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A DVS-MHE Approach to Vehicle Side-Slip 

Angle Estimation
M. Canale∗, L. Fagiano†, C. Novara∗

Abstract—A study on the application of a Moving Horizon
Estimator (MHE) to the problem of vehicle side-slip angle
estimation is carried out. In particular, it is shown that a stable
MHE can be represented as Nonlinear Finite Impulse Response
(NFIR) filter. Then, in order to allow online implementation and
guaranteed estimation accuracy, an optimal NFIR filter is derived
directly from data by means of a Direct Virtual Sensor (DVS)
approach. Comparisons between the standard model based MHE
approach and the DVS one are carried using a detailed vehicle
model.

I. INTRODUCTION

Significant improvements on safety and handling perfor-
mance have been obtained through active control systems re-
cently introduced on production vehicles (see e.g. [1],[2],[3]).
Such systems are based on suitable control strategies which
use the measure of variables related to lateral vehicle dy-
namics. The most common solution is the use of a yaw rate
feedback, since its measure can be realized by means of quite
cheap sensors.

As a matter of fact, in emergency braking or turning
maneuvers it is needed to avoid too large values of the side-
slip angle β in order to enhance vehicle safety (see [4]).
Besides, the side-slip angle has to be limited to low values
(e.g. ±4◦) to improve the stability feelings perceived by the
driver. Therefore, performance improvements can be achieved
if a side-slip angle feedback is employed too. On the other
hand, an accurate measure of the side-slip angle can be only
obtained through complex and expensive sensors not available
on commercial cars. A viable solution to this problem is
to use the information coming from other already mounted
sensors (e.g. gyro, accelerometer, ...) in order to provide an
estimate of β through an observer. Indeed, side-slip angle
observer design is a well known and challenging topic and
several solutions appeared in recent years. In particular, linear
and nonlinear approaches have been proposed on the basis
of well assessed estimation frameworks such as Extended
Kalman filters, Luenberger and sliding mode observers (see
e.g. [5], [6] and [7]). In order to design such observers,
physical, possibly nonlinear, models of the vehicle are used.
However, these models depend on physical parameters which
are unknown or difficult to estimate. Yet, the side-slip angle
depends on the driving conditions (e.g. speed, road friction,
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...) which may change during vehicle maneuvers. In order
to circumvent such problems, adaptive estimation approaches
have been recently introduced in [8] and [9], and the use of
identified Linear Parameter Varying (LPV) models has been
successfully investigated in [10] and [11].

Another point that has to be highlighted is that the side-slip
angle observers are usually obtained according to a two steps
procedure. In the first step, a vehicle model is derived using
experimental data. In the second step, the observer is designed
on the basis of such a model. However, as shown in [12],
this procedure is in general not optimal, since models derived
from data are approximate and estimators designed from such
models may display a performance degradation when applied
to the real system. An innovative approach was introduced
in [13], where the use of the Direct Virtual Sensor (DVS)
methodology has been employed for side-slip angle estimation,
avoiding the use of whatever physical or identified model
in the observer design. In the DVS approach, the observer
is obtained directly from the data collected under different
driving conditions. General theoretical results about DVSs can
be found in [14], [12] and [15], together with a number of
experimental and simulation results.

In this paper, a solution based on a Moving Horizon
Estimation (MHE) approach (see [16], [17]), which has been
already employed in the context of side-slip angle estimation
(see [18]), will be considered. MHE filters have interesting
features, like the possibility to guarantee the filter stability in
the presence of nonlinear dynamics and to handle constraints
on the variables to be estimated. However, it has to be noted
that this methodology suffers the problem of online implemen-
tation, since it involves the solution of a nonlinear program
at each sampling time. Furthermore, the usual framework of
MHE requires the knowledge of a model of the system, with
the already mentioned problems related to model identification
and modeling errors. These problems may be circumvented
by adopting the DVS technique, using data measured on the
vehicle to directly design the filter. It will be shown that the
MHE algorithm implicitly defines a Nonlinear Finite Impulse
Response (NFIR) filter, which depends on present and past
values of the available system (i.e. the vehicle) measurements.
On the basis of this consideration, several DVSs with NFIR
structure will be designed and compared with the MHE filters,
to evaluate their respective advantages and drawbacks in the
problem of side-slip angle estimation.

The paper is organized as follows. The problem of the
side-slip angle estimation is introduced in Section II. The
MHE approach is described in Section III, while the proposed
solution obtained through the use of DVS is presented in
Section IV. In Section V, the MHE and the DVS side-slip
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estimators are designed and their performance are compared
through simulations performed using a detailed vehicle model.
Concluding remarks end the paper.

