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Abstract

The paper proposes two new techniques, in the framework of set membership (SM) theory, to

derive off-line an approximation of a given nonlinear model predictive control (NMPC) law.

The obtained approximated control laws satisfy input constraints and guarantee a bounded worst-

case approximation error. Such a bound can be tuned to obtain a tradeoff between closed-loop

performance, on-line evaluation complexity, off-line computational burden and memory usage. The

presented techniques are suboptimal, since their worst-case approximation error is not minimal,

however they are able to obtain good accuracy with efficient on-line computation. Both approaches

are based on the prior information given by a finite number ν of nominal control moves, computed

off-line and stored. The first technique relies on the piecewise linear interpolation of the off-line

computed data, while the second approach is based on the computation of the (sub-optimal) upper

and lower bounds of the nominal NMPC law, on the basis of the partial information given by a

subset of the whole off-line computed data. A numerical example and an automotive case study

are presented in order to show the effectiveness of the proposed approaches and to compare their

performance.

I. INTRODUCTION

In Nonlinear Model Predictive Control (NMPC) (see e.g. [1]) the control action is computed

at each sampling time by means of a receding horizon (RH) strategy, which requires the

solution of a constrained optimal control problem, where the systems state x (and, possibly,

other measured parameters and reference variables) is a parameter in the optimization. For

time invariant systems, the solution of such a parametric optimization problem defines a

static nonlinear function κ(x), denoted here as the “nominal” control law. A main issue in

the practical application of NMPC, for systems with “fast” dynamics, is the inability to solve
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the on-line optimization, required to compute the value of κ(x), within the employed sampling

time. In order to solve this issue, a significant research effort has been devoted in recent years

to investigate either more efficient on-line optimization techniques ([2], [3]) or the use of

approximated control laws κ̂ ≈ κ ([4], [5], [6], [7], [8], [9]), computed off-line and evaluated

on-line instead of solving the optimization problem. As regards this second line of research,

it has to be noted that while in the case of model predictive control for linear systems, with

quadratic cost and linear constraints, the nominal controller κ results to be a continuous

piecewise affine (PWA) function of x ([10], [11]), which can be explicitly computed off-line

and stored, in the general case of nonlinear systems and/or non-quadratic cost and nonlinear

constraints no explicit solution can be found. In this case, nonlinear function approximation

techniques have to be used. Moreover, the use of an approximated predictive controller can

be also useful to simplify the exact PWA solution in the above-mentioned case of linear

system model, since the complexity of the exact explicit solution may still be prohibitive for

on-line evaluation.

In this context, a first contribution was given in [4], considering a neural approximation

of κ. Another approach has been proposed in [5], using an off-line approximate multi-

parametric programming algorithm for the construction of a PWA approximation of the

nominal predictive control law, defined over an hypercubic partition of the state region X
where the approximation is carried out, and its implementation via a binary search tree. A

similar technique, employing a simplicial partition of X and a PWA approximation, has been

introduced in [7]. The approach [5] has been also extended to the robust min-max case in [6],

using an off-line approximate multi-parametric programming technique for the construction

of a piecewise nonlinear (PWNL) approximation. A further approach for approximate NMPC

has been used in [8], by approximating the nonlinear system model with a set of PWA systems

over the state space and computing for each one a PWA solution of the quadratic constrained

finite-time optimal control ([10], [11]). Then, a set of off-line solutions of such PWA control

laws is considered and a polynomial interpolation technique is employed to compute an

approximation of the overall control law. Finally, different techniques have been considered

in [9], where approximated MPC laws, with guaranteed accuracy (in terms of error bound

on κ − κ̂) and consequent performance and stability properties, have been derived using

set membership (SM) function approximation theory. Such techniques have been effectively

applied to complex problems such as the control of power kites for energy generation ([12])

and the control of semi-active suspension systems ([13]).
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Note that a common feature of all of the cited approaches is the need of computing off-line

a finite number ν of nominal control moves. In general, with any approximation technique

the obtained accuracy improves as ν grows. However, higher ν numbers usually also imply

higher memory usage and off-line and on-line computational times. Thus, a compromise

has to be chosen in the design of any approximated NMPC law, between accuracy, off-

line computational burden, memory usage and on-line evaluation efficiency. Indeed, different

approximation techniques are able to reach different compromises: a typical example is given

by the SM “optimal” and “nearest point” approximations described in [9]. With the SM

“optimal” approximation, the minimal worst-case accuracy is obtained (giving in practice

good accuracy with low ν values) at the price of on-line computational complexity which

grows linearly with ν. On the contrary, with the SM “nearest point” technique a very efficient

on-line evaluation can be obtained, but with lower accuracy.

In the described scenario, this paper proposes two new approximation techniques and

investigates their accuracy properties, in the framework of SM function approximation

theory. The obtained approximations are both “suboptimal” in the sense that their guaranteed

approximation error is not minimal, however they allow to set up different tradeoffs between

performance (i.e. accuracy), computational efficiency and memory usage. A numerical

example is given to show the effectiveness of the proposed approaches and to compare

their performance with that of previously investigated techniques. The paper is organized

as follows. Sections II and III describe the problem formulation and the existing SM

approximation techniques respectively. The new suboptimal SM approximations are presented

and analyzed in Section IV. Section V provides a numerical example of low order and an

automotive case study with higher order and practical relevance. Finally, conclusions are

given in Section VI.

II. PROBLEM SETTINGS

A. Nonlinear Model Predictive Control

Consider the following nonlinear state space model:

xt+1 = f(xt, ut) (1)

where xt ∈ Rn and ut ∈ Rm are the system state and control input respectively. In this

paper, it is assumed that function f in (1) is continuous over Rn × Rm. Assume that the

control objective is to regulate the system state to the origin under some input and state
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constraints represented by a compact set U ⊆ Rm and a convex set X ⊆ Rn respectively,

both containing the origin in their interiors. In this paper the input constraint set is of the

form U = {u ∈ Rm : u ¹ u ¹ u}, where the symbol ¹ denotes element-wise inequalities

and u, u ∈ Rm. By denoting with Np and Nc ≤ Np the prediction horizon and the control

horizon respectively, the following cost function J can be defined:

J(U, xt|t)
.
= Φ(xt+Np|t) +

Np−1∑
l=0

L(xt+l|t, ut+l|t) (2)

where xt+l|t denotes l step ahead state prediction using the model (1), given the input sequence

ut|t, . . . , ut+l−1|t and the “initial” state xt|t = xt. U
.
= [uT

t|t, . . . , u
T
t+Nc−1|t]

T is the vector of

the control moves to be optimized (where T stands for vector transpose operation). The

remaining predicted control moves [uT
t+Nc|t, . . . , u

T
t+Np−1|t]

T can be computed with different

strategies, e.g. by setting ut+l|t = uNc−1|t or ut+l|t = K xt+l|t, ∀l ∈ [Nc, Np − 1], where K is

a suitable matrix.

