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Abstract— The net power output of a MicroGrid (MG) is
often scheduled using optimization-based strategies. Recently,
the new figure of the Aggregator (AG) has been introduced with
the role of intermediate broker in the energy market, efficiently
managing the interaction between a cluster of MGs and the
system operators. To do that, the AG needs models of the related
MGs to estimate both their power absorption/production, as a
function of the energy prices, and the corresponding uncertainty
ranges accounting for non-dispatchable generators and loads.
To protect the MGs internal information and to reduce the
complexity of the AG decision-making process, the problem of
deriving these models from data is considered here. In order
to cope with the problem nonlinearity and to quantify the
uncertainty range, a nonlinear Set Membership approach is
applied, and a new tuning method is described. The potentials
of the proposed approach are tested with data obtained from
a realistic MG model.

I. INTRODUCTION

The power grid is shifting from the current central-
ized paradigm to a distributed framework where many au-
tonomous elements, the prosumers, interact by producing
and/or consuming power. Different kinds of prosumers exist
(e.g. smart buildings, micro-grids, virtual power plants), all
being clusters of different units that can generate, store,
and consume electricity. Here, for the sake of generality,
we consider the concept of micro-grids (MG), i.e. clusters
equipped both with generators (e.g. micro-generators, renew-
able sources and storage units), storage (batteries) and loads,
possibly controllable to some extend (e.g. curtailing and
shifting loads). In principle, MGs can work either in isolated
or in grid-connected modes, and these two conditions are
characterized by different challenges [1], [2]. Regarding the
grid-connected mode, each MG must interact with the system
operator to trade its energy services on the market. This is
clearly impractical as the number of connected MGs grows.
In order to efficiently manage the interaction of a large
number of MGs with the system operator, a new market
figure has been recently defined, the Aggregator (AG) [3].
The AG serves as a broker in the energy market, operating
as intermediary between its associated prosumers and the
system operator. As reported in [4], the AG operations are
characterized by two main tasks:

1) The AG participates in the day-ahead market for the def-
inition of the energy prices, proposing supply/demand
energy bids regarding its aggregated MGs.
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Fig. 1: Sketch of the considered energy market scenario.

2) After the day-ahead energy prices have been agreed
upon, the AG interacts with its aggregation to optimally
plan their internal operations.

In Figure 1, a sketch of the AG interactions is depicted.
In principle, the AG operations involve large optimization
problems that, if approached in a centralized way, would
require the knowledge by the AG of all internal MGs’ infor-
mation, e.g. generators characteristics, internal management
strategies and load consumption trends, as considered in [5].
To avoid privacy issues and to reduce the complexity of
the AG decision making problem, a distributed optimization
strategy is proposed in [6], where the AG and each MG iter-
atively solve simpler optimization problems. This approach
effectively copes with the second task, when the energy
prices have been already defined, however it is impractical
for the first one, when the prices must be negotiated between
the AG and the system operator. For this task, to optimize
the trading outcome, the AG needs to estimate how much
power its aggregation is going to produce/absorb based on
the energy prices being traded, such that it can submit the
supply/demand bids in the day-ahead market.
In this paper, we focus on this estimation problem, and
pursue the idea of deriving a model of each MG from
historical data of produced power vs. energy prices, which
are available to the AG. We assume that the AG has no
information on the layout of each MG and on the power
trends of the non-dispatchable units (e.g. renewable sources
and loads). Our first novel contribution is the use of a
nonlinear Set Membership (SM) estimation approach [7]
to overcome these problems. This identification technique
provides both a nominal estimate and guaranteed uncertainty
bounds. This is a significant advantage, since the AG can
have not only a nominal estimate of the MG power trend
as a function of the energy prices, but also certified power
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deviation bounds, accounting for the uncertainty. An im-
portant feature of the proposed method is that it requires
rather mild assumptions on the uncertain components of
produced/consumed power, which are simply required to be
bounded. This suits very well the considered application,
since the trends of loads and renewable sources, although
unknown to the AG, are for sure bounded by their maximum
power production/absorption values. The considered SM
technique features tuning parameters that have to be chosen
by the user: the assumed Lipschitz constant γ of the function
to be learned, and the bound ε on the additive uncertainty.
Without any a-priori knowledge on the system, the tuning
of (γ, ε) might be time-consuming, see [7] for a discussion.
As an additional contribution of this paper, we propose an
optimization-based tuning procedure for (γ, ε) that aims to
minimize the uncertainty interval associated with the nominal
predicted power output, which is the most important feature
in the considered application context. This paper represents
a first study to evaluate the applicability of the proposed
method, its accuracy and conservativeness.

