A. L2(Ω,F , P ) is the

Hilbert space of all random variables θ whose L2-norm, ‖θ‖2 .
= E [|θ|2]1/2, is finite, where | · |

denotes the absolute value. K is a subspace of L2(Ω,F , P ) that contains only centered ran-

dom variables (i.e. ∀θ ∈ K, E [θ] = 0). Finally, the pdf of θ is given by fθ(k) = dFθ/dk, and

the variance (or second-order moment) of θ is indicated as Var(θ)
.
= E [(θ − E[θ])2] = σ2

θ ,

where σθ is the standard deviation of θ.

In many cases of practical relevance, the time-invariant parameters c are naturally iid vari-

ables (e.g. when c stands for some variation of a physical parameter of the system, that

is uncertain due to production variability). If the variables ci, i ∈ {1, nc} have different

probability distributions, it is possible to map a standard (i.e. with zero mean and unit

variance) distributed Gaussian random variable, indicated as N (0, 1), to a random vari-

able with distribution function Fc by the transformation F−1
c (erf(N (0, 1))), where erf is the

Gaussian distribution function, see e.g. [25]. As regards the input w(t), t ∈ [0, T ], this can

typically be modeled as a stochastic process or random field w(t, θ) : R×Kn → R
nw , which

can be represented as a finite series of n iid random variables multiplied by deterministic

functions ŵi(t), i ∈ {1, n}, i.e. w(t, θ) ≃ ŵ0(t) +
n
∑

i=1

ŵi(t)θi (see for example [14, 26–28]).

We assume that the solution of the dynamical equations (1) in the time interval [0, T ] exists

and it is unique almost surely, i.e. with probability one. In the described context, the vari-

able of interest is a random variable, v(θ), and we name the system (1) “stochastic system”.
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We assume that v(θ) has finite variance:

Assumption 1 (Finiteness of variance of v(θ))

v(θ) ∈ L2(Ω,F , P ).

Assumption 1 is typically satisfied in practical applications.

The problem of simulating a stochastic system may be very complex and the main technique

employed so far in engineering applications is the well-known MC approach, which consists

in the following steps:

Algorithm 1 (Monte Carlo simulations)

1. extract M iid samples θ̃(r), r ∈ {1, M}, of θ, according to its distribution;

2. for each sample, compute (or numerically simulate) the solution of (1) and the corre-

sponding value of v(θ̃(r)), ∀r ∈ {1, M};

3. analyze the statistics of the collected data.

Remark 1 For simplicity and without loss of generality, we consider a scalar variable v and

a single value of T : multiple variables of interests vj , j ∈ {1, nv} and time values Ti, i ∈
{1, N} can be easily treated by considering each variable and each time instant separately

from the others, as it is done in the case studies reported in this paper. In these cases, a

single simulation of the system provides all of the corresponding samples vj(Ti, θ̃(r)), ∀j ∈
{1, nv}, ∀i ∈ {1, N}.

Although MC simulations proved to be very effective in many applications, the required

computational times may be prohibitive in various cases, e.g. when a decision has to be

taken in relatively little time on the basis of the simulations’ outcome, or when repeated MC

simulations have to be carried out to tune some input or parameter, or when the simulation

has to be embedded in a numerical optimization procedure (e.g. for optimal design or

control of stochastic systems). Polynomial Chaos Expansion techniques (see e.g. [3]) are

able to significantly reduce the computational effort required by standard MC approaches, by

replacing the simulation of a (possibly very complex) dynamical system with the evaluation

of a static function v̂(θ) ≈ v(θ). The main features of PCEs are recalled in the next Section.
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TABLE I: Examples of orthogonal polynomials for different kinds of probability measure

Random variable Polynomial basis

Gaussian Hermite

Uniform Legendre

Gamma Laguerre

Beta Jacobi

III. POLYNOMIAL CHAOS EXPANSIONS

PCEs were first introduced by Wiener [1], who considered Gaussian random variables θ.

Later on, Cameron and Martin [2] showed one of the key properties of PCEs, namely their

ability to uniformly approximate any random process with finite second-order moments.

The polynomial chaos is an orthogonal basis of L2(Ω,F , P ), hence any random variable

v(θ) ∈ L2(Ω,F , P ) has the L2-convergent expansion [2]:

v(θ) =
∞
∑

k=0

akΦαk
(θ), (2)

where the coefficients ak are given by ak =
E[v(θ)Φαk

(θ)]
E[Φαk

(θ)2]
, and Φαk

= Φαk
(θ1, . . . , θn) is the

k-th multivariate polynomial in the series, corresponding to the k-th vector of indices, or

“multi-index”, αk = [α1,k, . . . , αn,k] , αi,k ∈ N. More specifically, for a given vector of indices

αk, we have Φαk
(θ)

.
=

n
∏

i=1

Φ(αi,k)(θi), where Φ(αi,k)(θi) is the univariate polynomial of degree

αi,k, chosen according to the Askey scheme [4]. As an example, Hermite polynomials are used

with Gaussian input random variables. Table I shows the suitable orthogonal polynomials

for different kinds of input random variables. The choice of the univariate polynomials is

made in order to satisfy the orthogonality property:

E
[

Φ(αj) Φ(αi)

]

= E
[

Φ2
(αi)

]

δij , (3)

where δij = 1 if i = j and 0 in any other case. The coefficients of the univariate polynomials

can be usually computed via a recursive equation, starting from the terms of degree 0 and 1.

As an example, Legendre polynomials, which are orthogonal w.r.t. to the uniform probability
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TABLE II: Example of multivariate polynomials used in polynomial chaos, corresponding to l =

2, n = 3

Order Multi-index Multivariate Polynomial

0 α0 = [0, 0, 0] Φαn,0
(θ) = 1

1 α1 = [1, 0, 0] Φαn,1
(θ) = Φ(1)(θ1)

1 α2 = [0, 1, 0] Φαn,2
(θ) = Φ(1)(θ2)

1 α3 = [0, 0, 1] Φαn,3
(θ) = Φ(1)(θ3)

2 α4 = [2, 0, 0] Φαn,4
(θ) = Φ(2)(θ1)

2 α5 = [0, 2, 0] Φαn,5
(θ) = Φ(2)(θ2)

2 α6 = [0, 0, 2] Φαn,6(θ) = Φ(2)(θ3)

2 α7 = [1, 1, 0] Φαn,7
(θ) = Φ(1)(θ1)Φ(1)(θ2)

2 α8 = [1, 0, 1] Φαn,8
(θ) = Φ(1)(θ1)Φ(1)(θ3)

2 α9 = [0, 1, 1] Φαn,9
(θ) = Φ(1)(θ2)Φ(1)(θ3)

distribution, can be obtained as:

Φ(0)(θ) = 1

Φ(1)(θ) = θ

Φ(α+1)(θ) =
2α + 1

α+ 1
θΦ(α)(θ)−

α

α + 1
Φ(α−1)(θ).