The NMPC control law is then obtained applying the following RH strategy:

1) At time instant t, get xt.

2) Solve the optimization problem:

min
U

J(U, xt|t) (3a)

s. t.

xt+l|t ∈ X, l = 1, . . . , Np (3b)

ut+l|t ∈ U, l = 0, . . . , Np (3c)

stabilizing constraints (3d)

3) Apply the first element of the solution sequence U to the optimization problem as the

actual control action ut = ut|t.

4) Repeat from step 1) at time t + 1.

Additional constraints (e.g. state contraction, terminal set, etc.. . . ), indicated as “stabilizing

constraints” in (3) are usually employed in order to achieve stability of the closed-loop

system. It is assumed that the optimization problem (3) is feasible over a set F ⊆ Rn which

will be referred to as the “feasibility set”. The application of such RH procedure implicitly

defines the predictive controller as a nonlinear static function κ of the state, i.e.:

ut = κ(xt)
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Note that the settings of this paper are those of a standard formulation of NMPC, where a

measure of the state is assumed to be available to be used for the control move computation. If

the state is not fully measurable, an output-feedback NMPC scheme can be adopted (see e.g.

[14]) and the results presented in this paper can be applied without modifications. In this work,

it is supposed that the nominal control law κ asymptotically stabilizes the origin of the closed-

loop system and that it is continuous over the feasibility set F . These properties respectively

depend on the stabilizing constraints (3d) and on the characteristics of the optimization

problem (3). For example, the nominal control law κ results to be continuous when the

problem (3) is jointly convex in x and U (see e.g. the works [15], [16]). In general, checking

a priori the continuity of κ is not an easy task. In practice, continuity of the nominal control

law can be usually achieved by using a convex stage cost L(U, x) in (2) and a sufficiently

high weight on the control inputs U . On the other hand, it has been recently shown (see [17])

that the knowledge of the discontinuities is needed to achieve an approximated NMPC law

with finite and convergent approximation error bound. Due to such a (unavoidable) need of

the exact knowledge of discontinuities, in the discontinuous case the approximation problem

is more complex than in the continuous one.

B. Stabilizing properties of approximated NMPC laws

In the standard NMPC formulation, the nominal control law κ is evaluated by solving the

optimization problem (3) on-line. However, a limitation in the practical use of NMPC is

the presence of fast plant dynamics, for which the required sampling time may be too low

for real-time optimization. A viable solution to this problem is the use of an approximated

control function κ̂ ≈ κ, derived off-line, whose on-line evaluation is more efficient. It is

considered that κ̂ is defined over a compact set X , containing the origin in its interior:

κ̂ : X → R, X ⊆ F

Moreover, κ̂ is computed on the basis of the knowledge of a finite number ν of nominal

control moves, i.e.:

ũk = κ(x̃k), k = 1, . . . , ν (4)

where the state values x̃k are suitably chosen and define the set:

Xν = {x̃k, k = 1, . . . , ν} ⊆ F
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Note that the points x̃k, k = 1, . . . , ν must be inside the feasibility set F (in order to be

able to compute the corresponding nominal MPC control move ũk) but need not to belong to

the set X . A major issue arising in the use of approximated NMPC is about the guaranteed

closed-loop performance obtained when κ̂ is employed instead of κ. To this regard, it has

been proved (see e.g. [9]) that if κ̂ has the following key properties:

i) Input constraint satisfaction:

κ̂(x) ∈ U ∀x ∈ X (5)

ii) The pointwise approximation error ∆κ̂(x) = κ(x)− κ̂(x) is bounded:

‖∆κ̂(x)‖ ≤ ζ, ∀x ∈ X (6)

where ‖ · ‖ is a suitable norm, e.g. Euclidean.

iii) The bound ζ(ν) converges to zero:

lim
ν→∞

ζ(ν) = 0 (7)

then it is always possible to explicitly compute a suitable finite value of ν, such that there

exist a finite value ∆ ∈ R+ with the following characteristics:

i) the distance between the closed loop state trajectories obtained with the nominal

and the approximated control laws is bounded by ∆(ν), which can be explicitly

computed

ii) lim
ν→∞

∆(ν) = 0

iii) the closed loop state trajectories, obtained when the approximated control law is

used, are kept inside the compact set X , and asymptotically converge to an arbitrarily

small neighborhood of the origin

As regards the asymptotic behaviour of ζ as ν → ∞, it is assumed that Xν is chosen such

that the following property holds:

lim
ν→∞

dH(X ,Xν) = 0 (8)

where dH(X,Xν) is defined as:

dH(X ,Xν)
.
= sup

x∈X
inf

x̃∈Xν

(‖x− x̃‖2)

The quantity dH(X, Xν) in the described context is equivalent to the Hausdorff distance

between the sets X and Xν (see [18]). Note that uniform gridding over X satisfies condition
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(8).

Properties (5)-(7) imply that there exists a finite and computable bound on the worst-case

accuracy obtained with the employed approximated control law, and that such a bound

decreases to zero as ν grows. Indeed, several studies in the literature (see e.g. [19] and the

references therein) indicate that, if κ is stabilizing and continuous, the possibility to achieve

an arbitrarily small approximation error bound ζ is sufficient for closed loop trajectory

boundedness and convergence to a neighborhood of the origin. However, larger values

of ν, needed to achieve small approximation error bounds, usually correspond to higher

memory usage and computational times (both on-line and off-line), leading to the need of

choosing a tradeoff between accuracy, computational efficiency and employed memory. In

[9], two different SM techniques have been proposed, both satisfying properties (5)-(7),

whose performance are complementary. In particular, the optimal (OPT) SM approximation

gives the minimal worst-case error, but higher computational complexity with respect to

the nearest point (NP) approach, whose guaranteed accuracy is worse but with much more

efficient computation. The aim of this paper is to provide new approaches to approximate

an NMPC law, able to achieve better tradeoffs between accuracy and complexity. The

properties of the OPT and NP techniques are now briefly recalled, as they are instrumental

to introduce the main results presented in this work.