II. ESTIMATION OF VEHICLE SIDE-SLIP ANGLE

The lateral vehicle dynamics can be described through the
following nonlinear single track vehicle model (see e.g. [2]):

May(t) = Fyf (t) + Fyr(t) +Mw2(t)

Jzψ̈(t) = aFyf (t)− bFyr(t) + w1(t)

Fyf (t) + lf/vx(t)Ḟyf (t) = FPyf (αwf )

Fyr(t) + lr/vx(t)Ḟyr(t) = FPyr(αwr)

ay(t) = v̇y(t) + vx(t)ψ̇(t)

αwf (t) = −β(t)− aψ̇(t)/vx(t) + δD(t)/τD
αwr(t) = −β(t) + bψ̇(t)/vx(t))

(1)

where δD is the handwheel angle, commanded by the driver,
ay is the lateral acceleration and vx and vy are the vehicle
longitudinal and lateral speeds, respectively. Moreover, M is
the vehicle mass, Jz is the moment of inertia around the
vertical axis, β is the side-slip angle, ψ is the yaw angle, a
and b are the distances between the center of gravity and the
front and rear axles respectively, while lf and lr are the front
and rear tire relaxation lengths. τD is the transmission ratio
between the handwheel angle and the steering angles of the
front wheels (which are assumed to be the same for the left
and right wheels), w1(t) and w2(t) are external disturbances
accounting for yaw moments and lateral forces respectively,
e.g. due to lateral wind acting on the vehicle. Finally, Fyf
and Fyr are the front and rear tire lateral forces, which can
be expressed as nonlinear functions of the wheel front and
rear side-slip angles, αwf and αwf respectively, by using the
renown “magic formula” (see [19] and [20] for more details):

FPyf (αwf ) = Dwf (Cwf arctan(Bwf (αwf )

−Ewf (Bwf (αwf )− arctan(Bwf (αwf )))))
FPyr(αwr) = Dwr(Cwr arctan(Bwr(αwr)
−Ewr(Bwr(αwr)− arctan(Bwr(αwr)))))

(2)

where Bwf , Cwf , Dwf , Ewf , Bwr, Cwr, Dwr, Ewr are pa-
rameters which can be identified, for a given vehicle, through
standard maneuvers like steering pads.

In vehicle active control systems, the variables involved
in the lateral dynamics description such as the longitudinal
speed vx, the lateral acceleration ay , the yaw rate ψ̇ and the
side-slip angle β can be employed by a feedback controller
in order to compute the control input for suitable actuation
devices, such as active differentials, active braking systems
and active front/rear steering systems (see e.g. [21] and the
references therein). However, while measurements or estimates
of vx, ψ̇ and ay can be obtained using cheap sensors like
wheel speed sensors, gyroscopes and accelerometers, side-slip
angle sensors are much more expensive and, as a consequence,
the vehicle side-slip angle is usually not employed in active
stability control. Yet, the angle β is strongly related to vehicle
directional stability and its use in feedback control together
with the other variables could bring forth significant perfor-
mance improvements [21].

In this paper, the aim is to derive an algorithm to estimate the
vehicle side-slip angle β using other available measurements.
In particular, two different approaches are considered and
compared. In the first one, described in Section III, a Moving
Horizon Estimation framework is considered, in which the
filter is derived on the basis of the model (1), by solving online
a suitable optimization problem. The second approach, treated
in Section IV, relies on the direct design of the filter from
measured data.

III. MOVING HORIZON ESTIMATION

Consider a discrete-time nonlinear system described in
state-space form:

xt+1 = F (xt, ũt, wt)
ỹt = Hy (xt, ũt, wt)
vt = Hv (xt, ũt)

(3)

where t ∈ N, xt ∈ Rnx is the system state, ũt ∈ Rnu is the
known input, ỹt ∈ Rny is a measured output, wt ∈ Rnw is
an unmeasured disturbance, and vt ∈ Rnv is an unmeasured
variable of interest. Note that in (3) wt is a vector that includes
both process and measurement disturbances.

In the following, a sequence of input values starting
from time step t1 up to time step t2 will be denoted by
Ũ t2t1 = {ũt}t=t2t=t1 . Likewise, Ỹ t2t1 and W t2

t1 denote sequences
of outputs and disturbances. The predicted trajectory of the
state of system (3) at time step t obtained by starting from
the state xt−j at time step t − j and by applying given
sequences of inputs Ũ t−1

t−j and disturbances W t−1
t−j is indicated

as x(t, t − j, xt−j , Ũ t−1
t−j ,W

t−1
t−j ), while the disturbance-

free predicted trajectory (i.e. W t−1
t−j = 0) is denoted by

x(t, t − j, xt−j , Ũ t−1
t−j ). Similar notations are used to denote

the predicted output y and the predicted unmeasured variable
v at time t.

It is assumed that, at any step t, the disturbance wt and
the variable vt belong to the compact sets W ∈ Rnw and
V ∈ Rnv respectively. The sets W and V are usually chosen
on the basis of the available physical insight of the system.
Finally, the system (3) is assumed to be uniformly observable,
according to the following definition (see e.g. [22]).