(4)

We denote with lk
.
=

n
∑

i=1

αi,k the sum of the indices in the multi-index αk, and we assume

that the ordering of the multivariate polynomials Φαk
in (2), and of the related coefficients

ak, is such that lk ≤ lk+1. For practical reasons, the series (2) is truncated by considering

only the multi-indices up to a maximal total degree l, i.e. ∀αk : lk ≤ l. An example of

ordering of all the multivariate polynomials corresponding to l = 2, n = 3 is shown in Table

II. It can be clearly noted that the number of terms in the truncated series grows rapidly

with n and l. Since all the possible multi-indices α that sum up to l ≤ l are considered, the

total number L of terms in the truncated expansion is:

L =

(

n+ l
)

!

n! l!
, (5)

and the series takes the form:

v̂(θ)
.
=

L−1
∑

k=0

akΦαk
(θ) = Φ(θ)a, (6)
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where a
.
= [a0, . . . , aL−1]

T and

Φ(θ)
.
= [Φα0

(θ), . . . ,ΦαL−1
(θ)] (7)

are, respectively, the vectors of the PCE’s coefficients and of the multivariate polynomials

evaluated at θ. We refer to the truncated expansion v̂(θ) ≈ v(θ) (6) as the PCE of the

random variable v(θ). The PCE has been shown to converge exponentially in the L2-sense

as the maximal order l increases, see e.g. [3, 4]. By applying the orthogonality property (3),

the first and second order moments of the random variable v̂(θ) can be computed directly

from the coefficients of its PCE, as follows:

E [v̂(θ)] = a0 (8)

σ̂2(a)
.
= Var (v̂(θ)) =

L−1
∑

k=1

a2kE [Φαk
(θ)2] (9)

where a0 is the coefficient of the polynomial of order l = 0 (i.e. Φα0
= 1) in the PCE. As

regards the practical computation of equation (9), the terms E [Φαk
(θ)2] , ∀k ∈ {1, L − 1}

have to be computed once for all uses, and they can typically be obtained quite easily. As an

example, for Legendre polynomials and uniformly distributed input random variables, note

that, by considering that fθ = 0.5dθ, the L2-norm squared of the multivariate polynomials

is:

E
[

Φαk
(θ)2

]

= ‖Φαk
(θ)‖22 =

n
∏

i=1

1

2αi,k + 1
, ∀k ∈ {0, L− 1}. (10)

Similar equations can be derived for the other types of orthogonal polynomials.

Moreover, a Monte Carlo approach can be used to estimate the pdf of v̂(θ) (and, hence, of

v(θ)) once the coefficients of its PCE are known, by simply evaluating the PCE v̂(θ), instead

of simulating the model (1) at step 2) of Algorithm 1. The computational time required to

evaluate the PCE is often orders of magnitude smaller than the one required to integrate

numerically the model (1), hence the advantage of using polynomial chaos.

Clearly, one of the crucial points in the use of PCEs for the simulation of stochastic systems

is the computation of the expansion’s coefficients, a. In the literature, this task is carried

out essentially in two different ways. A first method (see e.g. [4]) relies on a Galerkin

projection to obtain an augmented set of deterministic differential equations, which can

be solved to compute the PCE coefficients. While this method is quite attractive from a

theoretical point of view, it might be affected by some practical issues, since for complex
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nonlinear models it may be difficult and too time-consuming to derive the augmented set

of differential equations, and the number of such equations may be too large to obtain an

efficient numerical solution with standard ODE solvers.

A second approach is known as Probabilistic Collocation Method (PCM, see e.g. [6, 21]), and

it basically consists in the estimation of the coefficients from a finite number of data, i.e. of ν

exact values of v, named “collocation points”, corresponding to ν values of the input random

variables, θ̃(r), r ∈ {1, ν}. Here, we consider a PCM-like approach for the computation of

PCEs, since it appears to be more viable for the analysis of large-scale, complex stochastic

dynamical systems, and we propose a new method to estimate the coefficients. The method

and its features are described in the next section. One of the main advantages of probabilistic

collocation is that no modification to the original model (1) is required, but just a series

of preliminary simulations to collect the data to be used in the coefficients’ computation;

one of its main disadvantages is that the number of collocation points can be very high,

for problems with relatively high stochastic dimensions (i.e. high values of n) and strong

nonlinearities. Here, we will show, through a series of case studies, that our method yields

very good results even with a very low number of collocation points.

IV. COMPUTATION OF POLYNOMIAL CHAOS EXPANSIONS VIA CONVEX

OPTIMIZATION

Given the maximal order l of the PCE and the corresponding number of terms L (5), we

propose the following algorithm to estimate the PCE’s coefficients a:

Algorithm 2 (PCE computation via convex optimization)

1. sample a finite number ν of independent values of the vector of input random variables

θ̃(r), r ∈ {1, ν}, according to its distribution;

2. carry out ν simulations of the system (1), each one corresponding to one of the ex-

tracted samples θ̃(r);

3. collect the obtained values of the variables of interest in the vector ṽ
.
=

[v(θ̃(1)), . . . , v(θ̃(ν))]
T ;
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4. select the maximal order l for the PCE v̂(θ) (6) and compute the matrix

Φ̃
.
=











Φ(θ̃(1))
...

Φ(θ̃(ν))











,

where the vectors Φ(θ̃(r)), r ∈ {1, ν}, are computed according to (7);

5. solve the following convex optimization problem to compute the PCE’s coefficients:

min
a∈RL

‖Wa‖1 + β‖Λ̃(ṽ − Φ̃a)‖2 (11a)

subject to

convex constraints (11b)

In (11a), for a generic vector y ∈ R
m the ℓ1 and ℓ2 vector norms are defined as ‖y‖1 .

=
m
∑

k=1

|yk|

and ‖y‖2 =
(

m
∑

k=1

y2k

)1/2

, respectively. The diagonal weighting matrix W is defined as W
.
=

diag (w(lk)) ∈ R
L×L, where lk is the order of the multi-index αk, and w(lk), k ∈ {0, L− 1}

is a sequence of scalar weights with the following properties:

w(lk) > 0, ∀k ∈ {0, L− 1};
w(lk) > w(lj) ⇐⇒ lk > lj, ∀k, j ∈ {0, L− 1};

max
k

w(lk) = 1.

(12)

Moreover, β > 0 is a scalar weight. w(·) and β are parameters chosen by the user. Finally,

the diagonal matrix Λ̃
.
= diag

(

λ̃
)

contains the values λ̃
.
= [fθ(θ̃(1)), . . . , fθ(θ̃(ν))]

T of the

pdf fθ, evaluated at the considered samples θ̃(r), r ∈ {1, ν}.
We denote with a∗ a global minimizer of (11) and with v̂∗(θ) the related PCE. The convex

constraints (11b) are optional and they will be better specified later on; we now consider

the unconstrained problem (11a) and discuss its features.

Weighted ℓ1-norm regularization of the coefficients

The convex cost function in (11a) is the weighted sum of two terms. The first one, ‖Wa‖1,
is a weighted ℓ1-norm of the PCE coefficients, in which the weights increase monotonically

with the order of the related multivariate polynomials (see (12)). ℓ1-norm regularization is

10



a well-established technique in function approximation and regression analysis [23],[24], and

it is a convex relaxation of the problem of computing an approximation which is sparsest,

i.e. with minimal number of non-zero terms or, equivalently, with minimal ℓ0 quasi-norm,

see e.g. [29]. However, the use of the weighting matrix W is novel and pertains to the

particular properties of polynomial chaos expansions. In practice, minimization of the term

‖Wa‖1 yields an estimated coefficients’ vector in which the terms related to higher-order

multivariate polynomials have smaller absolute value. The reason for including this term

in the cost function (11a) is twofold: on the one hand, it accounts for the fact that, due to

the convergence property of polynomial chaos, the absolute values of the PCE coefficients

should decrease as the order of the corresponding polynomials in the expansion increases;

on the other hand, it avoids over-determination of the fitting problem, when the number

ν of data is lower than the number L of coefficients. Indeed, the ℓ1-norm regularization

allows one to select an initial overly large maximal order l, and then to rely on the convex

optimization procedure to correctly “pick” the terms that have higher relevance, even if the

number ν of sampled data points is much lower than the number of coefficients.