II. PROBLEM FORMULATION

An AG, to interact with the system operator in the day-
ahead market bidding process, must know the power that its
aggregation of MGs is going to absorb/produce based on the
daily trend of the energy prices. Indeed, each MG schedules
the power set-points for its generating units and controllable
loads, aiming to maximize its internal profit, considering also
the effect of the non-dispatchable units, as in [2]. Therefore,
considering the standard 15-minutes sampling interval, for
each MG we can express the scheduled power output as:

y(t,pe) = ft(pe) + d(t), t = 1, . . . , T, (1)

where t is the discrete time variable, T = 96 is the
number of considered time instants (i.e. one full day), pe =
{pe(1), . . . , pe(T )}> ∈ RT is the course of energy prices
at 15-min intervals along the day (> denotes the matrix
transpose operator and bold-faced quantities denote vectors).
Finally, d(t) is an additive disturbance term, accounting
for the effect of the non-dispatchable units and loads. For
notational simplicity, in the remainder we consider a single
MG; the whole approach presented in this paper can be
then applied in parallel to all the MGs associated with the
aggregator. The AG needs a model of the form (1) for each
MG, i.e. an estimate ỹ(t,pe) ≈ y(t,pe). We propose to
learn a separate model for each time instant. We assume that
a finite data-set is available, given by the two sequences:

Yt = {ỹ(1)(t, p̃
(1)
e ), . . . , ỹ(N)(t, p̃

(N)
e )}

Pe = {p̃(1)
e , . . . , p̃

(N)
e }

(2)

where x̃ denotes a sampled data point of the generic variable
x, ỹ(j)(t) is the observed power that the MG provides at
instant t in response to the energy price sequence p̃

(j)
e , and

N is the total number of data points. Note that, due to the
mentioned uncertainty in non-dispatchable generators and
non-controllable loads, for any p̃

(j)
e = p̃

(k)
e , j 6= k, we can

have ỹ(j)(t) 6= ỹ(k)(t).In the described scenario, our goal is
summarized as follows.

Problem 1. From the available data set Yt, Pe, derive T =
96 approximating functions ft : RT → R such that:

ŷ(t,pe) = f̂t(pe), t = 1, . . . , T. (3)

Moreover, for each considered t, derive two additional
functions, f̄t and f

t
, and an additive uncertainty bound,

εt, providing guaranteed upper and lower bounds on y(t):

f
t
(pe)− εt ≤ y(t,pe) ≤ f̄t(pe) + εt, t = 1, . . . , T. (4)

The estimators f̂t(pe) and the guaranteed uncertainty
intervals f t(pe) − f

t
(pe) + 2εt, t = 1, . . . , T, could be

then used by the AG in the day-ahead bidding process.
This is part of ongoing research work not treated in this
paper, where we focus instead on Problem 1. In Section
IV we propose the use of SM identification to solve this
problem, together with a novel tuning procedure for the
identification routine. As anticipated in the Introduction,
we consider here synthetic data, which we produced by
simulating the optimization problem that a real MG would
solve to schedule its elements. This allows us to evaluate
two aspects: 1) whether at a theoretical level the working
assumptions of the considered SM technique are satisfied,
and 2) the estimation accuracy that can be achieved in an
ideal scenario. We describe next the employed MG model.