Definition 1: A system of the form (3) is uniformly observ-
able if, for any two state values xt1 and xt2, there exist a finite
number of time steps No and a K-function ζ such that, for

any given sequence of inputs Ũ
t+No−1

t :

ζ(‖xt1−xt2‖) ≤
No−1∑
j=0

‖y(t+j, t, xt1, Ũ
t+j

t )−y(t+j, t, xt2, Ũ
t+j

t )‖.�

We recall that a continuous real function ζ(z) is a K-function
if it is strictly monotone increasing, ζ(0) = 0, ζ(z) > 0 for
any z 6= 0 and lim

z→∞
= ζ(z) = ∞. In such a framework, the

problem considered in this work can be stated as follows:

Problem 1: Find a function f (“estimation algorithm”,
“estimator” or “filter”) that, operating on ũτ and ỹτ , τ ≤ t,
computes, at each time step t, an estimate v̂t ≈ vt such that
v̂t ∈ V , whose estimation error et = vt − v̂t is bounded in
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some norm and possibly minimal with respect to a suitable
optimization criterion. �

Obviously, if vt = xt, the described problem is equivalent
to a state estimation problem, but, in general, one could be
interested in estimating also other system variables. Due to
the presence of constraints on the variable v, it is not easy
to solve Problem 1 even in the case of a linear system (i.e.
when functions F , Hy and Hv in (3) are linear). Moreover,
the presence of nonlinearities further increases the difficulty
of Problem 1. Most of the design techniques employed in
the literature to address Problem 1 rely on the knowledge
of the system equations (3), of an initial estimate xt−j of
the system state at a suitably chosen time step t − j and of
sequences of past measured output and input values, Ỹ tt−τ and
Ũ tt−τ respectively, up to a finite number τ + 1 of past time
steps. Among such techniques, Moving Horizon Estimation
(MHE) is widely recognized as one of the most promising
due to its capability to take into account explicitly the system
nonlinearities and constraints. In MHE, a cost function of the
following form is considered:

J(x̂t−τ , Ũ tt−τ ,W
t
t−τ , Ỹ

t
t−τ , x

t−τ )

=
τ∑
j=0

L(et−τ+j
y , wt−τ+j) + Φ(xt−τ , x̂t−τ ),

(4)

where the output error et−τ+j
y , j = 0, . . . , τ is defined as

et−τ+j
y = ỹt−τ+j−y(t−τ+j, t−τ , x̂t−τ , Ũ t−τ+j

t−τ ,W t−τ+j
t−τ ).

(5)
In (4) the initial state guess xt−τ and the sequences
Ỹ tt−τ , Ũ

t
t−τ of measured outputs and inputs are known pa-

rameters in the optimization, while the initial state estimate
x̂t−τ and the disturbance sequence W t

t−τ are optimization
variables and the length N = τ + 1 of Ũ tt−τ and of Ỹ tt−τ
is a design parameter, as well as the stage cost function L(·, ·)
and the initial cost function Φ(·, ·). Then, Problem 1 is cast in
a numerical optimization framework, in which the following
minimization problem has to be solved:

min
x̂t−τ ,W t

t−τ

J(x̂t−τ , Ũ tt−τ ,W
t
t−τ , Ỹ

t
t−τ , x

t−τ ) (6a)

subject to

v(t− τ + j, t− τ , x̂t−τ , Ũ t−τ+j
t−τ ,W t−τ+j

t−τ ) ∈ V, ∀j ∈ [0, τ ]
(6b)

w(t− τ + j) ∈ W, ∀j ∈ [0, τ ]. (6c)

If a solution (x̂t−τ∗,W t∗
t−τ ) to (6) is found, the estimate v̂MHE

is computed as the predicted value of v starting from the
optimized initial state guess x̂t−τ∗ and applying the optimal
sequence W t∗

t−τ and the measured sequence Ũ tt−τ :

v̂t,MHE = v(t, t− τ , x̂t−τ∗, Ũ tt−τ ,W t∗
t−τ ). (7)

Finally, problem (6) is solved at each time step after having up-
dated the sequences Ỹ tt−τ and Ũ tt−τ with new measurements,
according to the following Moving Horizon strategy:

1) At time step t, update the sequences Ỹ tt−τ and Ũ tt−τ
with the measured variables ỹt, ũt;

2) update the initial state guess as xt−τ = x(t− τ , t− τ −
1, x̂t−τ−1∗, Ũ t−τt−τ−1,W

t−τ∗
t−τ−1), where W t−τ∗

t−τ−1 is part of
the the optimal disturbance sequence W t−1∗

t−τ−1, computed
at time step t−1, and x̂t−τ−1∗ is the optimal initial state
computed at time step t− 1;

3) solve the optimization problem (6) to compute x̂t−τ∗

and W t∗
t−τ ;

4) compute the estimate v̂t,MHE (7);
5) repeat the procedure from step 1) at time step t+ 1.

Although MHE is a powerful approach whose diffusion is
increasing, some critical problems are still open. One of these
issues is the possible non-convexity of the nonlinear program
(6). Finding the global minimum of (6) may be extremely
hard, whereas local minima of this function, which are more
easy to be found, may lead to poor estimates and/or “jumps”
in the estimated variable between two subsequent time steps.
A second relevant drawback is that, in many practical ap-
plications, the online implementation of a MHE can not be
performed, since the minimization problem (6) may not be
solved for small sampling times. Finally, another problem,
shared by the MHE approach with all the other model-based
design methods (e.g. the Extended Kalman Filter), is that the
system (3) in most practical situations is not (exactly) known.
Thus, in order to design a model-based estimation algorithm
a two-step procedure is usually adopted: 1) a model of the
system is identified from data; 2) the estimation algorithm
is designed on the basis of the identified model. In general,
the two-step procedure is not optimal and does not allow the
evaluation of guaranteed accuracy performance of the filter in
terms e.g. of bounds of the estimation error [12].