We note that, in general, there is no particular reason to believe that the “best” (i.e.

most accurate) vector of coefficients is actually sparse, that is it has “few” non-zero

elements (this property holds in some specific cases, see Remark 4 below). However, there

are many contributions in the literature (see e.g. [2],[4]-[5]) showing that the accuracy

of the truncated chaos expansion rapidly improves with its order. Therefore, one can

expect higher-order terms to be less important, and the related coefficients to be “small”

in magnitude. Approximations of such expansions should then have the coefficients of

higher-order terms that are small in magnitude, or even equal to zero, hence the use of

a weighted ℓ1 norm in the optimization. The use of the weights W can be seen as prior

knowledge that is infused in the estimation process, i.e. the knowledge of the fact that

higher-order terms are generally less important.

Weighted ℓ2-norm fitting of the data

The second term in the cost function (11a) accounts for the fitting error between the

sampled values ṽ and the estimate Φ̃a given by the PCE. Such a fitting term is weighted

by the matrix Λ̃. Namely, Λ̃ is selected as a ν × ν diagonal matrix, whose diagonal contains

the values of the joint pdf fθ of the input random variables θ, evaluated at the sampled
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values θ̃(r), r = 1, . . . , ν. In this way, the fitting errors v(θ̃(r)) − v̂(θ̃(r)) with larger weight

in the cost function ‖Wa‖1 + β‖Λ̃(ṽ − Φ̃a)‖2 are those pertaining to samples θ̃(r), whose

values of fθ(θ̃(r)) are larger. The obtained solution a∗ will be such that these fitting errors

are smaller than those related to samples θ̃(r) with smaller values of fθ(θ̃(r)). The rationale

of this choice is to reflect the relative importance of the sampled values according to their

pdf, in order to reduce the bias that could be induced by “low-importance” samples, i.e.

eventual values of θ̃(r) whose value of fθ(θ̃(r)) is small. Clearly, if all samples have the

same importance (e.g. if fθ is uniform, or if the sampled values θ̃(r) have similar values of

fθ(θ̃(r))), then Λ̃ will be close to a scaled identity matrix.

We note that if random sampling is used, since the samples θ̃(r) are chosen according to

the pdf fθ and since a ℓ2-norm fitting criterion is used, as ν increases the effect of such

“outliers” is inherently avoided. However, one of the goals of the proposed method is to

employ relatively few samples, hence this phenomenon may occur and the described choice

of Λ̃ greatly improves the obtained performance.

Finally, the scalar weight β can be used to achieve a tradeoff between the accuracy of the

PCE, with respect to the collected data, and its complexity, in terms of weighted ℓ1-norm.

In practical applications, with a “high” value of β the Algorithm 2 yields good results

and it is quite robust with respect to different choices of weights w(l), provided that the

properties (12) are satisfied (see also Remark 2 below).

If no constraints are included, problem (11) can be cast as a quadratic program, and

a global solution can be efficiently computed also with thousands of coefficients [30]. We

now present two kinds of convex constraints (11b), which can be used to take into account

specific additional information on the random variable v, at the cost of a possibly higher

computational time. These constraints are not meant to be exhaustive of the possibili-

ties that the convex optimization approach can open, when combined with polynomial chaos.

Explicit maximal variance constraint

Since the variance σ̂2 of the expansion is a quadratic function of its coefficients (see eq. (9)),

an upper bound σ2 ≥ 0 on the variance can be explicitly enforced by the convex quadratic

constraint:

σ̂2(a) ≤ σ2. (13)
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This constraint is always feasible, since the value a = 0 satisfies it.

Explicit bounds on the PCE

If some convex bounds on v are known, e.g. positiveness, these can be easily included in the

problem as follows. Assume, without loss of generality, that the bounds can be expressed

as g(v) ≤ 0, where g : R → R is a convex function (multiple convex bounds can be reduced

to this form by taking the maximum among all of them). At first, a finite number µ of

further iid samples θ̃(r) of θ has to be computed, together with the corresponding vectors

Φ(θ̃(r)), r ∈ {1, µ} (7). Then, the following µ convex constraints can be included in (11b):

g(Φ(θ̃(r))a) ≤ 0, ∀r ∈ {1, µ}. (14)

Indeed, if the computed minimizer a∗ of (11) satisfies the sampled constraints (14), it is not

guaranteed that the inequality f(v̂∗(θ))) ≤ 0 is satisfied with probability one; however, some

probabilistic results have been established in the context of random convex programming

(see [31, 32]), and these can be used to tune the number of constraints µ. As a final remark,

we note that, if the bounds on v are such that g(0) ≤ 0, then the convex optimization

problem (11) is feasible with probability one in the presence of the µ constraints (14), since

these are always satisfied by the value a = 0.

Remark 2 The proposed approach can be applied no matter how the initial samples θ̃(r), i =

1, . . . , ν are selected, however different methods can lead to different results, in terms of

number ν of data required to achieve a good accuracy. We adopt random sampling here, as

we found it to be an effective and simple approach. As regards the choice of ν, in principle

the higher is the number of data, the better is the obtained accuracy. However, larger values

of ν also imply higher computational cost, to carry out the initial evaluations of v(θ̃(r)).

A simple and effective way to choose ν is to start from a low value, to gradually increase

the number of data points with which Algorithm 2 is carried out, and to employ a stopping

criterion in order to assess whether the employed data are sufficient to get good results in

terms of approximation error. One possible such stopping criterion is based on the distance,

in some norm, between the coefficients computed with two subsequent increasing numbers of

data points. In particular, denoting with a∗(ν) the coefficients estimated with a given number

ν of data, one can consider the ∞-norm of the difference between two subsequent coefficients’

vectors, ‖a∗(ν+1)−a∗(ν)‖∞. Such distance typically converges quite rapidly to a neighborhood
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of a fixed value, as ν reaches some value ν. Then, one can take the coefficients computed

with these ν data points as the estimate of the PCE’s coefficients. It can be observed that

the L2-norm of the error v(θ)− v̂(θ), between the true process v(θ) and the values of v̂(θ)

computed with the PCE estimated with different values of ν, converges to a small value when

ν ≃ ν. An example of these trends is given in the first application in Section V.

A similar approach can be adopted to tune the weighting matrix W and the scalar β. The

main guideline for the choice of the weights in W is given by the properties (12): the values

of w(lk) should be strictly increasing with the orders lk of the corresponding multivariate

polynomials. This approach is quite robust with respect to different specific choices satisfying

(12): in particular, it can be shown that for different values of w(lk) very similar estimates

of the PCE’s coefficient can be obtained, by using a sufficiently large value of β. We provide

an example of this behavior in Section V, too.

Remark 3 Although we present here the approach using the ℓ1-norm regularized cost func-

tion (11a), actually also an ℓ2-norm regularization yields similar results, i.e. with a cost

function of the following form:

‖Wa‖22 + β‖Λ̃(ṽ − Φ̃a)‖22.

We note that the weighting matrices W and Λ̃ and the scalar β have to be chosen according

to the same guidelines for both approaches, which are specific to the application of the method

to polynomial chaos expansions.

Remark 4 We note that approaches with a similar rationale, i.e. to obtain PCEs from

data with low number of nonzero coefficients, has been also proposed in [9, 33], by means of

an iterative algorithm, and by [34], using ℓ1-norm or ℓ0-norm regularization.

The approach of [9] is significantly different from the one presented here, since the maximal

order l and the number ν of data are both gradually increased, until a satisfactory accuracy is

reached. Least-squares are used at each iteration to estimate the coefficients, thus the number

of data has to be always sufficiently large (2-3 times the number of coefficients, according

to [9]), so that the fitting problem is not over-determined. In our approach, the coefficients

are computed in “one shot”, through the solution of a single convex optimization problem,

without any iterative algorithm, and the employed number of data can be very low thanks to

the regularization.