III. SET MEMBERSHIP APPROXIMATIONS OF NMPC WITH GUARANTEED ACCURACY

A. Prior information

As already pointed out, the approximation of function κ is performed on a compact set

X ⊆ F . Since X and the image set U of κ are compact, continuity of κ over F implies

that its components κi, i = 1, . . . , m are Lipschitz continuous functions over X , i.e. there

exist finite constants γi, i = 1, . . . , m such that ∀x1, x2 ∈ X , ∀i ∈ [1,m], |κi(x
1)−κi(x

2)| ≤
γi‖x1−x2‖2, and ∀x1, x2 ∈ X , ‖κ(x1)−κ(x2)‖2 ≤ ‖γ‖2 ‖x1−x2‖2, where γ = [γ1, . . . , γm]T .

This prior information, together with the knowledge of the off-line computed values (4), can

be summarized by concluding that

κ ∈ FFS, (9)

where the set FFS (Feasible Functions Set) is defined as FFS = {κ : X → U, κ =

[κ1, . . . , κm]T : κi ∈ FFSi, ∀i ∈ [1,m]}, with FFSi = {κi ∈ Aγi
: κi(x̃

k) = ũk
i , k =
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1, . . . , ν} and Aγi
being the set of all continuous Lipschitz functions κi on X , with constant

γi. As regards the computation of the Lipschitz constants γ = [γ1, . . . γm], which are needed

to apply the presented SM techniques, estimates γ̂i, i = 1, . . . , m can be derived off-line as

follows:

γ̂i = inf
(
γ̃i : ũh

i + γ̃i‖x̃h − x̃k‖2 ≥ ũk
i , ∀k, h = 1, . . . , ν

)
(10)

Convergence of γ̂i to γi, i = 1, . . . ,m has been showed e.g. in [9], i.e. lim
ν→∞

γ̂i = γi, ∀i =

1, . . . , m.

B. Optimal SM approximation

With the OPT approach, for a given value of ν the obtained approximating function κOPT

gives the minimal worst-case approximation error.

For each function κi, i ∈ [1, m] and for a given value x ∈ X , an approximation κOPT
i (x) ≈

κi(x) is computed as:

κOPT
i (x) = 1

2
[κi (x) + κi (x)] ∈ FFSi (11)

where κi (x) = sup
κ̃i∈FFSi

κ̃i (x) and κi (x) = inf
κ̃i∈FFSi

κ̃i (x), called “optimal bounds”, are the

tightest upper and lower bounds of κi(x), according to the considered prior information. The

optimal bounds can be computed as:

κi(x)
.
= min

[
ui, min

k=1,...,ν

(
ũk

i + γi‖x− x̃k‖2

)] ∈ FFSi

κi(x)
.
= max

[
ui, max

k=1,...,ν

(
ũk

i − γi‖x− x̃k‖2

)] ∈ FFSi

(12)

Function κOPT
i (11) is such that the related guaranteed approximation error E(κOPT

i )
.
=

sup
κ̃i∈FSSi

‖κ̃i − κOPT
i ‖p is minimal for any Lp-norm, with p ∈ [1,∞], and it is therefore equal

to the radius of information rp,i (see e.g. [20]).

Then, the optimal SM approximation κOPT ≈ κ is defined as:

κOPT =
[
κOPT

1 , . . . , κOPT
m

]T (13)

It has been proved that (see [9]):

κOPT : X → U (14)

‖∆κOPT(x)‖2
.
= ‖κ(x)− κOPT(x)‖2 ≤ eOPT(x) ≤ ‖r∞‖2 = ζOPT, ∀x ∈ X (15)

lim
ν→∞

ζOPT(ν) = 0 (16)
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where r∞
.
= [r∞,1, . . . , r∞,m] and eOPT(x)

.
= ‖1

2
(κi(x)− κi(x))‖2, i ∈ [1, m]. Thus, function

κOPT satisfies the key properties (5)-(7). As regards the computation of r∞,i, i = 1, . . . , m,

the results presented in [21] can be employed.

C. Nearest point SM approximation

The NP approach gives an approximating function whose accuracy is not the optimal one,

but whose computation is simpler. In particular, for a given value of ν, the NP approximation

leads in general to a higher approximation error bound ζNP than OPT approximation, but to

lower on-line computation times, whose growth as a function of ν is much slower than that

of OPT approximation. Thus, the NP approximation required to guarantee given stability

and performance properties may need much lower on-line computation times with respect to

OPT approximation, at the expenses of longer off-line computation time and higher memory

usage.

For any x ∈ X , denote with x̃NP ∈ Xν a state value such that:

‖x̃NP − x‖2 = min
x̃∈Xν

‖x̃− x‖2. (17)

Then, the NP approximation κNP(x) is computed as:

κNP(x)
.
= κ(x̃NP) (18)

Such approximation trivially satisfies condition (5). Moreover, it has been shown that also

the key properties (6), (7) are satisfied:

‖∆κNP(x)‖2 = ‖κ(x)− κNP(x)‖2 ≤ ‖γ‖2‖x− x̃NP‖2 = eNP(x) ≤
≤ ζNP = ‖γ‖2 dH(X ,Xν), ∀x ∈ X

(19)

lim
ν→∞

ζNP(ν) = 0, (20)

and that, for a given value of ν, ζOPT ≤ ζNP. Thus, the same guaranteed accuracy can be

obtained with a lower ν value by OPT approach with respect to NP. However, the evaluation

efficiency of NP can be much higher than that of OPT.

The main contribution of this paper is to provide two alternative techniques, giving different

compromises between accuracy, memory usage and evaluation complexity with respect to

OPT and NP. The accuracy properties of these new approaches will be investigated in the

SM framework. Since both the described techniques give a non-minimal worst-case accuracy

(as it also happens with the NP approach), they will be referred to as “suboptimal” SM

approximations. For simplicity of notation, in the remaining part of the paper it will be

assumed that κ : Rn → R.
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IV. SUBOPTIMAL SM APPROXIMATIONS OF NMPC

In this section two suboptimal approximation methods are presented, with improved evalu-

ation efficiency with respect to the OPT technique and improved accuracy with respect to

the NP approach, and their accuracy properties are investigated in the framework of SM

approximation.

