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Abstract— The model identification problem for asymptoti-
cally stable linear time invariant systems is considered. The
system output is affected by an additive noise with unknown
bound, and a finite set of data is available for parameter
estimation. The goal is to derive a model with guaranteed
simulation error bounds for all predicted time steps, up to a
finite horizon of choice. This is achieved in three steps. At first,
the noise bound, system order, and impulse response decay rate
are estimated from data. Then, the estimated quantities are used
to refine the sets of all possible multi-step predictors compatible
with data and prior assumptions (Feasible Parameter Sets,
FPSs). The FPSs allow one to derive, in a Set Membership
framework, guaranteed error bounds for any given multi-step
predictor, including the one obtained by simulating the system
model. Finally, the wanted model parameters are identified by
numerical optimization, imposing the constraints provided by
the FPSs and using one of two proposed optimality criteria.
Numerical simulations illustrate the validity of the approach.

I. INTRODUCTION

We investigate the problem of identifying models of linear
time invariant systems for simulation purpose. Simulation
(or multi-step prediction) is intended as the estimation, by
iterating a one-step-ahead model, of the p-steps-ahead future
output of the system at hand, where p ∈ [1, p̄] and p̄ is a finite
horizon of choice. Models identified by minimizing the one-
step-ahead prediction error (Prediction Error Minimization,
PEM) do not necessarily provide good estimation perfor-
mance when applied to the multi-step case, see e.g. [11]. In
general, models identified with PEM criterion describe more
accurately high-frequency dynamics, while simulation-based
methods (Simulation Error Minimization, SEM) capture the
low-frequency dynamics [13]. Moreover, we are interested
in estimating (and possibly minimizing in the identification
procedure) the worst-case bounds on the simulation error
between the true system and its model when a known future
input signal is applied. Most of the existing approaches
in the literature do not consider the problem of deriving
such bounds, which are however extremely important in
applications such as process analysis and robust control
design techniques. In [1], [2], [3], [4], [10], and [14],
approaches to identify one-step-ahead models able to predict
several steps ahead simultaneously are proposed. The most
common approach is to identify a one-step-ahead model
by minimizing the prediction or simulation error of the
resulting p-step ahead iterated models, for all p ∈ [1, p̄].
These methods are usually cast in a stochastic framework,
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resulting in stochastic accuracy bounds. Here, we are in-
stead interested in finding worst-case, deterministic bounds
under the only assumption of bounded noise (with unknown
bound), which is typically satisfied in practical applications.
Finally, stability of the identified one-step-ahead predictors
is usually not easily guaranteed a priori, as it is difficult to
enforce in the identification process.

The estimation method presented in this work aims to
address the issues listed above. Our goal is to obtain a
model with guaranteed worst-case error bounds in simula-
tion, enforcing at the same time convergence (i.e. stability)
properties on its impulse response. This is achieved in three
steps. At first, the noise bound, order, and impulse response
decay rate of the system at hand are estimated from data. To
this end, new results are presented and exploited, pertaining
to the estimation of multi-step-ahead linear predictors in a
Set Membership framework, see [6], [7], [12]. As a second
step, the estimated quantities are used to refine the sets of
all possible multi-step models compatible with data and prior
assumptions (Feasible Parameter Sets, FPSs). The FPSs are
exploited to derive guaranteed error bounds for any given
multi-step predictor. Finally, the wanted model parameters
are estimated by numerical optimization, imposing the con-
straints provided by the FPSs and minimizing one of two
proposed optimality criteria, namely to minimize the worst-
case error bound over the considered simulation horizon, or
to minimize a standard simulation error criterion. By adding
the estimated decay rate as a further constraint in the FPSs,
we can enforce such a trend on the identified model as well,
a procedure similar to the one adopted in [8] and [9] for
data-driven observer design. Finally, numerical simulations
illustrate the validity of the approach and its advantages over
standard PEM and SEM methods.