14



The work [34] is more similar to the approach proposed here, since it uses a weighted ℓ1-norm

regularization. However, there are several differences between the two methods, including the

considered class of problems and initial assumptions, the choice of both weighting matrices

W and Λ̃, the inclusion of the fitting term ‖Λ̃(ṽ − Φ̃a)‖2 as a constraint instead of a

multi-objective optimization. A very important contribution of [34] is to provide theoretical

results about the goodness of the approximation obtained by compressive sensing techniques

applied to Polynomial Chaos expansions. To derive similar results in our case appears to

be challenging, since we consider less strict assumptions and a wider class of problems.

However, the theoretical results of [34] provide a further justification to our method, in

addition to the good performance obtained in the non-trivial examples treated in Section V.

Finally neither the methods of [9, 33] nor the one in [34] include the possibility to add convex

constraints, accounting for further information eventually available on the stochastic process.

V. APPLICATION EXAMPLES

In this Section, we present the results obtained by applying the proposed approach in

three different fields. In particular, the first example is related to the simulation of an

electric circuit, with both parametric uncertainty and a stochastic input. The system has

weak nonlinearities, it evolves in continuous time, it has two continuous state variables and

13 input random variables. The second example is concerned with a model for organization

innovation [35]. Such a model is nonlinear, it has seven positive, continuous states and it

evolves in discrete time. The number of input random variables is 12. Finally, the third

example is in the field of systems biology and presents the evaluation of the effects of extrinsic

noise in the simulation of a chemical oscillator. This last model is simulated through the

stochastic simulation algorithm (SSA) method [36], it evolves in continuous time, it has 9

positive, discrete states and 16 input random variables. All together, these examples show

how the convex optimization method can be applied in a straightforward way to problems in

a broad range of fields and with significant complexity, in terms of number of input random

variables, nonlinearities, and constraints on the variables of interest.

15



i
L
(t)

R

L

Cu(t) v
C
(t)

i
D
(t)

D

FIG. 1: RLC circuit with stochastic parametric uncertainty and stochastic input. Layout of the

considered electric circuit.

A. RLC circuit with stochastic parametric uncertainty and stochastic input

Consider the electric circuit depicted in Fig. 1. The system equations are

i̇L(t) = − 1

L
vC(t)−

R

L
iL(t) +

1

L
u(t)

v̇C(t) =
1

C
(iL(t)− iD(t)) ,

(15)

The resistance R is assumed to be a random variable R = R0(1 + 0.3 θ1), where R0 = 3.5Ω

and θ1 is a random variable with uniform distribution over [−1, 1]. The inductance L and the

capacitance C are nonlinear functions of the current iL(t) and voltage vC(t), respectively:

L(iL(t)) = 0.5L (1 + exp(a1 iL(t)
2))

C(vC(t)) = 0.5C (1 + exp(a2 vC(t)
2)),

(16)

where a1 = −0.5 108, a2 = −0.5 106. As an example, the function C(vC) is depicted in Fig.

2. Moreover, the maximal values L and C, achieved when vC(t) = iL(t) = 0, are equal to

L = L0(1 + 0.2 θ2), C = C0(1 + 0.2 θ3), where θ2, θ3 are also random variables with uniform

distribution over [−1, 1]. θ1, θ2, θ3 are assumed to be independent.

The circuit is connected to a device D, which may act both as load and as generator, by

applying a current iD(t). In particular, iD(t) is assumed to be a stochastic input of the form:

iD(t) = a4 sin

(

2π

a5
t

)

+ a3 iD,rand(t),

where a3 = 1 10−2, a4 = 5 10−3A, a5 = 1 10−2 s. The term sin

(

2π

a5
t

)

is a known sinusoidal

component, while iD,rand(t) is a random process with mean iD = 0 and exponential covariance

function CD(t1, t2):

CD(t1, t2) = σ2
D exp−µD |t1−t2|, (17)
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FIG. 2: RLC circuit with stochastic parametric uncertainty and stochastic input. Nonlinear char-

acteristic of capacitance C(vC) (H).

with σD = 1 and µD = 50. In order to model the random process iD,rand(t) as a function of

a finite number of random input variables, we employ the Karhunen-Loeve (KL) expansion

(see e.g. [3]) with 10 independent random variables θD,1, . . . , θD,10, uniformly distributed in

the interval [−1, 1]:

iD,rand(t) ≃ iD +

10
∑

i=1

(

√

λD,i

σθD

gD,i(t)θD,i

)

. (18)

In (18), σθD = 1/
√
3 is the standard deviation of the independent random variables θD,i, and

λD,i, gD,i(t), i ∈ {1, 10} are, for a given maximal time range [−T, T ], the first ten eigenvalues

and eigenfunctions of the integral equation:

T
∫

−T

CD(t1, t2)gD,i(t2)dt2 = λD,igD,i(t1). (19)

In the case of the exponential covariance function (17), the eigenvalues λD,i are computed

as (see [3]):

λD,i =
2σ2

D µD

ω2
D,i + µ2

D

,

where ωD,i are the solutions to the following transcendental equations:

µD − ωD,i tan(T ωD,i) = 0, i odd

ωD,i + µD tan(T ωD,i) = 0, i even.
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FIG. 3: RLC circuit with stochastic parametric uncertainty and stochastic input. Comparison be-

tween the exact covariance function CD(t1, t2) of the stochastic input (solid line) and the covariance

function C̃D(t1, t2) obtained with the Karhunen-Loeve expansion (dashed line).

The corresponding eigenfunctions are:

gD,i(t) =
cos(ωD,i t)

√

T +
sin(2T ωD,i t)

2ωD,i

, i odd

gD,i(t) =
sin(ωD,i t)

√

T − sin(2T ωD,i t)

2ωD,i

, i even

.

We are interested in simulating the system subject to the constant input u(t) = 1 10−2V,

starting from the steady state conditions iL(t0) = 0A, vL(t0) = 1 10−2V, from time t0 = 0

up to time tN = 0.02s. Thus, we choose T = 0.02 s to compute the KL expansion. Fig.

3 shows a comparison between the exact covariance function CD(t1, t2) and the covariance

function C̃D(t1, t2) obtained with the KL expansion, which is computed as C̃D(t1, t2) =
10
∑

i=1

(λD,igD,i(t1)gD,i(t2)), while Fig. 4 shows, as an example, 10 different realizations of the

signal iD(t). We want to analyze the statistics (first and second order moments, and pdf)

of the current iL(ti) and voltage vC(ti) for ti = i Ts, i ∈ {1, 10}, with Ts = 2 10−3 s. The

input random variables θ include the 3 random variables related to parametric uncertainty,

θ1, θ2, θ3, plus the 10 random variables involved in the KL expansion, θD,i, i ∈ {1, 10}.
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FIG. 4: RLC circuit with stochastic parametric uncertainty and stochastic input. Examples of 10

different realizations of the stochastic input iD(t) computed with the Karhunen-Loeve expansion.

Thus, there are n = 13 input random variables in total, all uniformly distributed in the

interval [−1, 1]. According to Table I, the PCE is formulated by using Legendre polynomials,

whose coefficients can be easily computed via the recursion (4). We applied the convex

optimization procedure to estimate the coefficients of a different PCE for the values of

vC(ti, θ) and iL(ti, θ) at all the considered time instants. In particular, we carried out ν = 30

initial simulations by extracting the corresponding values of θ̃(r), r ∈ {1, ν} according to

its distribution, and we used a maximal order l = 2 for the PCE. This results in L = 105

multivariate polynomials in the expansion. In particular, the choice of ν has been carried out

by using a procedure like the one described in Remark 2, i.e. by starting from just ν = 5 data

points and gradually increasing this number, and evaluating the distance ‖a∗(ν+1)−a∗(ν)‖∞.