A. Piecewise linear approximation

Let X1, X2, ..., Xq be a triangulation defined by the set of points Xν . Such a triangulation is

a collection of sets X1, X2, ..., Xq such that
q⋃

j=1

Xj = chull(Xν),

int(Xh) ∩ int(Xj) = 0 for h 6= j,

all Xj’s are simplices (triangles for n = 2),

the vertices of the simplices are points of Xν ,

all points of Xν are vertices of the simplices.

Here int(·) denotes the interior of a set and chull(·) denotes the convex hull of a set. A

triangulation partitions the convex hull of Xν into a set of simplices, which will be also

referred to as “triangles” in the following. For each triangle Xj , consider the set of points

{x̃j,k, k = 1, . . . , n + 1 : x̃j,k is a vertex of Xj}

Since a triangle has n + 1 vertices, such a set contains n + 1 points in Rn. Let Kjx + Qj be

the linear affine function interpolating these points. The coefficients Kj ∈ Rn, Qj ∈ R can

be trivially obtained as


 KT

j

Qj


 =




x̃j,1 T 1

. . . . . .

x̃j,n+1 T 1




−1 


ũj,1

. . .

ũj,n+1


 (21)

where ũj,k = κi(x̃
j,k). Assume that X ⊆ chull(Xν) and define the piecewise linear approxi-

mation (LIN)

κLIN(x)
.
= Kĵx + Qĵ (22)

where ĵ ∈ arg min
j=1,...,q

d(x,Xj) and d(x,X)
.
= inf

ξ∈X
(‖x − ξ‖2) is the distance between the

point x and the set X . Clearly, for given x ∈ X , Xĵ is a triangle which contains x. If

x ∈ int(Xĵ), this triangle is unique. According to the above definition, κLIN is a continuous
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piecewise linear function, which can be used to approximate κ. The next result shows that

κLIN satisfies the properties (5)-(7). Define the approximation error:

∆κLIN(x)
.
= κ(x)− κLIN(x) (23)

Theorem 1: The following properties hold:

i) κLIN(x) ∈ U, ∀x ∈ X .

ii) The pointwise approximation error ∆κLIN(x) of κLIN is bounded:

∀x ∈ X , |∆κLIN(x)| ≤ eLIN(x) = |κOPT(x)− κLIN(x)|+ eOPT(x) ≥ eOPT(x)

⇒ ∀x ∈ X , |∆κLIN(x)| ≤ ζLIN = sup
x∈X

eLIN(x) ≥ ζOPT

iii) lim
ν→∞

ζLIN(ν) = 0.

Proof: See the appendix.

B. SM Neighborhood approximation

Let X1, X2, ..., Xq be a collection of sets such that

X ⊆
q⋃

j=1

Xj.

For any x ∈ X , let ĵ ∈ arg min
j=1,...,q

d(x,Xj), so that Xĵ contains x. Define the sets of indices

Pj
.
=

{
k : x̃k ∈

(
Xj

⋂
Xν

)
∪ {x̃NP}

}
, j = 1, . . . , q, (24)

where x̃NP is defined by (17). The SM neighborhood (NB) approximation of κ is given by:

κNB(x)
.
=

1

2
[κNB (x) + κNB (x)] (25)

with

κNB(x)
.
= min

[
u, min

k∈Pĵ

(
ũk + γ‖x− x̃k‖2

)]

κNB(x)
.
= max

[
u, max

k∈Pĵ

(
ũk − γ‖x− x̃k‖2

)]
.

(26)

Note that the function κNB is defined similarly to κOPT, except that only a subset of points

of Xν is used to compute κNB(x) and κNB(x). γ in (26) is selected on the basis of the

estimates (10). In the Set Membership context, the estimates (10) guarantee that the prior

assumptions on function κ are not invalidated by the available data. If γ is increased, the

obtained approximation tends to coincide with the Nearest Point technique.
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In order to show that κNB satisfies the properties (5)-(7) and to evaluate its accuracy, let us

define the indices
k

.
= arg min

k=1,...,ν
(ũk + γ‖x− x̃k‖2)

k
.
= arg max

k=1,...,ν
(ũk − γ‖x− x̃k‖2)

j
.
= arg min

k∈Pĵ

(
ũk + γ‖x− x̃k‖2

)

j
.
= arg max

k∈Pĵ

(
ũk − γ‖x− x̃k‖2

)

Moreover, define the following scalar quantities:

δ(x) = γ(‖x̃k − x̃j‖2 + ‖x̃k − x̃j‖2) (27)

∆κNB(x)
.
= κ(x)− κNB(x)

Theorem 2: The following properties hold:

i) κNB(x) ∈ U, ∀x ∈ X .

ii) The pointwise approximation error ∆κNB(x) of κNB is bounded:

∀x ∈ X , |∆κNB(x)| ≤ eNB(x)
.
= min(eNP, eOPT(x) + δ(x))

⇒ ∀x ∈ X , |∆κNB(x)| ≤ ζNB = sup
x∈X

eNB ≤ ζNP

iii) The following convergence property holds:

lim
ν→∞

ζNB(ν) = 0.

iv) If k = j and k = j then

κNB(x) = κOPT(x).

Proof: See the appendix.

Remark 1: For a given number of data ν, under suitable choices of the sets X1, X2, ..., Xq

and using efficient search algorithms, both LIN and NB approximations lead to a significantly

better on-line computational efficiency than the OPT approximation, at the expense of higher

memory usage and some degradation of the worst case approximation error. For example, a

technique that gives dramatically better computational efficiency is to organize off-line the

sets X1, ..., Xq using a uniform gridding of X . Then, a very efficient on-line search for the

index ĵ corresponding to the active set can be performed. Note that, in practical application, a

higher worst-case accuracy does not necessarily imply that the performance of the suboptimal

techniques are worse than those of the optimal one. These aspects will be highlighted by the

numerical example of Section V-A.
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V. EXAMPLES

A. Numerical example

Consider the following two-dimensional continuous-time nonlinear system (see e.g. [22])




ẋ1(t) = x2(t) +
(1 + x1(t))

2
u(t)

ẋ2(t) = x1(t) +
(1− 4x2(t))

2
u(t)

(28)

whose origin is an unstable equilibrium point. The input constraint set U is:

U = {u ∈ R : |u| ≤ 4}

The following discrete time model, to be used in the nominal MPC design, has been obtained

by forward difference approximation:

xt+1 =


 1 Ts

Ts 1


 xt +

Ts

2





 1

1


 +


 1 0

0 −4


 xt


 ut

with sampling time Ts = 0.1 s. The nominal NMPC controller κ is designed according to (3)

with horizons Np = 30, Nc = 30 and the following functions L and Φ:

L(x, u) = xT Qx + uT Ru, Φ = 0

where

Q =


 0.5 0

0 0.5


 , R = 0.5

The following linear state inequality constraints define the considered set X:

X = {x ∈ R2 : ‖x‖∞ ≤ 3}

Moreover, the following terminal constraint set (see e.g. [1]) has been included to enforce

stability of the origin of the nominal discrete-time model:

Xf = {x ∈ R2 : ‖x‖∞ ≤ 0.1}

The origin of the closed-loop system with the linear control law ut = −KLQRxt, KLQR =

[2.1, 2.1] is asymptotically stable for any initial state x0 ∈ Xf.