III. MICROGRID OPTIMAL SCHEDULING MODEL

We consider a generic MG equipped with ng dispatchable
generators (e.g. thermal engines), nb batteries and nres non-
dispatchable generating units, typically based on renewable
energy sources. Moreover, it is assumed that nndl non-
dispatchable loads, ncl curtailing loads and nsl shifting
loads are present. The active power absorption of the non-
dispatchable loads can not be modified; on the contrary, the
curtailing loads allow the MG to reduce its consumption
in some predefined periods, while the shifting loads are
characterized by a fixed energy demand which must be sat-
isfied within some times constraints, giving some scheduling
freedom. The variables and parameters of the MG elements
are described in Table I.

The generation units are assumed to instantaneously fol-
low the power set-points; this is reasonable with the assumed
15-minute sampling interval. As a convention, the powers are
defined as positive if they are generated, while they are neg-
ative if absorbed. Considering the fuel-based generators and
the batteries, their output power at time step t is constrained
by the capability limits. Therefore, ∀j ∈ {1, . . . , ng} and
∀i ∈ {1, . . . , nb}, it follows

ugj ≤ ugj (t) ≤ ūgj , ubi ≤ ubi (t) ≤ ūbi (5)

The state of charge (SOC) of the batteries is modelled as
a pure integrator and it is bounded by predefined limits;
for the sake of simplicity, the charging and the discharging



TABLE I: MG optimization variables and parameters

Symbol Description
ug Micro-generator active power set-point [kW]

ub Battery active power set-point [kW]

sb State of charge (SOC) [%]

usl Shifting load active power output [kW]

ucl Curtailing load effective active power output [kW]

dndl Non-dispatchable load active power output [kW]
dres Renewable sources active power output [kW]
ymg MG active power output [kW]
ūg, u

g Micro-generator power limits [kW]

ūb, ub Battery power limits of battery [kW]

s̄b, sb SOC limits [%]

Cb Battery capacity [kWh]

ūsl, usl Shifting loads power limits [kW]

ēsl Shifting loads energy demand [kWh]

τ̄sl, τsl Shifting loads time limits [h]

dcl Curtailing load predefined active power output [kW]

∆ūcl Max curtailing loads power reduction [kW]

τ̄cl, τcl Curtailing loads time limits [h]

ccl Curtailing load cost [e/kWh2]

cb Battery usage cost [e/kWh2]

ag , bg , cg Micro-generator cost coefficients [e/kWh2, e/kWh, e]
pe Energy price [e/kWh]

efficiencies are here neglected. Moreover, it is supposed that
the SOC at the end of the day must be equal to the one at the
beginning, in order to start the next day with the same initial
storage conditions, see e.g. [8]. Therefore, ∀j ∈ {1, . . . , nb},

sbj(t+ 1) = sbj(t) − 100
τ

Cbj
ubj(t) (6a)

sbj ≤ sbj(t) ≤ s̄bj , sbj(T ) = sbj(0) (6b)

where τ = 0.25 hours is the employed sampling interval.
The shiftable, or deferrable, loads are usually characterized
by active power limits and, moreover, they can be activated
just in a predefined time range where a specific amount of
energy demand must be satisfied. Therefore, the following
constraints are imposed, ∀j ∈ {1, . . . , nsl},

uslj ≤ |uslj (t)| ≤ ūslj ∀ t ∈ {τslj , τ̄slj } (7a)

uslj (t) = 0 ∀ t /∈ {τslj , τ̄slj } (7b)∑
∀ t∈{τsl

j ,τ̄
sl
j }

|uslj (t)| τ = ē slj (7c)

The curtailing loads allows the MG operator to reduce
their consumption in certain time slots, with respect to the
predefined fixed demand dcl, within a maximum reduction
limit,∀j ∈ {1, . . . , ncl},

|dclj (t) − uclj (t)| ≤ ∆ūcl ∀ t ∈ {τ clj , τ̄ clj } (8a)

|dclj (t) − uclj (t)| = 0 ∀ t /∈ {τ clj , τ̄ clj } (8b)