As an example, Fig. 5 shows the obtained result for the voltage vC(t5, θ) at time instant t5.

In this example, the same number ν has been used for all the variables of interest, vC(ti, θ)

and iL(ti, θ) i = 1, . . . , 10, but in general different values of ν can be used for each variable.

It can be clearly noted that there is a number ν ≃ 30 of points, after which adding new

data does not bring significant changes in the coefficients. In Fig. 6 we show the estimate

of the L2-norm of the error between the values of v̂(θ), computed with the chaos expansions

estimated with different values of ν, and the true process v(θ). Such error estimate has

been computed through 100,000 Monte Carlo simulations and it is expressed as % of the

average E[v(θ)] of the true process: we note that such indicator converges rapidly from 10%
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FIG. 5: RLC circuit with stochastic parametric uncertainty and stochastic input. Distance

‖a∗(ν+1) − a∗(ν)‖∞ between the expansion’s coefficients computed with two subsequent number

of data ν, as a function of ν. The plot is related to the voltage at time instant t5, vC(t5,θ).
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FIG. 6: RLC circuit with stochastic parametric uncertainty and stochastic input. Estimate of the

L2 norm of the error between the values of v̂(θ), computed with the chaos expansions estimated

with different values of ν, and the true process v(θ). The error estimate is expressed as % of the

average E[v(θ)]. The plot is related to the voltage at time instant t5, vC(t5,θ).

to about 0.25% for ν ≃ ν = 30, and then the increase in number of data does not provide

significant improvements. These results justify the use of the difference ‖a∗(ν+1) − a∗(ν)‖∞
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as an indicator to choose the number of samples.

Note that the number ν = 30 of considered simulations is significantly small as compared

to the number of random input variables, n = 13, and to the number of coefficients that

have to be identified, L = 105. This aspect highlights one of the main advantages of the

proposed convex optimization approach, i.e. to be able to obtain quite good accuracy even

with an exiguous number of data. Standard methods, like least square fitting, do not share

the same feature. In order to carry out a comparison between the approach proposed here

and a standard least squares technique, we used the same data vC(ti, θ(r)), iL(ti, θ(r)), i ∈
{1, 10}, r ∈ {1, ν} to identify the PCE coefficients both with our convex optimization

procedure and with the following 2-norm minimization problem:

min
a∈RL

‖ṽ − Φ̃a‖2 (20)

Problem (20) is a standard least-square regression and it is convex, too, however in this case

it is over-determined. Moreover, it does not take into account the available information on

the PCE, particularly the fact that the coefficients related to lower-order terms are likely

to be more important in the expansion. The PCEs obtained with the convex optimization

approach are denoted as îL(ti, θ), v̂C(ti, θ), while those obtained by means of least-squares

regression are denoted as îLSL (ti, θ), v̂
LS
C (ti, θ), i ∈ {1, 10}.

In the convex optimization approach, the weights w(l), l ∈ {0, 2} have been chosen as

w(0) = 0.00025, w(1) = .5, w(2) = 1, the scalar weight β as β = 5 and the optimization

problem has been solved by using the CVX package [37] for MatLabr.

Fig. 7 shows the courses of the estimated mean values of vC(ti, θ) and iL(ti, θ) for all of the

considered time instants ti, i ∈ {1, 10}, obtained with 100,000 MC simulations and with the

PCEs îL(ti, θ), v̂C(ti, θ) and îLSL (ti, θ), v̂
LS
C (ti, θ), i ∈ {1, 10}. We recall that, for the PCE

approximations, the first moment of the process is computed by simply taking, for each ti,

the coefficients of the polynomial of degree 0 in the PCEs (see (8)). It can be noted that

both PCE approximations (obtained either with the convex optimization approach proposed

here, or with least squares regression) give an accurate estimate of the mean of the variables

of interest. However, the results concerning the variance, reported in Fig. 8, are much

different: while the PCE identified with the convex optimization approach proposed here

achieves very good results, as compared with the extensive MC simulations, the least squares

approach shows a poor accuracy. In particular, the PCEs îLSL (ti, θ), v̂
LS
C (ti, θ), i ∈ {1, 10},
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FIG. 7: RLC circuit with stochastic parametric uncertainty and stochastic input. Mean values at

t = ti, i ∈ {1, 10} of (a) current iL(t) and (b) voltage vC(t) obtained either with MC simulations

of the model (dashed line with ’◦’) or with the coefficients of the term of degree 0 in the PCEs

îL(ti,θ), v̂C(ti,θ) (solid line with ’∗’) and îLSL (ti,θ), v̂
LS
C (ti,θ) (dotted line with ’⊲’).

identified through the least-square approach, show a much lower variance with respect to the

other two estimates. The variances of the PCEs have been computed with the relationship

(9) (and (10), since Legendre polynomials are used here) and they have been compared,

in Fig. 8, to the empirical variance estimated by means of 100,000 MC simulations of the
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FIG. 8: RLC circuit with stochastic parametric uncertainty and stochastic input. Variances at

t = ti, i ∈ {1, 10} of (a) current iL(t) and (b) voltage vC(t) obtained either with MC simulations

of the model (dashed line with ’◦’) or with the coefficients of the PCEs îL(ti,θ), v̂C(ti,θ) (solid

line with ’∗’) and îLSL (ti,θ), v̂
LS
C (ti,θ) (dotted line with ’⊲’).

system model.

The poor accuracy given by the PCE obtained through least squares regression is further

highlighted by the estimates of the pdf, as shown as an example in Fig. 9 for the variable

iL(t10, θ): while the empirical pdf computed with the PCE îL(t10, θ) results to be very close
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FIG. 9: (Color online) RLC circuit with stochastic parametric uncertainty and stochastic input.

Comparison between the empirical pdfs of variable iL(t10,θ) estimated with 100,000 MC simula-

tions with the system model (left) and with 100,000 MC evaluations of the PCEs îL(t10,θ) (middle)

and îLSL (t10,θ) (right).

to the one computed with the standard MC approach, the one given by îLSL (t10, θ) is very

different.

In this example, we also show the behavior of the approach with different choices of the

weighting matrix W and scalar β. In particular, we consider the voltage vC(t5, θ) and we

estimate its PCE by using weights of the form:

W
.
= diag (w(lk)) , w(l0) = 1 10−4, w(lk) =

lζk

l
ζ
, k = 1, . . . , L,

with different values of the exponent ζ = 1, 2, 3, 4 (i.e. providing a faster or slower increase

of weighting with the order lk). With these different sets of weights, we show the results

given by our method, expressed in terms of ℓ∞ distance of the computed coefficients’ vectors

from the ones presented above, indicated simply as a∗, which showed very good accuracy as

compared to the actual stochastic process. For each choice of exponent ζ , we also spanned

the values of the weighting factor β, which can be tuned to adjust the relative importance
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of the regularization term with respect to the fitting term, ‖Λ̃(ṽ − Φ̃a)‖2. Such results,
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FIG. 10: Distance ‖a∗(β, ζ) − a∗‖∞ between the expansion’s coefficients computed with different

values of the exponent ζ in the weights w(lk) =
lζ
k

l
ζ , and with different values of the scalar weight

β. In particular, the cases ζ = 1 (solid line), 2 (dotted), 3 (dashed) and 4 (dash-dot) are shown.