The optimization problem (3), whose solution defines the control law κ(x), has been solved

using a sequential constrained Gauss-Newton quadratic programming algorithm (see e.g.

[23]), where the underlying quadratic programs have been solved using the MatLabr function

quadprog. The mean computational time of the on-line optimization was between 1 s and

8 10−2 s (depending on the actual state value xt) with a mean value of 1.7 10−1 s, using
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MATLABr 7 with an Intelr CoreTM2 Duo @2.4 GHz processor and 2 GB RAM.

Fig. 1(a) shows the set X considered for the approximation, together with the constraint set

X. The level curves of the optimal cost function

J∗(x) = min
U

J(U, x)

are reported too. The following approximating functions have been considered:

i) Optimal SM approximation κOPT

ii) Nearest point approximation κNP

iii) Neighborhood SM approximation κNB, with partitions Xj computed by employing

a uniform grid on the set X , in order to achieve fast on-line computational times.

iv) Linear interpolation κLIN, with partitions Xj computed applying the Delaunay

triangulation (see e.g. [24]) to the set Xν

Each of the considered approximations has been computed using different values of ν. An

example of the simulated closed-loop state trajectories obtained with ν = 2.5 103 and initial

condition x(0) = [2.1, −17]T is reported in Figs. 1(b) and 2. It can be noted that the

closed-loop trajectories are practically superimposed (see Fig. 1(b)), except for a quite small

neighborhood of the origin (see Fig. 2). In particular, it can be noted that control laws κ

and κLIN obtain no steady-state offset, as it can be expected since in the neighborhood of the

origin both these controllers are equal to an asymptotically stabilizing linear state feedback

law. On the contrary, the SM optimal, nearest point and neighborhood approximations make

the system state converge to an equilibrium point close to the origin. Such a behaviour, which

is confirmed by the results of extensive simulation tests reported in Table I below, is due to

the fact that the origin is an unstable equilibrium point and that both κOPT and κNB are equal

to zero in its proximity (provided that the equilibrium point x̃ = [0, 0]T , ũ = 0 is included

in the off-line computed data set Xν). The regulation precision obtained with the OPT and

NB laws can be improved by using a higher number of off-line computed points near the

origin, making the state converge to an arbitrary small neighborhood of [0, 0]T . Alternatively,

a dual-mode controller could be used, switching to a linear stabilizing state feedback control

law when the system state enters the related reachable set (or a subset of it).

To evaluate the performance and computational times of the considered control laws, 500

simulations have been performed starting from different initial conditions, chosen with

uniform random gridding over X . Each simulation lasted 300 time steps (i.e. 30 simulation

seconds). The mean computational times t, over all time steps of all simulations, obtained
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with each controller, are reported in Table II. As a measure of control system performance,

the relative Euclidean distance dr(t), r = 1, . . . , 500 has been considered:

dr(t) =
‖φr(t)− φ̂

r
(t)‖2

‖φr(t)‖2

where φr(t) and φ̂
r
(t) are the closed-loop state trajectories obtained in the r-th simulation

with the nominal controller and the approximated one respectively, given the same initial

state xr(0). Then, the following definition of transient interval has been considered:

tTI,r = arg min
t

t : ‖φ̂r
(t)‖2 ≤ 0.1 ‖xr(0)‖2

and the mean relative distance d over the time intervals [0,tTI,r] of all the simulations has

been computed:

d =
1

500

500∑
r=1


 1

tTI,r

tTI,r∫

0

dr(t) dt




Moreover, as a measure of regulation precision, the mean value dOR of the norm of the state

trajectory ‖φ̂r
(t)‖2, r = 1, . . . , 500 over the last 2 seconds of all the simulations has been

also evaluated:

dOR =
1

500

500∑
r=1


1

2

30∫

28

‖φ̂r
(t)‖2 dt




The values of d and dOR obtained with each approximated controller are given in Tables I and

TABLE I

NUMERICAL EXAMPLE: MEAN REGULATION PRECISION d OR .

ν κOPT κNP κNB κLIN

2.5 103 6.0 10−3 6.0 10−3 6.0 10−3 2 10−13

4.9 103 4.4 10−9 4.4 10−9 4.4 10−9 2 10−13

9.7 103 4.4 10−9 4.4 10−9 4.4 10−9 2 10−13

2.5 104 4.4 10−9 4.4 10−9 4.4 10−9 2 10−13

III respectively. Finally, Table IV shows the memory required by each of the approximated

control laws for each value of ν. Indeed, the reported computational times and memory

requirements are intended to be used to compare the different control laws in relative terms

only. No memory optimization effort has been done on the employed data structures and all

the variables have been stored using 4-Byte floating point representation.
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TABLE II

NUMERICAL EXAMPLE: MEAN COMPUTATIONAL TIMES.

ν κOPT κNP κNB κLIN

2.5 103 3.3 10−4 9.0 10−5 1.3 10−4 3.8 10−4

4.9 103 1.0 10−3 1.0 10−4 1.5 10−4 5.9 10−4

9.7 103 2.0 10−3 1.1 10−4 1.7 10−4 8.1 10−4

2.5 104 5.0 10−3 7.2 10−5 1.9 10−4 7.0 10−4

TABLE III

NUMERICAL EXAMPLE: MEAN TRAJECTORY DISTANCE d.