A new approach to estimator design is now introduced,
which may be used to overcome these problems. The approach
is based on the fact that, once the design parameters N , L(·, ·)
and Φ(·, ·) have been chosen, the MHE procedure implicitly
defines an estimation algorithm fMHE whose arguments are
the initial state guess xt−τ and the measured sequences Ỹ tt−τ
and Ũ tt−τ :

v̂t,MHE = fMHE(Ỹ tt−τ , Ũ
t
t−τ , x

t−τ ). (8)

Moreover, from step 2) of the MHE strategy it can be noted
that, at each time step t, the initial state guess xt−τ is a
function of the sequences Ỹ t−1

t−τ−1 and Ũ t−1
t−τ−1 and of the initial

state guess xt−τ−1, i.e.

xt−τ = g(Ỹ t−1
t−τ−1, Ũ

t−1
t−τ−1, x

t−τ−1).

Then, the estimate (8) can be also expressed, with a slight
abuse of notation, as

v̂t,MHE = fMHE(Ỹ tt−τ−1, Ũ
t
t−τ−1, x

t−τ−1), (9)

where
fMHE(Ỹ tt−τ−1, Ũ

t
t−τ−1, x

t−τ−1)

= fMHE(Ỹ tt−τ , Ũ
t
t−τ , g(Ỹ t−1

t−τ−1, Ũ
t−1
t−τ−1, x

t−τ−1)).

Thus, assuming that the MHE algorithm (8) is set up at time
step t0 + τ with an initial state guess xt0 , the estimate v̂t,MHE

at the generic time t can be also expressed as

v̂t,MHE = fMHE(Ỹ tt0 , Ũ
t
t0 , x

t0), (10)
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where, again with a slight abuse of notation, fMHE is the
function given by the recursive application of (9). A quite wide
literature exists (see e.g. [17], [22] and the references therein)
regarding the study of sufficient conditions on the system (3),
on the constraint sets V, W and on the design parameters
N, L(·, ·), Φ(·, ·) so that the estimator is asymptotically stable.
The notion of asymptotic stability considered in the present
paper is similar to the one in [22] and can be introduced as
follows.

Definition 2: An estimator fMHE is asymptotically stable
if, for any arbitrarily small ε > 0, there exists a sufficiently
large number of time steps m such that, for any initial time
t0, any t ≥ t0 + m, any Ũ tt0 and Ỹ tt0 , and any two initial
state guesses xt01 and xt02 , it holds that ‖fMHE(Ỹ tt0 , Ũ

t
t0 , x

t0
1 )−

fMHE(Ỹ tt0 , Ũ
t
t0 , x

t0
2 )‖ ≤ ε. �

According to this definition, the effect of the “initial con-
dition” (the initial state guess xt0 ) on the estimate of a stable
estimator fades away. Thus, after a suitable (possibly large)
number m of time steps it can be considered that the estimate
v̂t0+m depends only on the sequences Ỹ t0+m

t0 , Ũ t0+m
t0 and

not on the initial state guess xt0 . The following proposition
formalizes this concept, showing that a stable MHE estimation
algorithm can be expressed as a Nonlinear Finite Impulse
Response (NFIR) estimator fMHE

o plus a “small” truncation
error ettrunc.

Proposition 1: Assume that fMHE is asymptotically stable.
Then, for any ε > 0 and any xt0 , there exist a sufficiently
large m ≥ τ and a function fMHE

o such that

fMHE(Ỹ tt0 , Ũ
t
t0 , x

t0) = fMHE
o (Ỹ tt−m, Ũ

t
t−m) + ettrunc (11)

where |ettrunc| ≤ ε, ∀t ≥ t0 +m.
Proof. Let us consider that t = t0 + m and

explicit the dependence on m of fMHE by defining
fMHE
m (Ỹ t0+m

t0 , Ũ t0+m
t0 , xt0)

.
= fMHE(Ỹ tt0 , Ũ

t
t0 , x

t0). Then,

fMHE(Ỹ tt0 , Ũ
t
t0 , x

t0) = fMHE
t−t0 (Ỹ tt0 , Ũ

t
t0 , x

t0)

= fMHE
m (Ỹ tt−m, Ũ

t
t−m, x

t−m).

Since by assumption fMHE is asymptotically stable, for any
ε > 0, a sufficiently large m ≥ τ exists such that

‖fMHE
m (Ỹ tt−m, Ũ

t
t−m, x

t−m)− fMHE
m (Ỹ tt−m, Ũ

t
t−m, 0)‖ ≤ ε

for any initial time t − m, any Ũ tt−m ∈ Rnu×(m+1) and
Ỹ tt−m ∈ Rny×(m+1), and any initial state guess xt−m ∈ Rnx .