The plot is related to the voltage at time instant t5 in the first example of the paper, vC(t5,θ).

reported in Fig. 10, clearly show that convergence to values close to a∗ is obtained no

matter what kind of weights are chosen (but all satisfying (12)), by increasing the value of

β. On the other hand, excessively high values of β should not be used in order to avoid

over-fitting of the data.

Finally, as regards the computational times, the 100,000 MC simulations of the model (15)

took about 3800 s on a Intelr CoreTM 2 Duo processor at 1.3 Ghz, with 4 GB RAM and

MatLabr 2009, while the corresponding 100,000 evaluations of the PCE required about 24 s

on the same hardware. The average time required to solve the convex optimization problem

in our procedure was 0.45 s, on the same computer.

B. Stochastic model of innovative search

This second example is concerned with a dynamical model of how organizations pursue

innovation, i.e. how they allocate attention to devise new ideas, choose part of them for

potential investigation, and finally selects the concepts to be actually tested. The model has
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been developed by [35], it accounts 7 state variables and 12 stochastic parameters, and it

has been conceived in discrete time (i.e. the state at the next observation time is a function

of the state at the current observation time). An overview of the model equations and

of the related parameters is given in Table III. In particular, the organization allocates a

certain quantity of attention, AA, to the search for incoming ideas, II, from an external

stock of ideas and information, ES. Part of these incoming ideas is stored in the internal

stocks of information, IS, from which new ideas NI are derived. The time evolution of

the organizational ideas that are actually selected for possible investigation, OI, is then

influenced by II, IS and NI. Part of OI feeds the testing ideas, TI, i.e. the ideas that,

among the organizational ideas, the organization actually chooses to pursue. The state of the

system is given by x = [II, IS, NI, OI, T I, AA, ES]T and it is a vector of non-negative

variables (i.e. x ∈ R
7, xi ≥ 0 ∀i ∈ {1, 7}). The value of x at the observation period

t + 1 is given by a set of six nonlinear dynamical equations and one algebraic equation,

involving the state at the observation period t and 12 parameters c ∈ R
12. The parameters

are supposed to be independent and distributed according to Gaussian distributions, with

standard deviations σci and mean values ci, i ∈ {1, 12}, as shown in Table III. Thus, in

this example the input random variable θ is a vector of 12 independent Gaussian variables

with normal distribution, such that ci = ci + σciθi, i ∈ {1, 12}. Extensive MC simulations

with this model can be obtained with quite low computational times, however this example

is still interesting, from the point of view of the approach proposed in this article, since the

model is nonlinear and the considered parameter variations may lead to structural changes in

the stability properties of the system (chaotic behavior), from stable modes, to oscillations,

to divergent modes. We are interested in computing the time course, over 30 observation

periods, of the first and second order moments and of the pdf of new ideas (NI), in front of

the considered variability in the model parameters. As a matter of fact, for the observation

periods t = 1, 2 and 3 the value of NI remains fixed at its initial condition, so only the

periods t = 4, . . . , 30 are analyzed. Following our convex optimization procedure, we sample

ν = 300 values of θ ∈ [−1, 1]12 and compute the corresponding values of NI(t, θ), t ∈
{4, 30}, starting from the same initial condition x(0) = [0, 0 0, 0, 0, 0.2, 50]T . We use

Hermite polynomials (according to Table I) and we consider a maximal order l = 3 for

the PCEs N̂I(t, θ), so that each expansion has L = 455 terms. We note that a Galerkin

projection method would lead, in this case, to 3185 discrete-time dynamical equations (i.e.
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seven model equations, times 455 coefficients in the PCE), while a standard least-squares

regression would need at least 455 sampled data, to avoid over-determination. We select

the weights w(l), l ∈ {0, 3} as w(0) = 0.0001, w(l) = l2

9
∀l ∈ {1, 3} and the scalar weight

β = 103. Moreover, since variable NI is defined to be positive, we include 500 additional

constraints N̂I(t, θ̃(r)) ≥ 0, ∀r ∈ {1, 500}, as described in Section IV. Finally, we include

a quadratic constraint on the expansions’ variances, by setting σ2 = 2 σ̃2, where σ̃ is the

empiric standard deviation computed by using the 300 simulated data. We solve the convex

optimization problem again with the CVX package. The courses of the first and second

order moments of NI(t, θ), computed by using the PCEs’ coefficients via (8)-(9), are shown

in Fig. 11(a)-(b), where they are compared with the empirical moments obtained by means

of 100,000 MC simulations. Fig. 12 shows the time evolution of the pdf of NI, estimated

either by computing 100,000 MC simulations or with the corresponding 100,000 evaluations

of the PCEs. Finally, Table IV shows, as an example, a comparison between the quartiles

of the variables of interest, computed either with standard MC simulations, or with the

corresponding PCE. The good matching between all of these statistics shows that, also in

this case, the expansions’ coefficients, computed with the proposed convex optimization

method, are able to describe the stochastic process with good accuracy.

C. Chemical oscillator

The last application example is in the field of systems biology. We consider the chemical

oscillator analyzed in [38] and we simulate this system by means of Gillespie’s stochastic

simulation algorithm [36] (SSA) and the common reaction path (CRP) method proposed in

[39]. In this chemical process, the promoters PR and PA control a repressor protein R and an

activator protein A, respectively. The latter is able to combine with either PR or PA, giving

rise to the complexes PRA and PAA, to enhance the transcription of mRNAA or mRNAR,

respectively, with the consequent synthesis of new A or R proteins. The repressor protein

R is able to combine with A, by forming the intermediate complex AR, and to induce its

degradation. The state of this model is given by the quantities of the involved molecules,

i.e. x = [A, R, PA, PR, PAA, PRA, mRNAA, mRNAR, AR]
T ∈ R

9
≥0, which are discrete by

definition, while the model evolves in continuous time. In particular, according to the SSA-

CRP simulation method, each one of the 16 reactions that may occur in this process has
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FIG. 11: Stochastic model of innovative search. (a) Mean values and (b) variances of the New

Ideas NI at the observation periods t = 4, . . . , 30, estimated either with 100,000 standard MC

simulations (dashed line with ’◦’) or with the polynomial chaos expansions computed with the

convex optimization approach (solid lines with ’∗’).

its own internal clock, and its own stream of random firing times, whose total number, at

a given time instant, is a Poisson random variable. We indicate these streams of random

firing times as ξ =
{

ξi
.
= {τki}∞ki=0, i ∈ {1, 16}

}

, where τki is the time interval between
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FIG. 12: (Color online) Stochastic model of innovative search. Level curves of the pdf of new

ideas NI as a function of the observation period, estimated by means of (a) 100,000 standard MC

simulations and (b) polynomial chaos expansions computed with the convex optimization approach.

two subsequent firing times for the ith reaction, and ki ∈ N is a counter giving the total

number of reactions of type i that already took place. The internal clocks of the reactions

evolve at different speeds, given by the propensities ai, i = 1, . . . , 16 times the common

time variable, t. The latter are generally nonlinear functions of the state and of 16 model
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parameters ci, i = 1, . . . , 16. The model’s chemical reactions, the related parameters and the

propensities’ equations are described in Table V. As an example, consider the 4th reaction

and assume it took place already 10 times, i.e. k4 = 10. When the 4th internal clock hits its

own next firing time, given by
11
∑

k4=0

τk4 , the 4th reaction takes place again, the counter k4 is

augmented by one, and the system state is updated according to the corresponding chemical

equation (i.e. the number of mRNAR molecules is augmented by one), as well as the values

of the propensities. Then, the simulation continues with the new propensity values (i.e. the

new clocks’ “speeds”). Since each reaction, when it takes place, influences the propensities of

the other reactions, the simulation must be carried out in a sequential fashion, by iteratively

computing the reaction that fires next and updating the state, propensities and counters

