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Vehicle stability control using direct virtual sensors
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The paper investigates the use of a Direct Virtual Sensor (DVS) to replace a physical sensor
in a vehicle stability control system. A yaw control system is considered and the proposed
solution can be particularly useful when a fault of the yaw rate physical sensor occurs. A DVS
is a stable linear filter derived directly from input-output data, collected in a preliminary
experiment. In this work it is shown that, by using data collected in a closed loop fashion,
better DVS accuracy can be obtained with a reduced number of measured variables. Moreover,
the robust stability of the closed loop system employing a DVS is studied. The effectiveness of
the presented results is shown through numerical simulations of harsh maneuvers, performed
using a detailed model of a vehicle equipped with an active front steering device.

Keywords: direct virtual sensor; vehicle stability; internal model control; robust control;
fault tolerance

1. Introduction

Lateral stability control systems significantly enhance safety [1] and handling prop-
erties by modifying the dynamics of the passive vehicle. These systems usually em-
ploy a closed loop control strategy with a yaw rate feedback (see [2]). In particular,
in this work a vehicle equipped with an active front steering (AFS) device is con-
sidered. Clearly, the yaw rate sensor plays a crucial role for the correct operation of
the control system and sensor faults may lead to performance deterioration or even
safety risks, unless a proper recovery strategy is adopted. In this context, virtual
sensors can be employed to carry out a recovery strategy. Once the sensor fault
has been detected, the measure of the yaw rate can be replaced by its estimate,
provided by the virtual sensor.
Virtual sensors (see e.g. [3]) are software algorithms which exploit a set of available
measurements to compute an estimate of a physical quantity of interest of a given
plant. The common approach to derive a virtual sensor is to design a linear or
nonlinear observer, based on a simplified plant model (see e.g. [4–6] in the case of
yaw rate estimation). Linear observers like Kalman filters are simple to implement
and they satisfy optimality properties provided that noise assumptions are met,
but they are accurate only in a restricted range of operating conditions (see [7]).
On the other hand, nonlinear observers may be able to give good estimates in a
larger range of operating conditions, but their computational cost for on–line im-
plementation may be high and stability of the estimation error is much harder to
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guarantee. Novel approaches to derive virtual sensors for linear and nonlinear sys-
tems have been recently introduced respectively in [8] and [9]. According to such
methodologies, the virtual sensor is derived directly from suitable input–output
data (i.e. Direct Virtual Sensor, DVS), collected in a preliminary experiment, in
an open loop setting, using a one–step procedure which does not require the use
of a model of the system (see e.g. [9]).
In this paper, the design of a linear yaw rate DVS and its use in feedback control
will be studied. A quite extensive literature can be found regarding yaw rate esti-
mation using the measures of wheel speeds (already available due to the presence
of Anti–lock Braking Systems), steering angle (measured in electric power steering
systems) and/or lateral acceleration see e.g. [4–6]. However, few works (see e.g.
[10, 11]) investigate the use of combined yaw rate estimation and feedback for yaw
control and none of them addresses the issue of guaranteeing closed loop system
stability in the presence of virtual sensor. In this work, such issues are investigated.
At first, the problem of how to make a suitable choice of the measured variables
needed by the DVS is studied in order to enhance the estimation accuracy. It is
shown that, using data collected in a closed loop fashion, better overall estimation
performance can be obtained, with a reduced number of measured variables. The
stability of the controlled system using the DVS is studied via an a posteriori ro-
bustness analysis. Finally, through simulations, the performance of the controlled
vehicle is evaluated in critical conditions and when a recovery strategy is used in
order to face a yaw rate sensor fault.
In the considered yaw control structure, the control action is generated through the
superposition of a front steering angle by means of actuation devices like Active
Front Steering (AFS, see e.g. [12]). Such a solution has been chosen for its safety
properties since, contrary to steer by wire systems, the driver intervention on the
steering angle is always kept by a mechanical link. The feedback controller design is
carried out using a linear vehicle model and robust Internal Model Control (IMC,
[13]) techniques based on H∞ optimization, which have been already successfully
applied in stability control problems [14–16]. The paper is organized as follows: in
Section 2 the vehicle model employed for control design is described, while Sec-
tion 3 summarizes the IMC design procedure when a physical yaw rate sensor is
employed. The design procedure of the DVS and its use for vehicle yaw control
are treated in Section 4. Finally, in Section 5, simulation results are presented and
conclusions are given in Section 7.