II. PROBLEM FORMULATION

Consider a discrete time, asymptotically stable, strictly
proper linear time invariant system of order n, with input
u(k) ∈ R and output z(k) ∈ R, where k ∈ Z is the discrete
time variable. The output measurement y(k) is affected by
an additive noise d(k):

y(k) = z(k) + d(k),

Assumption 1: (Noise and input bounds)
• |d(k)|≤ d̄0, ∀k ∈ Z.
• u(k) ∈ U ⊂ R, ∀k ∈ Z, U compact.
Assumption 2: (Observability and reachability) The sys-

tem at hand is completely observable and reachable.
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Since the system is linear, for a given k and any prediction
horizon p ∈ N, it holds:

z(k + p) = [ZTn (k) U
T
p,n(k)]︸ ︷︷ ︸

ψp(k)T

[
θ0p,z
θ0p,u

]
︸ ︷︷ ︸

θ0p

= ψp(k)
T θ0p, (1)

where T denotes the matrix transpose operation, and:

Zn(k)
.
=
[
z(k) z(k − 1) . . . z(k − n+ 1)

]T
,

Up,n(k)
.
= [u(k + p− 1) u(k + p− 2) . . . u(k − n+ 1)]

T
.

(2)
For an asymptotically stable system, there exist scalars
Lu, Lz and ρ such that:

|θ0,(i)p,u | ≤ Luρ
i, i = 1, . . . , p+ n− 1

|θ0,(i)p,z | ≤ Lzρ
p+i, i = 1, . . . , n− 1

, (3)

where (i) denotes the element in the i-th position of a vector.
In (3), the decay rate ρ is dictated by the magnitude of the
system’s dominant poles. Thus, we can write the one-step-
ahead dynamics of the true system by considering p = 1 in
(1):

z(k + 1) = ψ1(k)
T θ01, (4)

which corresponds to a standard auto-regressive description
with exogenous input (ARX). For any p > 1, the entries
of the parameter vector θ0p are polynomial functions of the
entries of θ01 , obtained by recursion of (4). We indicate this
polynomial dependency in compact form as:

θ0p = h(θ01, p, n).

As motivated in the introduction, we consider the problem
of identifying the parameters of a one-step-ahead model of
(4) from data. To this end, we introduce the model regressor
φp(k) ∈ R2o+p−1, where o ∈ N is the chosen model order:

φp(k)
.
= [Y To (k) UTp,o(k)]

T ,

where Yo(k)
.
= [y(k) y(k − 1) . . . y(k − o + 1)]T ∈ Ro and

Up,o is defined as in (2). Then, we consider the following
ARX model structure for our one-step-ahead model:

ẑ(k + 1) = φ1(k)
T θ1, (5)

where ẑ(k + 1) ≈ z(k + 1) is the predicted one-step-
ahead output, and θ1 ∈ R2o is the model parameter vector
to be estimated from data. Simulating (i.e. iterating) the
model (5) defines the following multi-step predictors for each
p > 1, p ∈ N:

ẑ(k + p) = φp(k)
T

[
θ̂p,y
θ̂p,u

]
= φp(k)

T θ̂p,

where ẑ(k+ p) is the predicted (i.e. simulated) p-step ahead
future output, and θ̂p = h(θ̂1, p, o) ∈ R2o+p−1 is the cor-
responding parameter vector, whose entries are polynomial
functions of the entries of θ̂1.

Besides the possible order mismatch (i.e. o ̸= n), the main
difference between the model (5) and the true system (4) is
that the former employs noise-affected measurements y(k)
of the output in its regressor, instead of the true output values

z(k). To study the effects of this difference, let us define the
vector ψp,o(k)

.
= [ZTo (k) U

T
p,o(k)]

T , where Zo is obtained
as in (2). Assumption 1, along with the asymptotic stability
of the system, implies that the regressors ψp,o(k) belong to
a compact set Ψp,o:

ψp,o(k) ∈ Ψp,o ⊂ R2o+p−1, Ψp,o compact, ∀p ∈ N, ∀k ∈ Z.