ν κOPT κNP κNB κLIN

2.5 103 7.8% 8.6% 5.9% 1.6%

4.9 103 2.5% 3.0% 2.7% 0.7%

9.7 103 1.5% 1.9% 1.5% 0.2%

2.5 104 1.1% 1.7% 1.3% 0.1%

TABLE IV

NUMERICAL EXAMPLE: MEMORY USAGE (KB)

ν κOPT κNP κNB κLIN

2.5 103 0.6 102 0.9 102 0.7 102 3.0 102

4.9 103 1.2 102 1.6 102 1.3 102 7.0 102

9.7 103 2.3 102 3.6 102 2.8 102 1.5 103

2.5 104 6.0 102 1.3 103 7.5 102 4.3 103

From Table II it can be noted that the NP approximation κNP achieves the lowest compu-

tational values, however its performance (Table III) is also the worst (though quite close

to those of OPT and NB approximations) and the memory occupation is high (only LIN

technique has higher memory requirements). Function κOPT has better precision and the

lowest memory usage, but also the highest computational times. The best performance is

obtained for any ν value by the linear interpolation κLIN, at the cost of higher computational

time (but still about 250-500 times lower than on-line optimization) and memory usage. In

particular, with ν = 2.5 103 points the linear interpolation achieves better performance than

the other techniques in most cases, together with asymptotic stability of the origin. Note
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that the optimal SM approximation has worse performance than LIN technique: this doesn’t

contradict the theoretical results since the OPT approximation guarantees the lowest worst

case error, which doesn’t imply that the average precision in practice is the best. This is also

the reason why in some cases (see Table III for the case ν = 2.5 103) the NB technique (which

employs only a subset of the data considered by the OPT approximation) has better average

performance than OPT. In fact, the SM neighborhood approximation has performance close

to those of OPT and quite fast computational times (slower than the NP technique only, see

Table II). This is also put into evidence by the fact that in most cases (93% with ν = 2.5 103

up to 96% with ν = 2.5 104) the input κNB(x) = κOPT(x) given the same x value.

Thus, the presented example shows how both LIN and NB techniques can be tuned to achieve

a suitable tradeoff between precision, on-line evaluation time, memory usage and off-line

computation, providing more degrees of freedom in the control design than the previously

introduced OPT and NP approaches.

B. Case study: vehicle stability control

In order to give an example of higher order and practical relevance of the application of

the presented SM approximation techniques, an automotive case study is presented here. For

more details on this application, the interested reader is referred to [25], [26]. A car equipped

with a Rear Active Differential (RAD) is considered. Such a device can be used to split the

traction torques acting on the left and right rear wheels with different ratios than the 50%-50%

imposed by standard (passive) differentials. This way, an equivalent yaw moment applied to

the car center of gravity can be generated, able to influence the vehicle lateral dynamics in

order to improve vehicle maneuverability and to assist the driver in critical situations and

harsh maneuvers. The lateral vehicle dynamics can be described using the single track model

reported in Fig. 3, whose equations are the following (see e.g. [27]):

1715v(τ)β̇(τ) + 1715v(τ)ψ̇(τ) = Fyf (τ) + Fyr(τ)

2700ψ̈(τ) = 1.07Fyf (τ)− 1.47Fyr(τ) + Mz(τ)
, (29)

where τ is the continuous time variable. In model (29), Mz is the yaw moment issued by

the RAD and δ is the front steering angle commanded by the driver through the handwheel.

Moreover, β is the sideslip angle, ψ is the yaw angle and v is the vehicle speed. Fyf and

Fyr are the front and rear tyre lateral forces, which can be expressed as nonlinear functions
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of the other variables (see e.g. [28] for more details):

Fyf = Fyf (β, ψ̇, v, δ)

Fyr = Fyr(β, ψ̇, v, δ)
(30)

The yaw moment given by the RAD depends on the current i(τ) originated by the control

algorithm (see [26] for a detailed description of the RAD device). As a first approximation,

the actuator behavior can be described as:

Mz(τ) = 2500i(τ − 0.02) (31)

Equations (29), (30) and (31) can be rearranged in the state equation form:
 ψ̈(τ)

β̇(τ)


 = f(ψ̇(τ), β(τ), v(τ)δ(τ), i(τ − 0.02)) (32)

The input variable i(τ) is employed for control purposes, while δ(τ) is not manipulable and

describes the driver’s maneuvering intention and v(τ) is a measured model parameter. The

control requirements in terms of understeer characteristics improvements can be taken into

account by a suitable choice of a reference signal ψ̇ref(τ) generated on the basis of the current

values of the steering angle δ(τ) and of the vehicle speed v(τ). Details on the computation

of the reference yaw rate can be found in [26]. In order to take into account such reference

following requirements, the NMPC cost function can be designed in order to minimize the

amount of the error variable e(τ):

e(τ) = ψ̇ref(τ)− ψ̇(τ)

The NMPC move computation is performed at discrete time instants t Ts, t ∈ N, defined by

the sampling period Ts = 0.01 s and on the basis of the following state equations obtained

by discretization of (32), e.g. by means of forward difference approximation (for simplicity,

the notation t + l , (t + l)Ts will be used):
 ψ̇t+1

βt+1


 = f̃(ψ̇t, βt, vt, δt, it−2) (33)

At each sampling time t, the measured values of the state ψ̇t, βt and of the speed vt,

together with the requested value of the yaw rate reference ψ̇ref,t, and of the input variables

δt, it−1, . . . , it−2 are used to compute the control move through the optimization of the

following performance index:

Jv =

Np−1∑

l=0

e2
t+l+1|t + 10−6 i2t+l|t, (34)
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where Np = 100, et+l|t is the lth step ahead prediction of the error variable obtained as

et+l|t , ψ̇ref,t − ψ̇t+l|t.

As anticipated, the value of ψ̇ref,t is computed using the current values of δt and vt. The

predicted yaw rate ψ̇t+l|t is obtained via the state equation (33), starting from the “initial

condition”: 
 ψ̇t

βt




and using the following values of the inputs i and δ:
 δt|t = δt+1|t = . . . = δt+99|t

it−2, . . . , it−1, it|t, . . . , it+4|t, . . . , it+99|t




where the control moves it|t, . . . it+4|t are optimization variables (i.e. the control horizon is

equal to 5 steps) and it+l|t = it+4|t, l = 5, . . . , 99. Thus, since during the prediction horizon

the value of the steering angle δ is kept constant at the value δt|t measured at time instant t, the

optimization of the index (34) is performed with respect to the variables I = [it|t, . . . , it+4|t]T .