Let us now collect for simplicity the sum of all active power
setpoints of the dispatchable units (i.e. the MG decision

variables) and the sum of active power values of non-
dispatchable units (i.e. the disturbance variables) in two
vectors, u and d, respectively:

u = [u(1), . . . , u(T )]
> ∈ RT

u(t) =
ng∑
j=1

ugj (t) +
nb∑
j=1

ubj(t) +
nsl∑
j=1

uslj (t) +
ncl∑
j=1

uclj (t)

d = [d(1), . . . , d(T )]
> ∈ RT

d(t) =
nndl∑
j=1

dndlj (t) +
nr∑
j=1

dresj (t)

We can now introduce the cost function to be minimized
in the optimal scheduling computation (see Table I for the
involved parameters):

J =

T∑
t=1

ng∑
j=1

(agj τ
2(ugj (t))

2 + bgj τ u
g
j (t) + cgj )︸ ︷︷ ︸

α

+

+
T∑
t=2

nb∑
j=1

cbjτ
2 (ubj(t)− ubj(t− 1))2

︸ ︷︷ ︸
β

+

+

T∑
t=1

ncl∑
j=1

cclj τ
2(dclj (t) − uclj (t))2

︸ ︷︷ ︸
η

−
T∑
t=1

τ(pe(t) (u(t) + d(t))︸ ︷︷ ︸
γ

)

(9)

where all the costs/prices are multiplied by the sampling time
τ , since they are commonly referred to the amount of energy
generated/consumed. The fuel-generator cost α is modelled
with a quadratic polynomial function, as common in the
literature.Although batteries do not have an effective cost,
the term β is expressed to penalize the square of the power
variation to avoid excessive charges and discharges which
may reduce the battery life. Since the load curtailing usually
leads to some discomfort issues, their power reduction will
be characterized by a cost expressed by the term η, as in
[2]. Finally, the term γ indicates the net output power of the
MG. In this study, the MG management system is supposed
to solve the following optimization problem:

min
u

J

subject to (5) - (8)
(10)

Note that (10) is a convex quadratic program (QP), for which
a global minimizer can be efficiently computed. Moreover,
under reasonable assumptions on the MG constraints and
weights in the cost function, the problem is strictly con-
vex and such a minimizer is unique. Let us denote with
u∗(pe) = [u∗(1,pe), . . . , u∗(T,pe)]

> a global minimizer
of (10). Then, by the internal power balance, the MG power
output at each time t is given by:

y(t,pe) = u∗(t,pe) + d(t). (11)



Remark 1: Note that the terms d(t), t = 1, . . . , T do
not affect the value u∗(pe), since in (9) they contribute to
an additive offset that doesn’t depend on the optimization
variables. Thus, the solution of (10) depends only on the
predicted prices pe, and we can express (11) equivalently
as:

y(t,pe) = ft(pe)︸ ︷︷ ︸
u∗(t,pe)

+d(t), (12)

which is consistent with our problem setup, see (1). More-
over, by the implicit function theorem, strict convexity of
(10) results in Lipschitz continuity of functions ft(pe), t =
1, . . . , T . Finally, the additive term d(t) accounts for all
uncertain, non-controllable sources and loads, and it is a
bounded quantity with generally unknown bounds, that can
however be estimated from data.

Overall, the features highlighted in Remark 1 fit perfectly
with the prior assumptions of the SM identification approach
that we adopt, recalled in the next section.
Finally, to generate the data that we will use for the estima-
tion procedures, we solve problem (10) with a finite number
N of energy price courses p̃

(j)
e and uncertain (e.g. random)

values of d̃(t)(j), and store the resulting values of ỹ(t, p̃
(j)
e )

computed as in (12), for all t = 1, . . . , T and j = 1, . . . , N .
Then, we collect such data in the sequences Yt, Pe, see (2).