Consequently, φp(k) belongs to a compact set Φp as well:

φp(k) ∈ Φp = Ψp,o ⊕ Dp, ∀p ∈ N, ∀k ∈ Z,

where F⊕M = {f+m : f ∈ F, m ∈M} is the Minkowski
sum of two given sets F,M , and

Dp
.
= {[d(1), . . . , d(o), 0, . . . , 0]T : |d(i)|≤ d̄0} ⊂ R2o+p−1

is the set of all possible noise realizations that can affect
the system output values stacked inside φp. In practical
applications, the sets Ψp,o and Φp depend on the input/output
trajectories of the system, and they are not known explicitly.
However, for the sake of parameter identification, a finite
number N of measured pairs (φ̃p(i), ỹp(i)) is assumed to
be available, where ·̃ denotes a specific sample and ỹp(i)

.
=

ỹ(i+ p). These sampled data define the set:

Ṽ N
p

.
=

{
ṽp(i) =

[
φ̃p(i)
ỹp(i)

]
, i = 1, . . . , N

}
⊂ R2o+p, (6)

The continuous counterpart of Ṽ N
p is:

Vp
.
=

{
vp =

[
φp
yp

]
: yp ∈ Yp(φp), ∀φp ∈ Φp

}
⊂ R2o+p,

where Yp(φp) ⊂ R is the compact set of all possible
measured output values corresponding to every value of
φp ∈ Φp and every noise realization d : |d|≤ d̄0.

Assumption 3: (Informative content of data) For any β >
0, there exists a value of N <∞ such that:

d2

(
Vp, Ṽ

N
p

)
≤ β,

where d2
(
Vp, Ṽ N

p

)
.
= max
v1∈Vp

min
v2∈Ṽ N

p

∥v2 − v1∥2.

The meaning of Assumption 3 is that, by adding more points
to the measured data-set, the set of all the trajectories of
interest is densely covered, leading to lim

N→∞
d2

(
Vp, Ṽ N

p

)
=

0. This corresponds to a persistence of excitation condition,
plus a bound-exploring property of the variable d(k).

We can now state the problem addressed in this paper.
Problem 1: Under Assumptions 1-3, use the available data

(6) to:
a) estimate the noise bound d̄0, the system order n, and

the decay rate ρ;
b) identify the parameters of the model (5) according to

a suitable optimality criterion, together with associated
guaranteed bounds on the simulation (i.e. multi-step
prediction) error |z(k + p) − ẑ(k + p)|, p = 1, . . . , p,
where p̄ < ∞ is a maximum simulation horizon of
interest.



III. ESTIMATION OF NOISE BOUND, SYSTEM ORDER, AND
DECAY RATE

A. Preliminary results

We start by recalling results derived in [12], which we
employ and complement with new ones. Consider a generic
p ∈ N and a parameter vector θp defining a multi-step
predictor φp(k)

T θp ≈ z(k + p) (not necessarily com-
puted by iterating a one-step-ahead model). Denoting the
error between the system output and such an estimate as
εp(θp, φp(k)) = z(k + p)− φp(k)

T θp, under Assumption 1
we have: ∣∣y(k + p)− φp(k)

T θp
∣∣ ≤ ε̄p(θp) + d̄,

where ε̄p(θp) represents the global error bound produced by
θp (termed “global” since it holds for all possible regressor
values in the set Φp), and d̄ ≥ 0 is an estimate of the true
noise bound d̄0. ε̄p(θp) is given by:

ε̄p(θp) =min
ε∈R

ε subject to∣∣yp − φTp θp
∣∣ ≤ ε+ d̄, ∀(φp, yp) :

[
φp
yp

]
∈ Vp

This bound cannot be computed exactly in practice, with a
finite set of data points. In [12], a method for estimating
ε̄p(θp) is proposed, along with the proof that this estimate,
denoted with λp, converges to ε̄p from below. λp is obtained
by solving the following linear program (LP):

λp = min
θp,λ≥0

λ subject to∣∣ỹp − φ̃Tp θp
∣∣ ≤ λ+ d̄, ∀(φ̃p, ỹp) :

[
φ̃p
ỹp

]
∈ Ṽ N

p

(7)

Then, λp is inflated to account for the uncertainty due to the
use of a finite number of measurements:

ˆ̄εp = αλp, α > 1. (8)

We can now recall the Feasible Parameter Set (FPS) Θp,
i.e. the set of parameter values that are consistent with the
information coming from data and noise bound estimate:

Θp =

{
θp : |ỹp − φ̃Tp θp|≤ ˆ̄εp + d̄, ∀(φ̃p, ỹp) :

[
φ̃p
ỹp

]
∈ Ṽ N

p

}
(9)

If the FPS is bounded, it results in a polytope with at most
N faces (if it is unbounded, then the employed data are not
informative enough and new data should be collected). The
FPS can be used to derive a global bound on the prediction
error produced by a given value of θp, indicated with τp(θp):

|z(k + p)− ẑ(k + p)|≤ τp(θp)
τp(θp) = max

φp∈Φp

max
θ∈Θp

|φTp (θ − θp)|+ˆ̄εp.