Therefore the performance index Jv depends on the vector wt ∈ R6 of the measured variables:

wt ,
[
ψ̇t, βt, δt, vt, it−2, . . . , it−1

]T

(35)

Moreover, the amount of the yaw moment generated by the employed active device is subject

to its physical limits. In particular, the considered device has an input current limitation

of ± 1 A which correspond to the range of allowed yaw moment of ±2500 Nm that

can be mechanically generated. Therefore, saturation aspects of the control input (i.e. the

actuator current i(τ)) have to be carefully taken into account in the control design. Thus, the

optimization problem (3) considered in the nominal NMPC law is the following:

min
I

Jv (36a)

subject to

I ∈ I =
{
it|t : |it+4|t| ≤ 1

}
(36b)

The obtained predictive controller results to be a nonlinear static function of the variable wt

defined in (35):

it = κv(wt) (37)

For a given wt, the value of the function κv(wt) is computed by solving at each sampling time

t the constrained optimization problem (36). However, such online optimization problem can
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not be solved at the sampling period required for this application (i.e. 0.01 s). This issue has

been tackled in [25] by using the NP approximation method recalled in Section III-C. Here,

the NB approach introduced in Section IV-B is applied to the same problem and the obtained

results are compared to those of the NP technique. A number ν = 2.28 104 of nominal

control values ĩ = κv(w̃) and of the respective values of w̃ has been collected off-line inside

an hypercubic set W , defined by the following inequalities:

W =





w :




−0.5

−0.1

−0.1

22

−1

−1




¹ w ¹




0.5

0.1

0.1

33

1

1








.

Such a set has been chosen through extensive closed loop simulations of harsh maneuvers

using the nominal control law. Then, the set Wν of data collected off-line has been used

to derive the NP and NB approximations. The latter has been designed by partitioning the

set Wν into sets Wj, j = 1, . . . , 4 defined on the basis of the value of vt (i.e. the fourth

component of the variable wt, see (35)) as follows:

W1 = {w : 22 ≤ v ≤ 24.75}
W2 = {w : 24.75 < v ≤ 27.5}
W3 = {w : 27.5 < v ≤ 30.25}
W4 = {w : 30.25 < v ≤ 33}

. (38)

This way, at each sampling time the active set Wĵ , needed to compute on-line the NB

approximation (25), can be found on the basis of a simple search based on the value of vt.

The memory requirement of the NP approximation is equal to 160 KB (i.e. 2.28 104 vectors

w̃ of 6 Byte each, plus 2.28 104 values of the corresponding control inputs ũ of 1 Byte each),

while 165 KB are required for the NB approach (i.e. the same as the NP, plus the vehicle

speed values that delimitate the intervals in (38)). Fig. 4(a) shows the performance obtained

by the two considered approximated NMPC laws and by the uncontrolled vehicle during a

step steer maneuver performed at 100 km/h with a handwheel amplitude of 50◦. It can be

noted that both the NB and NP approaches are able to improve the vehicle performance with

respect to the uncontrolled case; the NB approach achieves a better steady-state accuracy

than NP, as well as a more damped transient behavior. Such a better accuracy is obtained at
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the expense of a higher on-line computational time: 0.004 s are needed by the NB approach

with respect to the 5 10−5 s achieved the NP technique. These computational times, obtained

using MatLabr 7 under MS Windows XP and an Intelr Core(tm)2 Duo T7700@2.4 GHz

processor with 2 GB RAM, are both lower than the employed sampling time of 0.01 s. Thus,

given its better performance, in the presented case the NB approach should be preferred

with respect to the NP approximation. Indeed, since a present automotive Electronic Control

Unit (ECU) has lower computational capacity than the computer employed in this example,

a different tradeoff (or the use of the NP approach, which is less computationally expensive)

may be needed with the NB technique to allow the implementation on a real ECU. Fig. 4(b)

shows the courses of the control input obtained during the step steer maneuver: it can be

noted that both the NB and NP approaches satisfy input constraints, as expected from the

theoretical results. As a final remark, note that in this example the nominal control law is a

static function not only of the state xt = [ψ̇t, βt]
T , but also of past control input values and

of other inputs and parameters like the front steering angle δt and the vehicle speed vt: thus,

this example also shows how the presented theoretical results, which have been formulated

for the case of a state feedback control law, can be straightforwardly applied also to the case

of NMPC laws that depend on other variables and parameters, as long as the control law is

a static function of all its arguments.

VI. CONCLUSIONS

The linear interpolation (LIN) and Set Membership (SM) neighborhood (NB) techniques have

been presented, with the aim of approximating a given predictive control law in the framework

of SM theory. The newly introduced techniques have been also compared with the optimal

(OPT) and with the Nearest Point (NP) SM approaches described in previous works. All these

techniques rely on the off-line computation of a finite number ν of nominal NMPC control

moves. A numerical example has been employed to show that the various approaches can

be tuned to achieve a suitable tradeoff between on-line efficiency, accuracy, memory usage

and off-line computation. It has been shown that, for a given value of ν, the LIN approach

gives the highest accuracy in practice, at the expense of higher memory usage. Thus, the LIN

technique should be used when high memory is available. The NB approach is practically

less accurate than LIN but it achieves a guaranteed error and computational time between

those of the OPT technique and of the NP approach, with lower memory requirements than

LIN, so that it can be tuned to adapt to the available memory and computational power.
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Finally, an automotive case study where the nominal NMPC law depends on 6 variables has

been briefly described, in order to show the applicability of the presented approaches also

to problems of higher order and practical relevance. It has to be noted that the proposed

approach can be effectively used in applications where the nominal NMPC law depends on

up to 8-10 variables.
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APPENDIX

Proof of Theorem 1

i) For any x ∈ X , consider the the vertices x̃l, l = 1, . . . , n + 1 of the partition Xĵ :

ĵ ∈ arg min
j=1,...,q

d(x,Xj), and the corresponding nominal control moves ũl = κ(x̃l).