IV. IDENTIFICATION PROCEDURE

We summarize the SM identification approach of [7],
which we employ here to solve Problem 1, and introduce
the new optimization-based tuning procedure we propose.
For notational simplicity, we consider a fixed value of t and
drop the notation t = 1, . . . , T , since it is implicit that the
whole identification process has to be carried out for each
value of t. Thus, we want to derive from the available data
Yt, Pe an approximation of function ft(pe) and guaranteed
upper and lower bounds. This is achieved in three steps,
described in the following sub-sections.

Before proceeding further, we subdivide the available data
as Yt = {Yt,A , Yt,C} and Pe = {Pe,A , Pe,C}, where the
subscripts A, C stand for approximation and calibration,
respectively. Moreover, we also define the sets of integers
NA = {1, . . . , NA} and NC = {NA + 1, . . . , NA + NC},
where NA and NC are the cardinalities of Yt,A and Yt,C .

A. First step: compute a preliminary approximating function
We first derive an estimate f ′t ≈ ft using the approx-

imation data set Yt,A, Pe,A. In this step, one can choose
the functional forms of f ′ among many existing possibilities
(linear regression, polynomials, neural nets, etc.), as long as
it enjoys Lipschitz continuity. Here, we resort to a linear
regression:

f ′t(pe) = θ̂>pe, (13)

whose parameters θ̂ are computed with a `1-norm regular-
ization approach:

θ̂ = argmin
θ
{
∑
∀i∈NA

||ỹ(i)
t − θ>p̃(i)

e ||22 + λ‖θ‖1 }, (14)

where the scalar λ > 0 is a tuning parameter.

B. Second step: define the residual function, collect the
related data points, and compute the feasible parameter
region

Using the obtained preliminary approximation (13), we
define the residual function ∆t as:

∆t(pe) = ft(pe)− θ̂>pe. (15)

Then, we can alternatively write (1) as:

y(t,pe) = θ̂>pe + ∆t(pe) + d(t). (16)

We will now focus on the derivation of an approximating
function ∆̂t ≈ ∆t using the nonlinear SM approach of [7].
The following prior knowledge is available:

1) Lipschitz continuity of ∆t (thanks to Lipschitz conti-
nuity of both ft and f ′t , see Remark 1 and (13)):

|∆t(pe
(j))−∆t(pe

(k))| ≤ γt‖pe
(j) − pe

(k)‖2,
∀pe

(j), pe
(k) ∈ P

(17)
2) Boundedness of d(t) (see Remark 1):

|d(t)| ≤ εt (18)

where P ⊂ RT is a compact set containing all the possible
energy price courses over the day. The positive scalars γt, εt
in (17)-(18) are not known, and shall be estimated from
data as well. To do so, we start by computing the feasible
parameter region B ⊂ R+ × R+. Namely, this is the set
of (γt, εt) pairs such that the prior knowledge is consistent
with the available data. Using our data-set, we first obtain
samples of the residuals ∆̃

(i)
t as:

∆̃
(i)
t = ỹ

(i)
t − θ̂>p̃(i)

e i = 1, . . . , N (19)

Then, for a given pair (γt, εt), let us define the following
functions:

∆̄t(pe)
.
= min
∀j=1,...,N

(∆̃
(j)
t + εt + γt ‖pe − p̃(j)

e ‖2) (20)

∆t(pe)
.
= min
∀j=1,...,N

(∆̃
(j)
t − εt − γt ‖pe − p̃(j)

e ‖2) (21)

Now, we can compute B by exploiting the following result
(Theorem 1 in [7]):
A necessary and sufficient condition for the prior knowledge
to be validated is:

∆̄t(p̃
(i)
e ) > ∆̃

(i)
t − εt ∀i ∈ NA ∪NC (22)

The feasible parameter set is defined as:

B = {(γt, εt) : condition (22) holds} (23)

Note that the set B is unbounded, since it is always possible
to satisfy condition (22) with large enough values of γt
and/or εt. On the other hand, it is of interest to compute
the “lower boundary” γ

t
(εt):

γ
t
(εt) = arg min

γ
γ

s.t.(γ, εt) ∈ B
(24)

Fig. 2 presents a qualitative example of set B. We employ
such a curve to select suitable estimates γ̂t, ε̂t and eventually
obtain our approximating function and error bounds, as
described next.