The claim follows taking fMHE
o (Ỹ tt−m, Ũ

t
t−m) =

fMHE
t−m(Ỹ tt−m, Ũ

t
t−m, 0). �

Note that, in general, both fMHE and fMHE
o are "ideal"

and not known, due to the above-mentioned issues of non-
convexity of problem (6) and modelling errors. Based on
Proposition 1, the approach proposed in this paper is to
identify, directly from a set of data generated by the system
(3), a NFIR estimator approximating fMHE

o , which enjoys
suitable optimality properties. The identified estimator is called
Direct Virtual Sensor (DVS). The following problem is thus
considered in the next Section:

Problem 2: Given a set of data

D = {ũt, ỹt, ṽt}Tt=1 (12)

where ṽt .= vt + ξt is the measured value of vt corrupted by
the noise ξt, find a DVS with estimation error minimal with
respect to a suitable criterion. �

IV. DESIGN OF OPTIMAL DIRECT VIRTUAL SENSORS

In this Section, an approach is presented for the direct
design from data of optimal DVSs. The case vt ∈ R and
V = [v, v] is considered for simplicity of notation. Variables
of higher dimensions can be treated by considering each
component as a separate scalar to be estimated.

The aim is to find a NFIR estimator

v̂t = f̂
(
ϕ̃tt−m

)
, ϕ̃tt−m

.
= (Ỹ tt−m, Ũ

t
t−m) (13)

with estimation error vt− v̂t = vt− f̂
(
ϕ̃tt−m

)
minimal with

respect to a suitable criterion.
The estimator f̂ is selected within the following set of

Lipschitz continuous functions

F(γ,m)
.
= {f :

∣∣∣f(ϕtt−m)− f(ϕ̂tt−m)
∣∣∣

≤ γ
∥∥∥ϕtt−m − ϕ̂tt−m

∥∥∥
∞
,∀ϕtt−m, ϕ̂

t
t−m ∈ Φ}

(14)

where ‖·‖∞ is the `∞ norm, γ is the Lipschitz constant
and Φ is the regressor domain which is assumed to be a
bounded convex subset of R(m+1)(ny+nu). The motivation for
considering this set are (a) to obtain an estimator with suitable
regularity properties; (b) to ensure optimality properties for
the designed estimator (see Theorem 1 below). Results on the
estimation of constrained Lipschitz continuous functions can
be found in [25].

Let us define the estimator fo as the best approximation
within the set F(γ,m) of the MHE estimator fMHE

o in (11):

fo
.
= arg min

f∈F(γ,m)

∥∥fMHE
o − f

∥∥
∞ (15)

where ‖f‖∞
.
= ess supϕ∈Φ |f (ϕ)| is the L∞ functional norm.

Note that, if the MHE optimization problem (6) is convex
in both the optimization variables and the parameters, as it
happens e.g. when the optimization problem (6) is either a
linear or a quadratic program, then fMHE

o ∈ F(γ,m) (see e.g.
[23]) and, consequently, fo = fMHE

o .
Consider now that the estimation error of an estimator f̂ of

the form (13) is bounded as∣∣∣vt − f̂ (ϕ̃tt−m)∣∣∣ =
∣∣∣eto + fo

(
ϕ̃tt−m

)
− f̂

(
ϕ̃tt−m

)∣∣∣
≤ |eto|+

∣∣∣fo (ϕ̃tt−m)− f̂ (ϕ̃tt−m)∣∣∣
(16)

where eto
.
= vt− fo

(
ϕ̃tt−m

)
is the estimation error of fo and

|fo
(
ϕ̃tt−m

)
− f̂

(
ϕ̃tt−m

)
| is the bias between the estimator

f̂ and fo. Since eo does not depend on f̂ , the aim is to find
an estimator f̂ giving "small" bias.

Clearly, this bias is not known, since fo is not known. In
order to derive a tight bound on it, some assumptions on eto
and ξt .= ṽt − vt (the measurement error on vt, see Problem
2) are required. Here, eto is assumed to be bounded as∣∣eto∣∣ ≤ δo, ∀t
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for some δo ≥ 0. Note that, being fo ∈ F(γ,m), this
assumption is satisfied if the MHE (10) is asymptotically
stable. Assuming that ξt is also bounded, we have that the
noise dt .= ṽt − fo

(
ϕ̃tt−m

)
= ξt + eto is bounded as∣∣dt∣∣ ≤ ε, ∀t

for some ε ≥ 0. The values of the bound ε on noise and the
Lipschitz constant γ can be suitably chosen by means of the
validation procedure described in [24]. The value of δo is not
required for the design of the optimal DVS presented in the
following.

On the basis of the above assumptions, the Feasible Esti-
mator Set is now defined.

Definition 3: Feasible Estimator Set:

FES
.
=
{
f ∈ F(m, γ) :

∣∣∣ṽk − f (ϕ̃kk−m)∣∣∣ ≤ ε, k ∈ [1, T ]
}
.