Note that ũl = κLIN(x̃l) by definition (21). The point x can be expressed as:

x =
n+1∑
l=1

wl x̃
l, wl > 0∀l ∈ [1, n + 1],

n+1∑
l=1

wl = 1

and the approximated control move κLIN(x) can be therefore computed as:

κLIN(x) =
n+1∑
l=1

wl (Kjx̃
l + Qj) =

=
n+1∑
l=1

wl κ
LIN(x̃l) =

n+1∑
l=1

wl ũ
l

thus it can be noted that:

κLIN(x) ≤ max
l=1,...,n+1

(ũl)
n+1∑
l=1

wl = max
l=1,...,n+1

(ũl) ≤ u

κLIN(x) ≥ min
l=1,...,n+1

(ũl)
n+1∑
l=1

wl = min
l=1,...,n+1

(ũl) ≥ u

⇒ κLIN(x) ∈ U
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ii) |∆κLIN(x)| = |κ(x) − κLIN(x)| = |κOPT(x) + ∆κOPT(x) − κLIN(x)| ≤
|κOPT(x)−κLIN(x)|+|∆κOPT(x)| ≤ |κOPT(x)−κLIN(x)|+eOPT(x) = eLIN(x) ≥ eOPT(x)

eLIN(x) ≤ sup
x∈X

eLIN(x)
.
= ζLIN ≥ sup

x∈X
eOPT(x) = ζOPT

iii) Considering that lim
ν→∞

eOPT(x) = 0, ∀x ∈ X (i.e. lim
ν→∞

κOPT(x) = κ(x), see [9]) and

that, since κ is Lipschitz continuous, lim
ν→∞

κLIN(x) = κ(x), ∀x ∈ X , it can be noted

that:

∀x ∈ X , lim
ν→∞

eLIN(x) =

= lim
ν→∞

|κOPT(x)− κLIN(x)|+ lim
ν→∞

eOPT(x) =

|κ(x)− κ(x)|+ 0 = 0

thus

lim
ν→∞

ζLIN(ν) = lim
ν→∞

sup
x∈X

eLIN(x, ν) = 0

¥

Proof of Theorem 2

i) From (25)-(26) it can be noted that, for any x ∈ X :

κNB(x) =
1

2
(κNB + κNB) ≤ κNB ≤ u

κNB(x) =
1

2
(κNB + κNB) ≥ κNB ≥ u

⇒ κNB(x) ∈ U

ii) For any x ∈ X , note that (from (12) and (26)):

κNB(x) ≤ κOPT(x) ≤ κ(x) ≤ κOPT(x) ≤ κNB(x)

κNB(x)− κNB(x) ≤ κ(x)− κNB(x) ≤ κNB(x)− κNB(x)

−1

2
(κNB(x)− κNB(x)) ≤ κ(x)− κNB(x) ≤

≤ 1

2
(κNB(x)− κNB(x))

⇒ |κ(x)− κNB(x)| ≤ 1

2
(κNB(x)− κNB(x)) (39)

Consider now the distance between the optimal upper bound κOPT(x) (12) and the

suboptimal upper bound κNB(x) (26). Since by definition κOPT(x) ≤ κNB(x) ≤ u,
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if κOPT(x) = u then κNB(x)− κOPT(x) = u− u = 0. Otherwise note that:

0 < κNB(x)− κOPT(x) ≤
ũj + γ‖x− x̃j‖2 − ũk − γ‖x− x̃k‖2 ≤
≤ γ‖x̃j − x̃k‖2 + γ‖x− x̃j − x + x̃k‖2 =

= 2γ‖x̃j − x̃k‖2

Similarly, it can be obtained that:

0 < κOPT(x)− κNB(x) ≤
ũk − γ‖x− x̃k‖2 − ũj + γ‖x− x̃j‖2 ≤
≤ γ‖x̃j − x̃k‖2 + γ‖x− x̃j − x + x̃k‖2 =

= 2γ‖x̃j − x̃k‖2

thus, the distance between the OPT and NB approximations is bounded:

|κOPT(x)− κNB(x)| =
=

1

2
|κOPT(x) + κOPT(x)− κNB(x)− κNB(x)| ≤

≤ 1

2
(|κOPT(x)− κNB(x)|+ |κOPT(x)− κNB(x)|) ≤

≤ γ(‖x̃j − x̃k‖2 + ‖x̃j − x̃k‖2) = δ(x)

(40)

Consequently, note that:

|∆κNB(x)| = |κ(x)− κNB(x)| ≤
≤ |κ(x)− κOPT(x) + (κOPT(x)− κNB(x))| ≤
≤ eOPT(x) + δ(x), ∀x ∈ X

(41)

At the same time, since by construction (24) for any x ∈ X the set of points

{x̃j : j ∈ Pĵ} contains the nearest neighbor x̃NP of x, it can be noted that (from

(26)):

κNB ≤ ũNP + γ‖x− x̃NP‖2

κNB ≥ ũNP − γ‖x− x̃NP‖2

Thus, from (39):

|∆κNB(x)| = |κ(x)− κNB(x)| ≤
1

2
(κNB(x)− κNB(x)) ≤
≤ 1

2
(ũNP + γ‖x− x̃NP‖2 − ũNP + γ‖x− x̃NP‖2) =

= γ‖x− x̃NP‖2 = eNP

(42)
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By considering the tightest bound between (41) and (42), it can be obtained that:

|∆κNB(x)| ≤ min(eNP(x), eOPT(x) + δ(x)) = eNB(x) ≤
≤ eNP(x), ∀x ∈ X
ζNB = sup

x∈X
eNB ≤ γdH(X ,Xν) = ζNP

iii) Trivially follows from (42) and the properties of the NP approximation (20)

iv) Trivially follows from (40) by using k = j and k = j

¥
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Fig. 1. Numerical example. (a) Set X , constraint set X (thick dotted line), level curves of the optimal cost function J∗(x)

(thick solid lines). (b) Closed loop state trajectories obtained with controllers κ (solid), κOPT (dotted), κLIN (dash-dot) and

κNB (dashed). Initial state x(0) = [2.1, −17]T , approximations computed using ν = 2.5 103 points.
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Fig. 2. Numerical example: closed loop state trajectories near the origin, obtained with controllers κ (solid), κOPT (dotted),

κLIN (dash-dot) and κNB (dashed). Initial state x(0) = [2.1, −17]T , approximations computed using ν = 2.5 103 points.
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Fig. 3. Sketch of single track vehicle model.
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Fig. 4. Case study: vehicle stability control, 50◦ step steer maneuver at 100 km/h. (a) Courses of the reference yaw rate

(thin solid line) and of the yaw rate obtained with the uncontrolled vehicle (dotted) and the controlled one, using the NB

approach (solid) or the NP approach (dashed). (b) Courses of the control input i using the NB approach (solid) or the NP

approach (dashed).
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