Fig. 2: Example of γt-εt feasible parameter set

C. Third step: select an estimate of the Lipschitz constant
and error bound, and derive the approximating function f̂t

To derive the wanted approximating functions, one has
to select a pair (γ̂t, ε̂t) inside the set B. Assuming that such
estimates have been chosen, then the corresponding functions
∆̄t(pe) and ∆t(pe) in (20)-(21) represent the upper and
lower bounds of ∆t(pe). Moreover, if the prior knowledge is
valid, the interval

[
∆(pe), ∆̄t(pe)

]
is guaranteed to include

the true function ∆(pe) [7]. As a result, for a given price
prediction pe ∈ P , the output y(t,pe) (16) is guaranteed to
be bounded by the following functions:

y(t,pe) ≤ y(t,pe) ≤ ȳ(t,pe) (25)

ȳ(t,pe) = θ>pe + ∆̄t(pe) + εt
y(t,pe) = θ>pe + ∆t(pe)− εt

(26)

and the estimated uncertainty interval is given by

ȳ(t,pe)− y(t,pe) = ∆̄t(pe)−∆t(pe) + 2εt > 0 (27)

In the literature, it is often the case that the pair (γ, ε) is
selected in the feasible region using some prior knowledge
on the system to be identified. When such a knowledge is
not available, one has to choose these parameters using the
available input-output data, which can be a time-consuming
task. To this end, a possible approach is to choose the
optimal parameters in the feasible region by minimizing the
identification error with respect to the calibration data. This
method can achieve a small approximation error on average,
however the resulting uncertainty interval can be rather large.
On the other hand, in the application considered here it
is more reasonable to select estimates γ̂t, ε̂t such that the
uncertainty interval (27) is as small as possible. Therefore,
we propose to choose (γ̂t, ε̂t) by solving the following
optimization problem, which involves the calibration dataset:

(γ̂t, ε̂t) = argmin
(γ,ε)∈B

{
∑
∀j∈NC

( ȳ(t, p̃ (j)
e )− y(t, p̃ (j)

e ) )2} (28)

Having computed the parameters (γ̂t, ε̂t), the wanted approx-
imating function (see (3)) is given by:

ŷ(t,pe) = f̂t(pe) = θ>p̃e +
∆̄t(p̃e) + ∆t(p̃e)

2

while the guaranteed power bounds can be computed as in
(26). Function f̂t(pe) is the central (or optimal) approxima-
tion, i.e. it provides the smallest worst-case approximation
error for the given data-set and chosen (γ̂t, ε̂t), equal to half
the uncertainty bound (radius of information, see e.g. [7]).

V. NUMERICAL RESULTS

The numerical results have been carried out considering
a MG composed of different generation units and loads,
whose parameters are reported in Table II. Considering the
identification data set, the non-dispatchable power trends of
load absorption and of renewable sources production are re-
ported in Figure 3(a) and 3(b), respectively. The daily prices
profiles are reported in Figure 3(c): their trends are defined
considering the real daily prices of the Italian Day-Ahead
Market (MGP), which can be found in [9]. In Figure 3(d)
the resulting sampled data of MG output power are depicted,
which have been computed according to the optimization
framework described in Section III. As described in Section
IV, the identification data set is divided in two different sets
as follows: NA = 30 approximation data, and NC = 120
calibration data. The identification process is performed as
described in Section IV and the optimal tuning parameters
(γ̂t, ε̂t) are computed. Then, the performance of the identi-
fication process are evaluated using an additional validation
data set, denoted as NV , with NV = 60 data points. Before
proceeding to the description of the numerical results, the
following variables are defined y(pe), ŷ(pe), ȳ(pe), y(pe),
which express the daily MG output power, the corresponding
estimate and the upper and lower bounds, respectively. The
following variable is also introduced, expressing the average
output power of the MG

ym(pe) =

T∑
t=1

y(t,pe)