�

According to this definition, FES is the smallest set guar-
anteed to contain fo. The tightest bound on the bias in (16)
is thus given by supf∈FES

∣∣∣f (ϕ̃tt−m)− f̂ (ϕ̃tt−m)∣∣∣, leading
to the following definition of worst-case estimation error.

Definition 4: Worst-case estimation error of a DVS f̂ :

ED
(
f̂ , t
)
.
= δo + sup

f∈FES

∣∣∣f (ϕ̃tt−m)− f̂ (ϕ̃tt−m)∣∣∣ . �

(17)
Looking for a DVS that minimizes this error, we can

introduce the following optimality concept.

Definition 5: A DVS f∗ is optimal if

ED (f∗, t) = inf
f
ED (f, t) , ∀t > T. �

Let us now define the DVS

v̂t = fc

(
ϕ̃tt−m

)
, t > T (18)

where
fc (ϕ)

.
=

1

2

[
f (ϕ) + f (ϕ)

]
(19)

f (ϕ)
.
= min
k∈[1,T ]

(
v, ṽk + ε+ γ

∥∥∥ϕ− ϕ̃kk−m

∥∥∥
∞

)
f (ϕ)

.
= max
k∈[1,T ]

(
v, ṽk − ε− γ

∥∥∥ϕ− ϕ̃kk−m

∥∥∥
∞

)
.

(20)

The following result shows that the DVS (18) is optimal.

Theorem 1:
(i) The DVS fc is optimal.
(ii) The following tight inequalities on vt holds:

f(ϕ̃tt−m)− δo ≤ vt ≤ f(ϕ̃tt−m) + δo, t > T.

(iii) The worst-case estimation error of fc is given by

ED (fc, t) = δo +
1

2

[
f
(
ϕ̃tt−m

)
− f

(
ϕ̃tt−m

)]
, t > T.

(21)
Proof. The proof of claims (i) and (iii) can be obtained by

minor modifications of the proof of Theorem 1 in [26]. In
this latter proof, it is also shown that f(ϕ̃tt−m) and f(ϕ̃tt−m)

are the tightest upper and lower bounds of fo
(
ϕ̃tt−m

)
. Claim

(ii) thus follows from the fact that vt − fo
(
ϕ̃tt−m

)
.
= eto and

|eto| ≤ δo, ∀t. �
A DVS is essentially a causal and stable dynamic system

taking as inputs the input ũt and output ỹt of the system
whose variable vt has to be estimated, and giving as output
an estimate v̂t of this variable.

The DVS design procedure can be summarized as follows:
1) Collect a set of experimental data from the system

whose variable has to be estimated. These data should
be sufficiently rich, in the sense that they should be
collected under different experimental conditions during
maneuvers of different types (a method for assessing the
information level of a data set is presented in [27]).

2) Choose the order m of the DVS. This choice can be
made by means of a trial and error procedure.

3) From the collected data, estimate the noise bound ε
and the Lipschitz constant γ by means of the validation
method in [24].

Once these operations have been completed, the optimal DVS
estimator is univocally defined by (18), (19) and (20). The
DVS works on a real-time unit as follows. First, the data
{ϕ̃kk−m, ṽk}Tk=1 and the parameters ε and γ have to be stored
in the unit memory. Then, at each time step t > T , the function
f is evaluated for a given ϕ̃tt−m through the following steps:

1) The quantities ṽk+ε+γ
∥∥∥ϕ̃tt−m − ϕ̃kk−m

∥∥∥
∞

, k ∈ [1, T ]

are computed.
2) f

(
ϕ̃tt−m

)
is obtained by taking the minimum among

these T quantities.
The function f is evaluated similarly. Note that all these
computations require only elementary operations such as sum,
multiplication, square roots, minimum and maximum.

Remark 1: Suppose that in (21), 1
2 [f(ϕ̃tt−m)−f(ϕ̃tt−m)]�

δo for all t. This condition is met if a sufficiently informative
data set D is available (a method for assessing the degree
of information of a given data set is proposed in [27]). In
this case, we have that ED (fc, t) ∼= δo, and fc ∼= fo: in
other words, the designed DVS has a performance close to
the one of the filter that, within the considered class (14), best
approximates the ideal MHE filter fMHE

o .
Remark 2: Any Lipschitz continuous function can be opti-

mally approximated by a function f c of the form (19), see [24],
[25]. This important property is used by the DVS approach
to approximate the optimal estimator fo defined in (15). In
Section V below, it is shown how this allows us to accurately
estimate the complex nonlinear behavior of the vehicle side-
slip angle.