Similarly to ε̄p, also τp(θp) cannot be computed exactly with
a finite data set. An estimate is given by:

τp(θp) = max
φ̃p∈Ṽ N

p

max
θ∈Θp

|φ̃Tp (θ − θp)|+ˆ̄εp.

τp(θp) converges to its counterpart τp(θp) from below as N
increases under Assumption 3, see [12]. In practical applica-
tions, we inflate τp(θp) as well, in order to compensate for
the uncertainty deriving from the usage of a finite data-set:

τ̂p(θp) = γ
(

max
φ̃p∈Ṽ N

p

max
θ∈Θp

∣∣φ̃Tp (θ − θp)
∣∣ )+ ˆ̄εp, γ > 1.

(10)
Assumption 4: (Estimated error bounds) The estimated

values of ˆ̄εp and τ̂p(θp) are larger than the corresponding
true bounds ε̄p and τp(θp), respectively.
In practice, α and γ express how much one is confident
on the informative content of the identification experiment.
When the data-set is large and informative enough, these
scalars can be chosen close to 1. Tuning of α and γ can be
carried out by cross-validation.

B. New results on the estimated multi-step error bounds

We present two results showing additional properties of
the quantity λp (7). These provide a theoretical justification
to the estimation procedures for the noise bound d̄0, system
order n, and decay rate ρ, which we propose in Section III-C.
Let us define:

λp
.
= min
θp∈Ω

max[φp
yp

]
∈Vp

(∣∣yp − φTp θp
∣∣− d̄

)
. (11)

In (11), Ω ⊂ R2o+p−1 represents a compact approximation
of the real set R2o+p−1: it can be chosen e.g. by considering
box constraints of ±1015 on each element of the parameter
vector. This is a technical assumption that allows us to use
the maximum and minimum operators, instead of supremum
and infimum.

Assumption 5: (Model order) The model order o is chosen
such that o ≥ n.
As indicated in Section III-C, this assumption can be satisfied
by initially over-estimating the system order, since the results
presented below are not affected by the specific value of o,
as long as it is larger than n.

Remark 1: With a slight abuse of notation, in the remain-
der we imply that, when o ̸= n, the parameter vectors θp (if
o < n), or θ0p (if o > n), are appropriately padded with zero
entries to equate their dimensions, thus keeping consistency
of all matrix operations.

Theorem 1: If Assumptions 1-3 and 5 hold, then:
1) λp

p→∞−−−→ (d̄0 − d̄)
2) λp ≤ λp
3) ∀η ∈ (0, λp], ∃N <∞ : λp ≥ λp − η

Proof: See [5].
Corollary 1: If Assumptions 1-3 and 5 hold, and if the

noise bound is correctly chosen as d̄ = d̄0, then:

λp = d̄0∥θ0p,z∥1≤ n d̄0 Lz ρ
p+1

Proof: See [5].
Remark 2: Theorem 1 and Corollary 1 imply two con-

sequences that are useful for model identification. The first
is that, when d̄ = d̄0 and o < n, λp converges to a non-
zero value as p increases, which is due to the model order



mismatch. The rationale behind this statement is that, when
o < n, there exists a choice of φp, yp inside Vp such that it is
not possible to find a θp able to bring the error φTp (θ

0
p− θp)

to zero. This observation will be used to estimate the model
order in the next section. The second is that λp

p→∞−−−→ 0 with
the same decay rate as that of the true system parameters,
thus providing a way to estimate suahc a decay rate.

C. Estimation of noise bound, system order, and decay rate
From Theorem 1 it follows that, for N → ∞ and o ≥

n, picking a noise bound estimate d̄ ≥ d̄0 results in λp
converging to zero as p increases; instead, choosing d̄ < d̄0
results in λp converging to a non-zero value. We exploit this
property to estimate the value of the noise bound d̄0:

Procedure 1 Estimation of d̄0
1) Choose a large value of o as initial guess.
2) Set a starting value of d̄ small enough to have d̄ < d̄0.
3) Gradually increase d̄, recalculating λp, until the first

value of d̄ under which ∃p̄ : λp ≃ 0 ∀p > p̄ is found.
4) The obtained d̄ corresponds to the noise bound, and

the related p̄ represents the system settling time.