To properly evaluate the achieved performance, the following
indexes are computed ∀i ∈ NV

IE(i) =
||y(p

(i)
e )− ŷ(p

(i)
e )||2√

T
, IE

(i)
% =

100 IE(i)

ym(p
(i)
e )

MD(i) =
||ȳ(p

(i)
e )− y(p

(i)
e )||∞

2
, MD

(i)
% =

100MD(i)

ym(p
(i)
e )

where IE corresponds to the identification error computed
for the whole daily period, while MD represents the max-
imum possible deviation of the output with respect to the
estimate, considering the computed power bounds. For the
sake of completeness, also the values normalized with respect
to the average output power ym are computed, i.e. IE%

and MD%. The achieved performance indicators have been
computed considering the whole validation data set NV and
the results are reported in Table III. The reported results
witness the effectiveness of the proposed approach both in
terms of reduced identification error and of capability to
provide guaranteed bounds for the MG output power. To
better highlight the advantage of the proposed SM approach,
the results obtained with two exemplary validation data
trends are presented in Figure 4. Precisely, Figure 4(a)(b)
shows a case when a small identification error is achieved,
IE = 2.16 kW ; it is worth noticing that the real MG output
power is fully contained in the computed bounds, see Figure
4(b). On the other hand, Figure 4(c)-(d) show a case where



TABLE II: MG parameters and constraints

Generators (ug , ūg) ag bg cg

ug1 (20, 100) 1.25e− 5 1.25e− 3 3e− 2

ug2 (20, 50) 2.25e− 5 7.5e− 4 3.5e−3

Batteries (ub, ūb) (sb, s̄b) Cb cb

ub1 (−50, 50) (0.2, 0.8) 40 2.5e−2

ub2 (−40, 40) (0.2, 0.8) 50 2.5e−2

Shifting loads (usl, ūsl) (τsl, τ̄sl) ēsl −
usl1 (0, 20) (9, 12) 20 −
ug2 (0, 20) (16, 19) 20 −

Curtailing loads |dcl(∀t)| (τcl, τ̄cl) ∆ucl ccl

ucl1 20 (12, 16) 10 3.13e− 2

TABLE III: Identification performances

mean min max
IE 4.79 kW 2.16 kW 8.20 kW
IE% 7.1% 3% 14.7%

MD 14.62 kW 11.62 kW 20.17 kW
MD% 20% 17.3% 30%

(a) (b)

(c) (d)

Fig. 3: Identification data: (a) Non-dispachable load power
trends, (b) Renewable energy sources power trends, (c)
Energy prices trends, (d) MG output power trends

a larger estimation error is obtained, with IE = 8.2 kW .
This is because the price trend used for this second case was
quite different with respect to the identification data shown
in Figure 3(c). Notwithstanding the estimation error, also in
this second case the true power output is still contained in
the computed bounds, see Figure 4(d). The knowledge of
such bounds can be thus effectively used to account for the
uncertainty in the day-ahead energy price definition process.

VI. CONCLUSIONS

The problem of deriving from data an estimate of the
price-based power scheduling of microgrids has been consid-
ered. Aggregators can use the obtained models to optimize
their trading process with the system operator, by better

(a) (b)

(c) (d)

Fig. 4: Example of validation outcome with small estimation
error and large estimation error: (a)&(c) real MG output
power trend (solid line), estimated MG output power (dotted
line), (b)&(d) higher power bound (dashed line), lower power
bound (dotted line), real MG output power (solid line)

.
predicting the power output of each one of the associated
microgrids as a function of the predicted energy prices.
The proposed method is based on Set Membership theory
and provides also guaranteed error bounds, which can be
exploited by the aggregator to improve robustness of its
decisions. The next steps in this research will be the use of
real-world data to learn and validate the wanted microgrid
models, and the study of how such models can be best
exploited in the energy trading process.
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