V. ESTIMATION OF VEHICLE SIDE-SLIP ANGLE

A. Detailed nonlinear vehicle model

A detailed 14 degrees of freedom (d.o.f.) nonlinear model
which provides an accurate description of the vehicle behavior
(see [19] and [21] for details) has been used to generate the
data required to design the DVS and to test the performance
achieved by both the DVS and the MHE filters. The parameters
of the model have been identified from experimental data mea-
sured on a real car. The model degrees of freedom correspond
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to the standard three chassis translations and yaw, pitch and
roll angles, the four wheel angular speeds and the four wheel
vertical movements with respect to the chassis. Nonlinear
characteristics obtained on the basis of measurements on the
real vehicle have been employed to model the tire, steer
and suspension behavior. The employed tire model takes into
account the interaction between longitudinal and lateral slip,
as well as vertical tire load and suspension motion, to com-
pute the tire longitudinal and lateral forces and self–aligning
moments. Unsymmetrical friction ellipses for traction/braking
longitudinal forces are also considered in the model.
The following list shows the matching between the main
physical variables involved in the side-slip angle estimation
problem and the generic variables employed in Sections III–
IV:
• the handwheel angle and the longitudinal speed are the

known inputs: ũt = [δtD; vtx]; the measures of δtD and vtx
are corrupted by uniform noises of amplitudes 1◦ and 1
km/h, respectively;

• the lateral acceleration is the measured output: ỹt = aty;
the measure of this signal is corrupted by a uniform noise
of amplitude 0.2 m/s2;

• the side-slip angle is the variable to estimate: vt = βt; the
noise ξt on side-slip angle measurements ṽt = vt+ξt has
been simulated as a white noise with standard deviation
0.12◦;

• the disturbance is given by wt = [wt1;wt2], where wt1
and wt2 correspond to the disturbances w1(t) and w2(t)
appearing in 1; these two disturbances have been simu-
lated as white Gaussian noises with zero mean and 5%
standard deviation (std(wt1) = 0.05std(aty) and std(wt2) =

0.05std(Jzψ̈
t)).

B. MHE design

The nonlinear single track vehicle model (1) has been
discretized with sampling time Ts = 0.01 s and using Euler
approximation, to be used in the MHE filter design. The
following values of the model parameters have been used:
M = 1715 kg, Jz = 2697 kgm2, a = 1.07 m, b = 1.47 m,
lf = 0.1 m, lr = 0.1 m, τD = 15.4, Bwf = 7.822, Cwf = 1.3,
Dwf = 8824.51, Ewf = −0.2977, Bwr = 13.051, Cwr =
1.3, Dwr = 6725.16, Ewr = −0.1594. Note that these values
have been identified from experimental data measured on a
real car (the same data used for the identification of the 14
d..o.f. model parameters).

In order to limit the computational complexity, the sequence
W t
t−τ in (6) has been chosen as W t

t−τ = 0 (i.e. zero estimated
noise), thus reducing to 4 the number of optimization variables
(i.e. the system state at time instant t − τ , see (6)). A zero
initial state guess has been used. The cost function (4) has
been defined by choosing L(e) = Qe2, with Q = 1, and
Φ(xt−τ , x̂t−τ ) = R

(
xt−τ − x̂t−τ

)2
, with R = 0.1. The

chosen values of Q and R have been tuned through numerical
simulations with the detailed nonlinear vehicle model, in order
to achieve the best estimation performance. The optimization
problem (6) has been solved using a sequential quadratic pro-
gramming algorithm (see e.g. [28]), in which the underlying

quadratic programs have been solved with MatLabr function
quadprog. Values of N ∈ {30, 50, 70} (i.e. the number
of time steps considered in the MHE problem) have been
considered. The corresponding MHEs are denoted as MHE30,
MHE50 and MHE70, respectively.

C. DVS design

In order to generate the data needed for the DVS design,
the detailed vehicle model described in Section V-A has been
simulated in the following maneuvers:

• Random 1. Handwheel angle: uniformly distributed signal
filtered to a maximum band of 5 rad/s, taking values
in the range [−63◦, 63◦]. Longitudinal speed: uniformly
distributed signal filtered to a maximum band of 2.5 rad/s,
taking values in the range [65, 130] km/h.

• Steer reversal 30◦. Handwheel angle: positive and subse-
quent negative handwheel angle steps of 30◦. Longitudi-
nal speed: 100 km/h constant.

• Steer reversal 60◦. Handwheel angle: positive and subse-
quent negative handwheel angle steps of 60◦. Longitudi-
nal speed: 100 km/h constant.

• Steer reversal 80◦. Handwheel angle: positive and subse-
quent negative handwheel angle steps of 80◦. Longitudi-
nal speed: 100 km/h constant.

• Test track 1. Steering angle signal and longitudinal speed
measured on a real car traveling on a track test. Steering
angle: variable in the range [−50◦, 85◦]. Longitudinal
speed: variable in the range [75,115] km/h.

From these maneuvers, a set of 37890 data has been collected
with a sampling time of 0.01 s. In order to deal with a not
too large set of data, which would lead to a quite long DVS
computational time, a subset of data has been selected by
taking one sample every ten. The DVS design set, composed
of T = 3789 data, is thus given by

D = {ϕ̃tt−m, ṽt, t = 1, 10, . . . , 37890}.

Several DVSs have been designed from this data set by means
of the method developed in Section IV. The DVSs are of the
form

v̂t = fc(ϕ̃
t
t−m)

where the function fc is defined in (19). Regressor orders m ∈
{30, 50, 70} have been considered. For each m, the values
of γ and ε required to define fc have been obtained using
the procedure described in[24]. Then, the corresponding DVS
has been derived. The designed DVSs are denoted as DVS30,
DVS50 and DVS70.