Then, exploiting the observation reported in Remark 2, we
estimate the model order o:

Procedure 2 Estimation of o
1) Set d̄ and p̄ to the values resulting from Procedure 1.
2) Choose a large value of o as initial guess.
3) Gradually decrease o, recalculating λp, until the first

value of o under which ∃p > p̄ : λp > 0 is found.
4) The last value of o under which λp ≃ 0 ∀p > p̄ will

be the minimal predictor order.

Finally, we exploit the observed decay rate of λp to
estimate the quantities ρ̂ ≈ ρ, L̂z ≈ Lz , and L̂u ≈ Lu,
see (3). Let us define fε

.
=
[
ˆ̄ε1 · · · ˆ̄εpmax

]T
, where ˆ̄εp is

obtained from (8) with d̄ resulting from Procedure 1, and
pmax > p̄. Let us also define, for given values of L and ρ,
the quantities gLρ(p)

.
= Lρp+1, p ∈ [1, pmax]. Then, we solve

the following optimization problem to compute ρ̂:[
L̂, ρ̂

]
=arg min

L,ρ

∥∥fε − gLρ
∥∥2
2

subject to

gLρ ⪰ fε

L > 0, 0 < ρ < 1

(12)

where gLρ = [gLρ(1) · · · gLρ(pmax)]
T . In practice, the

computed value of ρ̂ minimizes the quadratic norm of the
difference between ˆ̄εp (i.e. the observed decay rate) and
gLρ(p) (the theoretical exponential decay rate). Supported
by Corollary 1, this estimate of ρ̂ is consistent with the
system decay rate. However, we still need to estimate suitable
values of L̂z, L̂u. For the former, we exploit the FPSs Θp
considering the parameters pertaining to the output values
inside the regressors φp:

L̂z =

(
max
p∈[1,p̄]

max
θp∈Θp

max
i=1,...,o

θ(i)p

)/
ρ̂ . (13)

Regarding L̂u, we instead consider the parameters pertaining
to the o most recent input values inside the regressors φp:

L̂u =

(
max
p∈[1,p̄]

max
θp∈Θp

max
i=o+1,...,2o

θ(i)p

)/
ρ̂ . (14)

Indeed, the magnitude of these parameters is not affected by
the decay rate and it can be used to estimate the true bounds
Lz and Lu (see (3)).

IV. IDENTIFICATION OF ONE-STEP-AHEAD PREDICTORS
WITH GUARANTEED SIMULATION ERROR BOUNDS

We are now in position to address part b) of Problem 1.
In particular, we present new methods to learn the param-
eters of one-step-ahead prediction models of the form (5),
considering the simulation (multi-step) accuracy and trying
to enforce asymptotic stability of the predictor as well. The
first step is to refine the FPSs Θp (9), by adding constraints
that take into account the estimated decay rate. To this end,
let us define:

Γp =

{
θp : |θ(i)p,u|≤ L̂uρ̂

i, ∀i ∈ [1, p+ o− 1],

∧ |θ(i)p,y|≤ L̂z ρ̂
p+i, ∀i ∈ [1, o]

}
Then, we modify the Feasible Parameter Sets as follows:

ΘLρp = Θp ∩ Γp. (15)

Assumption 6: (Estimated decay rate) The estimated de-
cay rate parameters are such that L̂z ≥ Lz , and L̂u ≥ Lu.

Remark 3: Under Assumptions 4, 5 and 6, it follows that
θ0p ∈ ΘLρp , ∀p, i.e. each FPS (15) is non-empty and contains
the parameters of the corresponding iterated model of the
system (4). These assumptions cannot be verified in practice
when a finite data-set is used. However, as long as the sets
ΘLρp are non-empty (which can be easily verified, since they
are all polytopes), we can be confident that the computed
estimates and prior assumptions are not invalidated by data.
Whenever ΘLρp becomes empty for some p, the estimated
bounds can be enlarged until non-empty sets are obtained
again.

We describe next two possible procedures to estimate θ1
(5), exploiting the modified FPSs. Both procedures are based
on nonlinear programs.