(for more details, the interested reader is referred to e.g. [39]). Typically, SSA simulations

are carried out for a given initial state and fixed parameters’ values, by taking multiple

random extractions of the firing times’ streams ξ (internal noise), and then some statistic of

interest is analyzed. Yet, the model parameters are not fixed and known, rather they can be

assumed to be random variables themselves, the so-called extrinsic noise, and it is of interest

to study the sensitivity of the SSA outcome to such parameter variations. PCEs have been

already applied in the context of systems biology [18], by using a projection method and

then a quadrature approach to identify the PCE coefficients. As it is also recalled in [18],

Gauss-Hermite quadrature is efficient up to 3-5 stochastic dimensions. In this example, we

analyze the sensitivity to random perturbations in all of the 16 parameters, thus we have

16 stochastic dimensions. Each one of the 16 model parameters ci, i = 1, . . . , 16, is assumed

to be uniformly distributed in the interval ±10% centered at the corresponding mean value

ci, as indicated in Table V. Therefore, the input random variables are given by a vector

θ = {θi ∈ [−1, 1] : ci = (1 + 0.1θi)ci, i = 1, . . . , 16} of 16 independent variables, each one

with uniform distribution in the interval [−1, 1]. The variables of interest are the expected

value A(t, θ) = E[A(t, θ, ξ)] and the variance σ2
A(t, θ) = E[(A(t, θ, ξ) − A(t, θ, ξ))2] of the

number of molecules of protein A, evaluated every 5 s up to t = 50 s of simulation time,

starting from the initial condition x(0) = [0, 177, 1, 1, 0, 0, 4, 0, 279]T . More specifically,

we consider the empirical values of A(t, θ), σ2
A(t, θ), computed by averaging over 1000 SSA

simulations. By using the CPR method [39], each SSA realization is associated to its own,

fixed seed that generates the random streams ξ. In this way, each simulation is evaluated

with different values of θ (i.e. extrinsic noise) but always with the same random stream ξ
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(i.e. internal noise): therefore, extrinsic noise and internal noise are effectively decoupled,

since in practice, for a fixed value of θ, the process is totally deterministic and given by the

SSA simulations, each one with its own stream of random firing times. Thus, the only source

of randomness lies in the model parameters c ∈ R
16. Indeed, the application of Galerkin

projection methods appears to be not trivial in this case, due to the particularity of the

described SSA method and to the discrete nature of the state variables. Moreover, we

consider PCEs of order 3, which, in a 16-dimensional space, involve 969 terms. With the

convex optimization approach, we run 100 sets of 1,000 SSA simulations, corresponding to

100 samples of the random parameter vector. This number of data is very low with respect

to the dimensionality of the random parameter θ ∈ [−1, 1]16, yet the resulting 3rd-order

PCE is highly accurate with respect to the results obtained with a standard MC approach,

considering 10,000 sets of 1,000 SSA simulations. In particular, the comparison between the

two approaches is shown in Fig. 13-16 and in Tables VI-VII. In the convex optimization

problem, we chose the weights w(l), l ∈ {0, 3} as w(0) = 0.0001, w(l) = l3

27
∀l ∈ {1, 3},

and the scalar weight β = 103. We solved the convex optimization problem by using the

Yalmip [40] toolbox for MatLabr. Moreover, similarly to the second application example, we

included 5,000 additional constraints Â(t, θ̃(r)), σ̂
2
A(t, θ̃(r)) ≥ 0, ∀r ∈ {1, 5, 000}, in order to

take into account the positiveness of the variables of interest. As regards the computational

times, the time required to compute the 100 data points used to identify the PCEs’ coefficient

was 67 min, the solution of the 20 convex optimization problems (2 variables of interest

evaluated at 10 different time instants) took 2 hours (averagely 6 minutes for each PCE),

finally the evaluation of 10,000 MC values of the resulting PCE took 8 s on an Intelr CoreTM

2 Duo processor at 1.3 GHz, with 4 GB RAM and MatLabr 2009. Thus, the PCE-convex

optimization method took about 3 hours in total. The time required to compute the 10000

standard MC simulations was about 6670 minutes, i.e. 4.6 days. The model equations

for the SSA simulations have been programmed in Simulinkr, and the computation have

been carried out on a Speedgoatr real-time machine, by using Embedded Matlabr and

xPC-targetr tools to automatically generate the simulation code from the Simulink model.

Indeed, the results of this example confirm that the proposed method, based on convex

optimization, is able to compute the PCE’s coefficients with good accuracy also in the

presence of a relatively large number of random dimensions and model nonlinearities, with

a very limited number of preliminary data. We note that, once the PCE’s coefficients
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FIG. 13: Chemical oscillator. (a) Mean values and (b) variances of the expected number A(t,θ)

of molecules of protein A estimated every 5 s up to 50 s of simulation, either with 10,000 standard

MC simulations (dashed line with ’◦’) or with the polynomial chaos expansions computed with the

convex optimization approach (solid lines with ’∗’).

have been computed, 100,000 evaluations of the expansion would take, on the same Intelr

CoreTM 2 Duo computer, about 80 s, while the corresponding simulations with the dedicated

real-time hardware would take about 46 days.
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FIG. 14: Chemical oscillator. (a) Mean values and (b) variances of the variance σ2
A(t,θ) of molecules

of protein A estimated every 5 s up to 50 s of simulation, either with 10,000 standard MC simu-

lations (dashed line with ’◦’) or with the polynomial chaos expansions computed with the convex

optimization approach (solid lines with ’∗’).
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FIG. 15: (Color online) Chemical oscillator. Level curves of the pdf of the average value A(t,θ) of

the number of protein A molecules as a function of time, estimated by means of (a) 10,000 standard

MC simulations and (b) polynomial chaos expansions computed with the convex optimization

approach.

VI. CONCLUSIONS

We proposed a new method to compute polynomial chaos expansions, by means of a

suitably defined convex optimization problem. The method can easily handle thousands of
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FIG. 16: (Color online) Chemical oscillator. Level curves of the pdf of the variance σ2
A(t,θ) of the

number of protein A molecules as a function of time, estimated by means of (a) 10,000 standard

MC simulations and (b) polynomial chaos expansions computed with the convex optimization

approach.

terms in the PCE, corresponding for example to stochastic dimensions of 15-20 with orders

of 3-4. Bounds on the first and second order moments and on the values of the resulting

PCE can also be explicitly included. We applied the approach to three examples in a broad

range of different fields: in all cases, the derived PCEs, computed via a very low number

of preliminary simulations, accurately captured the process’ statistics, despite the presence
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of nonlinearities and high stochastic dimensions. This aspect indicates that a quite small

number of sampled simulations already contains sufficient information on the process, to

derive an accurate PCE approximation. This method can be straightforwardly used in a

large variety of applications, since it does not require any modification to the existing model,

but just a small number of simulation runs.
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[28] I. Babuška, K. Liu, and R. Tempone, Mathematical Models and Methods in Applied Sciences

13, 415 (2003).

[29] J. Fuchs, Information Theory, IEEE Transactions on 51, 3601 (2005), ISSN 0018-9448.

[30] S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge university press, 2009),

http://www.stanford.edu/b̃oyd/cvxbook/bv cvxbook.pdf.

[31] G. Calafiore and M. Campi, Mathematical Programming 102, 25 (2005).

[32] G. Calafiore, Siam Journal of Optimization 20, 3427 (2010).