Remark 3: All the data employed in the DVS design have
been obtained in the presence of the same road adherence
conditions (i.e. dry asphalt). Variable road friction situations
can be accounted for, in the context of this study, either by
including in the DVS design data collected under different
adherence characteristics or, as remarked in [11], through the
use of a bank of DVS each one corresponding to a different
friction condition.
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Estimator Random 2 Steer rev-
ersal 50◦

Steer rev-
ersal 75◦

Steer rev-
ersal 85◦ Track test 2 Steer step 72◦

(real data)
MHE30 0.111 0.284 1988 2720 0.129 3368
MHE50 0.055 0.130 0.366 2101 0.089 0.744
MHE70 0.079 0.237 0.450 0.719 0.130 0.654
DVS30 0.109 0.144 0.123 0.124 0.151 0.508
DVS50 0.120 0.152 0.135 0.140 0.152 0.420
DVS70 0.127 0.133 0.242 0.201 0.145 0.453

TABLE I
SIDE-SLIP ANGLE ESTIMATION. RMSE ERRORS (◦) PROVIDED BY THE ESTIMATORS ON THE TESTING MANEUVERS.

D. Simulation results

The designed MHEs and DVSs have been tested on four ma-
neuvers not used for estimator design. It should be noted that
some of these maneuvers involve large lateral accelerations
and thus highly nonlinear lateral dynamics. The maneuvers
are the following:

• Random 2. Steering angle: uniformly distributed signal
filtered to a maximum band of 5 rad/s, taking values in
the range [−57◦, 57◦] rad. Longitudinal speed: uniformly
distributed signal filtered to a maximum band of 2.5 rad/s,
taking values in the range [65, 130] km/h.

• Steer reversal 50◦: Steering angle: positive and subse-
quent negative steering angle steps of 50◦. Longitudinal
speed: 100 km/h constant.

• Steer reversal 75◦: Steering angle: positive and subse-
quent negative steering angle steps of 75◦. Longitudinal
speed: 100 km/h constant.

• Steer reversal 85◦: Steering angle: positive and subse-
quent negative steering angle steps of 85◦. Longitudinal
speed: 100 km/h constant.

• Track test 2. Steering angle and longitudinal speed signals
measured on a real car during a track test. Steering angle:
variable in the range [−10◦, 65◦]. Longitudinal speed:
variable in the range [60,100] km/h.

The RMSE (Root Mean Square Error) obtained by the estima-
tors on the testing maneuvers are reported in Table I (columns
2-6). The estimates of DVS50 and MHE70 (the best DVS and
the best MHE) are compared to the true signals in Figure 1
for some of the testing maneuvers. From these results, it can
be noted that all of the considered estimators provide quite
satisfactory estimation accuracies, except for a few maneuvers,
where the MHEs show a performance degradation and some
unstable behavior. The DVSs are in general more accurate
than the MHEs and, thanks to their NFIR structure, cannot be
unstable.

Note that the average computational times required for
evaluating the estimators at a given time t on a PC with a
double 2GHz Xeon processor and 2 GB RAM resulted to be
the following: MHE70 computational time = 0.13 s; DVS70

computational time = 0.03 s.

E. Experimental data results

The designed MHEs and DVSs have been tested on an
experimental data set, recorded on a real car during the
following maneuver:

• Steer step 72◦: Steering angle: positive step of 72◦.
Longitudinal speed: variable in the range [80,110] km/h.

This data set is the same that has been used to validate both the
detailed 14 d.o.f. model and the single track model described
in Section II.

The RMSE error obtained by the estimators on this real
maneuver are reported in Table I (column 7). The estimates of
DVS50 and MHE70 are compared to the true signals in Figure
1 (lower-right). It can be noted that all the DVSs provide
quite satisfactory accuracies, while the MHEs show larger
estimation errors. In order to verify if better results could be
obtained by the MHE technique considering a larger horizon,
two MHE estimators with orders 120 and 200, respectively,
have been tested on the real data maneuver. The RMSE values
obtained for these estimators are quite large: 1.621 and 2.2634,
respectively.

VI. CONCLUSION

A comparison between a Moving Horizon Estimator (MHE)
and a Direct Virtual Sensor (DVS) approach for vehicle side-
slip angle estimation has been presented. The MHE filter has
been designed on the basis of a simplified nonlinear vehicle
model. The DVS has been derived directly from input-output
data collected during a preliminary experiment, carried out
with a detailed 14 d.o.f. model that simulated the real car.
Through extensive simulation tests, it has been shown that the
MHE approach can achieve in general quite good accuracy
(with some exception), and the DVS approach is able to obtain
even better accuracy. The main advantage of the DVS over the
MHE approach is that it does not rely on a system model, thus
avoiding the issues related to model uncertainty. However, the
DVS may need higher memory usage and large data to be
collected in an initial experiment, while the MHE can employ
a physical system model which may be easy to tune.
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