A. Method I - minimal worst-case simulation error bound
This method is based on the concept of global error bound.

We estimate the model that minimizes the maximum worst-
case error bound over the whole simulation horizon:

θ̂1 =arg min
θ1

∥τ (θ)∥∞ subject to

θp ∈ ΘLρp , ∀p ∈ [1, p̄]

where θp = h(θ1, p, o), τ (θ) =
[
τ̂1(θ1) · · · τ̂p̄(θp̄)

]T
,

and τ̂p(θp) is defined as in (10). This results in:

θ̂1 =argmin
θ1

(
max
p∈[1,p̄]

max
i=1,...,N

max
θ∈ΘLρ

p

∣∣φ̃p(i)T (θ − θp)
∣∣+ ˆ̄εp

)
subject to θp ∈ ΘLρp , ∀p ∈ [1, p̄]

(16)



Problem (16) can be rewritten in a simpler form. First, we
split the absolute value in two terms:

φ̌p(j) =

{
φ̃p(j) if j ≤ N
−φ̃p(j) if j > N

for j = 1, . . . , 2N.

Then, by defining cjp = max
θ∈ΘLρ

p

φ̌p(j)
T θ, j =

1, . . . , 2N, p = 1, . . . , p̄, we can reformulate (16) as:

θ̂1 =arg min
θ1

max
p∈[1,p̄]

max
i=1,...,2N

(cjp − φ̌p(j)
T θp)

subject to θp ∈ ΘLρp , ∀p ∈ [1, p̄]
(17)

The optimization problem defined by (17) corresponds to:

θ̂1 =arg min
θ1,ζ

ζ subject to

cjp − φ̌p(j)
T θp ≤ ζ, j = 1, . . . , 2N, p = 1, . . . , p̄

θp ∈ ΘLρp , ∀p ∈ [1, p̄]

which is a nonlinear program with 2N linear constraints
and 2N(p̄−1) polynomial constraints, plus 2Np̄ polynomial
constraints that require the preliminary solution of 2Np̄ LP
problems.

B. Method II - minimal simulation error on identification
data-set

In this method, we minimize the simulation error produced
by the one-step iterated prediction model, given a certain
initial condition φ1(0), and we enforce the decay rate on the
impulse response parameters:

θ̂1 =arg min
θ1∈ΘLρ

1

∥∥∥Ỹ − Ẑ(θ1)
∥∥∥2
2

subject to

θp ∈ Γp, ∀p ∈ [2, p̄]

(18)

where θp = h(θ1, p, o), Ỹ =
[
ỹ(1) ỹ(2) · · · ỹ(N)

]T
,

and Ẑ(θ1) =
[
φ̃1(0)

T θ1 φ̃2(0)
T θ2 · · · φ̃N (0)T θN

]T
.

(18) corresponds to a nonlinear optimization problem, with
2p̄ polynomial constraints.

V. SIMULATION RESULTS

We test the approach on a third-order system with static
gain equal to 10 and complex dominant poles with damping
ratio 0.1 in continuous time, whose output is affected by ran-
dom noise, uniformly distributed in the interval [−0.1, 0.1]
(i.e. d̄0 = 0.1). Input and output data points are acquired
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Fig. 1. Measured system output during the identification experiment.

with sampling time Ts = 0.1. The data-set collected for the
identification phase and the one used for the validation phase
contain N = 1500 and Nv = 1500 samples, respectively.
The input signal takes values in the set {−1; 0; 1} randomly
every 10 time units. Fig. 1 depicts the behavior of the
measured system output during the identification experiment.
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Fig. 2. Estimated values of λp with model order o = 5 and different
choices of noise bound d̄. Fig. (a): d̄ = 0.098; fig. (b): d̄ = 0.099. The
dashed vertical line indicates the value of p̄ corresponding to each choice
of d̄.

The first step of our identification procedure regards the
estimation of the noise bound d̄. Adopting Procedure 1, and
choosing an initial model order o = 5, we calculate λp for
several values of d̄. Based on the results (depicted in Fig. 2),
we decide to set d̄ = 0.099, with corresponding settling time
p̄ = 115. These values are actually consistent with the true
ones, since d̄0 = 0.1 and the time constant corresponding
to the dominant poles of G(s) is T = 2.5, resulting in a
settling time of about 125 steps. Then, we apply Procedure
2 to select the model order. The obtained result is o = 3,
which is consistent with the (a priori unknown) order of the
considered system and verifies Assumption 5.