[33] G. Blatman and B. Sudret, Probabilistic Engineering Mechanics 25, 183 (2010).

[34] A. Doostan and H. Owhadi, Journal of Computational Physics 230, 3015 (2011).

37



[35] K. W. Koput, Organization Science 8, 528 (1997).

[36] D. Gillespie, The Journal of Physical Chemistry 81, 2340 (1977).

[37] M. Grant and S. Boyd, CVX: Matlab software for disciplined convex programming, version

1.21, http://cvxr.com/cvx (2010).

[38] J. M. G. Vilar, H. Y. Kueh, N. Barkai, and S. Leibler, Proceedings of the National Academy

of Sciences of the United States of America 99, 5988 (2002).

[39] M. Rathinam, P. W. Sheppard, and M. Khammash, The Journal of Chemical Physics 132,

034103 (2010).
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TABLE III: States, equations and parameters for the stochastic model of innovative search

State variables

Incoming ideas, II

Internal stocks, IS

New ideas, NI

Organizational ideas, OI

Testing ideas, TI

Allocation of attention, AA

External stocks, ES

Model equations

II(t+ 1) = c1 ES(t+ 1)AA(t + 1)

IS(t+ 1) = c2 IS(t) +NI(t) + II(t)

NI(t+ 1) = c3 IS(t)

OI(t+ 1) = c6 NI(t+ 1) + c4 IS(t+ 1) + c5 II(t+ 1)

TI(t+ 1) = c7 TI(t) +OI(t+ 1)

AA(t+ 1) = AA(t) + c8 NI(t) + c9 NI2(t) + c10 TI(t) + c11 TI
2(t)

ES(t+ 1) = c12 ES(t)− II(t)

Parameter mean Parameter std. dev.

c1 = 0.1375 σc1 = 0.0225

c2 = 0.2 σc2 = 0.02

c3 = 0.5 σc3 = 0.06

c4 = 0.2 σc4 = 0.02

c5 = 0.2 σc5 = 0.02

c6 = 0.5 σc6 = 0.02

c7 = 0.275 σc7 = 0.025

c8 = 0.1375 σc8 = 0.0225

c9 = −0.0150 σc9 = 0.002

c10 = −0.0505 σc10 = 0.0099

c11 = 0.00055 σc11 = 0.00009

c12 = 1.0055 σc12 = 0.0009
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TABLE IV: Stochastic model of innovative search: quartiles of the probability distribution of new

ideas during 27 observation periods, estimated either with standard MC simulations, or with the

PCEs computed with the convex optimization approach

Obs. MC simulations Polynomial chaos

period 25% 50% 75% 25% 50% 75%

4 0.59 0.68 0.78 0.59 0.68 0.78

5 0.67 0.77 0.87 0.66 0.76 0.86

6 0.86 1.00 1.16 0.87 1.01 1.16

7 1.01 1.20 1.41 1.00 1.19 1.41

8 1.17 1.43 1.74 1.17 1.44 1.74

9 1.32 1.68 2.10 1.33 1.68 2.10

10 1.50 1.96 2.52 1.50 1.95 2.52

11 1.66 2.24 2.96 1.67 2.24 2.96

12 1.83 2.54 3.43 1.83 2.54 3.43

13 1.99 2.83 3.89 1.99 2.83 3.89

14 2.15 3.11 4.31 2.14 3.11 4.30

15 2.28 3.36 4.65 2.28 3.36 4.65

16 2.41 3.55 4.89 2.40 3.56 4.89

17 2.51 3.70 5.01 2.52 3.71 5.01

18 2.58 3.77 5.00 2.60 3.78 5.01

19 2.63 3.77 4.90 2.65 3.78 4.92

20 2.65 3.70 4.72 2.66 3.70 4.73

21 2.62 3.57 4.49 2.65 3.59 4.51

22 2.56 3.41 4.24 2.58 3.41 4.23

23 2.46 3.22 3.99 2.50 3.23 3.98

24 2.33 3.04 3.75 2.39 3.05 3.73

25 2.18 2.85 3.52 2.25 2.86 3.48

26 2.03 2.66 3.30 2.11 2.69 3.26

27 1.87 2.49 3.11 1.98 2.53 3.09

28 1.70 2.31 2.93 1.81 2.36 2.90

29 1.54 2.15 2.76 1.65 2.21 2.75

30 1.38 1.99 2.61 1.49 2.05 2.6040



TABLE V: Reactions, propensities and nominal parameter values for the chemical oscillator. The

stochastic model parameters are uniformly distributed in the interval ±10% around the nominal

value

Reaction Propensity Nominal

parameters

PA
a1−→ PA +mRNAA a1 = c1 PA c1 = 50

PAA
a2−→ PAA +mRNAA a2 = c15 c1 PAA c2 = 0.01

PR
a3−→ PR +mRNAR a3 = c2 PR c3 = 50

PRA
a4−→ PRA +mRNAR a4 = c16 c2 PRA c4 = 5

mRNAA
a5−→ mRNAA +A a5 = c3 mRNAA c5 = 20

mRNAR
a6−→ mRNAR +R a6 = c4 mRNAR c6 = 1

A+R
a7−→ A−R a7 = c5 AR c7 = 50

PA +A
a8−→ PAA a8 = c6 PAA c8 = 1

PAA
a9−→ PA +A a9 = c7 PAA c9 = 100

PR +A
a10−−→ PRA a10 = c8 PR A c10 = 1

PRA
a11−−→ PR +A a11 = c9 PRA c11 = 0.2

A
a12−−→ ∅ a12 = c10 A c12 = 10

R
a13−−→ ∅ a13 = c11 R c13 = 0.5

mRNAA
a14−−→ ∅ a14 = c12 mRNAA c14 = 1

mRNAR
a15−−→ ∅ a15 = c13 mRNAR c15 = 10

AR
a16−−→ ∅ a16 = c14 AR c16 = 5, 000
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TABLE VI: Chemical oscillator: quartiles of the probability distribution of the expected number

A(t,θ) of molecules of protein A, computed every 5 s up to 50 s, estimated either with standard

MC simulations, or with the PCEs computed with the convex optimization approach

MC simulations Polynomial chaos

Time (s) 25% 50% 75% 25% 50% 75%

5 58 113 217 51 123 242

10 547 686 833 556 693 841

15 258 325 392 251 319 388

20 25 38 56 29 44 61

25 3 5 8 4 7 9

30 16 30 54 17 33 58

35 174 263 381 181 272 386

40 403 489 591 404 493 595

45 200 280 371 196 278 373

50 37 63 104 42 67 110
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TABLE VII: Chemical oscillator: quartiles of the probability distribution of the variance σ2
A(t,θ)

of the number of molecules of protein A, computed every 5 s up to 50 s, estimated either with

standard MC simulations, or with the PCEs computed with the convex optimization approach

MC simulations (×103) Polynomial chaos (×103)

Time (s) 25% 50% 75% 25% 50% 75%

5 54.4 115.2 229.3 53.7 129.2 259.5

10 298.5 364.7 436.4 294.4 356.5 422.6

15 192.7 235.6 285.8 187.2 238.5 295.9

20 24.3 37.4 53.5 28.4 42.0 58.7

25 3.0 5.2 7.8 3.7 5.7 8.1

30 17.1 32.9 62.3 19.3 38.1 68.9

35 159.3 238.8 346.0 161.1 242.5 344.2

40 264.3 335.9 424.5 264.1 335.3 422.1

45 164.7 226.4 305.0 164.5 231.1 311.2

50 35.6 61.1 103.2 41.4 66.4 109.2
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