Having defined our choice of d̄ and o, we perform the
procedure proposed in Section III-C to estimate the system
decay rate. Here ρ̂ is estimated as in (12); then, L̂z and L̂u
are chosen as in (13) and (14), respectively. This results in
L̂z = 1.871, L̂u = 0.679 and ρ̂ = 0.965. For a comparison,
the true system’s decay rate is ρ = 0.96.

Then, the values of λp corresponding to the chosen order
o and noise bound d̄ are inflated with a coefficient α = 1.3,
as motivated in Section III. Finally, we set γ = 1.2. The
resulting ˆ̄εp are used alongside d̄, L̂z , L̂u and ρ̂ to define the
FPSs for all p ∈ [1, p̄], as in (15).

A more detailed description of the simulation results and
of the estimation procedures can be found in [5].

Finally, we adopt the identification approaches presented
in Section IV to estimate the model parameters, and calculate
the related guaranteed accuracy bounds as in (10).

As benchmarks for the proposed identification approaches,
we consider a one-step-ahead prediction model identified



according to the classical PEM criterion, another one iden-
tified using the SEM criterion, and the decoupled multi-
step models, identified as proposed in [12]. Each of these
decoupled multi-step models is the one that minimizes the
corresponding global error bound τ̂p(θ∗p), thus providing the
best performance achievable for every step p in terms of
minimization of the guaranteed error bound.
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Fig. 3. Guaranteed worst-case error bound. Dotted line with ‘+’: multi-
step approach; solid line with ‘⋄’: Method II; dashed line with ‘□’: SEM
approach; dash-dot line with ‘◦’: PEM approach.

We use as performance indicators the guaranteed error
bounds and the validation errors produced by each identi-
fication approach. The validation error for the p-step ahead
model, calculated over the validation data-set, is defined as
ep = min

k=o,...,Nv−p
|z(k + p)− ẑ(k + p)|. Fig. 3 depicts the

behavior of the guaranteed error bound corresponding to the
various identification methods. Table I presents the values of
the worst-case error bound and of the validation error of the
p-step ahead model, for some values of p.

TABLE I
COMPARISON BETWEEN VALUES OF τ̂p AND ep OBTAINED BY THE

PROPOSED IDENTIFICATION METHODS AND THE BENCHMARK MODELS.

PEM SEM Method I Method II Multi-step
τ̂p ep τ̂p ep τ̂p ep τ̂p ep τ̂p ep

p = 1 0.521 0.199 0.636 0.211 0.531 0.186 0.594 0.195 0.459 0.184
p = 10 0.857 0.367 0.557 0.197 0.536 0.163 0.504 0.158 0.433 0.193
p = 35 0.646 0.412 0.262 0.114 0.234 0.076 0.235 0.078 0.166 0.081
p = 115 0.540 0.414 0.227 0.076 0.185 0.053 0.187 0.074 0.116 0.083

The presented numerical results show that the proposed
approaches obtain better performances in terms of guaranteed
error bound and validation error, with respect to both the
classic PEM and SEM approaches. In particular, Method
II (Section IV-B), which is based on the simulation error
cost, is able to significantly improve the performance (both
worst-case and actual error with validation data) of the
SEM estimation approach without increasing excessively the
complexity of the optimization problem.

VI. CONCLUSIONS

We presented new methods to learn one-step-ahead pre-
diction models that provide guaranteed and minimal sim-
ulation error bounds. We resorted to the Set Membership

identification framework to evaluate and optimize the worst-
case simulation error, and presented new results pertaining to
the estimation of noise bound, system order, and decay rate.
These estimates are then employed to enforce a converging
behavior also to the identified model. Finally, we proposed
two possible methods to identify the model, and compared
them with standard PEM and SEM approaches by means of
numerical simulations. The main outcome of the presented
work is that the new approaches are able to improve over
standard SEM methods, in terms of both guaranteed error
bounds and actual accuracy with validation data. In one of
the proposed approaches, this comes with minor additional
computational complexity. Future work will be devoted to
prove additional theoretical properties of the proposed iden-
tification approach.
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