2. Vehicle model

Vehicle stability control systems usually employ a feedback control structure where
the controlled variable is the yaw rate ψ̇(t) and the controller is designed on the
basis of a linear vehicle model. The control input is able to modify the vehicle
dynamics by influencing the longitudinal and/or lateral tyre forces, using several
physical mechanisms. Among the existing solutions (see e.g. [12, 15, 17–20]), in this
paper an approach similar to AFS systems (see e.g. [12]) is adopted: the steering
angle δ(t) of the front wheels is the sum of the contribution δd(t), issued by the
driver via the conventional steering system, with the contribution δf (t), provided
by the active system via an electromechanical device:

δ(t) = δd(t) + δf (t) (1)

Angle δd is related to the handwheel angle δv, provided by the driver, through the
steering ratio τ , i.e. δd = δv/τ . The value of δf (t) is restricted in the range ±5◦ due
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to the actuator limitations in the considered AFS system. The adopted actuation
solution is motivated by safety reasons, since the driver intervention on the front
steering angle is always kept.
For the control design, a linear single track vehicle model is considered, assuming
that angle δ(t) is the control input (see e.g. [2] for details). Under the typical as-
sumptions for single track models, for a fixed vehicle speed v the following dynamic
equilibria hold:

ay(t) = v(β̇(t) + ψ̇(t)) = (Fyf (t) + Fyr(t))/m

Jψ̈(t) = aFyf (t)− bFyr(t)
(2)

where m is the vehicle mass, J is the moment of inertia around the vertical axis, β
is the side–slip angle, a and b are the distances between the center of gravity and
the front and rear axles respectively and Fyf and Fyr are the front and rear axle
lateral forces, respectively. The dynamic generation of tyre forces is also taken into
account through the following first order equations:

Fyf (t) +
lf
v Ḟyf (t) = −cf

(
β(t) + a ψ̇(t)v − δ(t)

)
Fyr(t) +

lr
v Ḟyr(t) = −cr

(
β(t)− b ψ̇(t)v

) (3)

where lf and lr are the front and rear tyre relaxation lengths and the variables cf
and cr stand for the front and rear axle cornering stiffnesses (see [21]).
In the presence of a physical yaw rate sensor, the measure of ψ̇(t) is employed for
feedback control and the controller design is carried out on the basis of the transfer
function Gψ̇(s), between the steering angle δ(t) and the yaw rate ψ̇(t):

Gψ̇(s) =
b2s

2 + b1s+ b0
a4s4 + a3s3 + a2s2 + a1s+ a0

(4)

where

a4 = mJlf lr, a3 = mvJ(lf + lr)
a2 = J(mv2 + cf lr + crlf ) +m(cfa

2lr + crb
2lf )

a1 = v(J(cf + cr) +m(cfa(a− lr) + crb(b+ lf )))
a0 = cfcrl

2 −mv2(cfa− crb)
b2 = mvacf lr, b1 = mv2acf , b0 = vcfcrl

(5)

Transfer function Gψ̇(s) can be derived, for a fixed value of the speed v, by ap-

plying the Laplace transform to equations (1)–(3). It is also useful to describe the
relationships between the vehicle input δ and the lateral acceleration ay, the differ-
ence between the angular speeds of the front wheels, ∆ωf , and of the rear wheels,
∆ωr. Such variables have been considered since their measures are either usually
available on vehicles, due to the presence of electric power steering (EPS) and anti–
lock braking (ABS) systems and thus they can be used as inputs for the yaw rate
virtual sensor. Moreover, as a first approximation, under the same assumptions of
the single track vehicle model, the values of ∆ωf (t) and ∆ωr(t) are related to ψ̇(t)
through the following equations (see e.g. [2]):

∆ωf (t) = ψ̇(t)df/Rw
∆ωr(t) = ψ̇(t)dr/Rw

(6)
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where Rw is the nominal wheel radius (supposed to be the same for all of the
four wheels) and df , dr are the front and rear wheelbases respectively. Note that
variables ∆ωf and ∆ωr are defined as:

∆ωf = ωf,h − ωf,v
∆ωr = ωr,h − ωr,v

where ω denotes the wheel angular speed and the subscripts f, r, h, v stand for
front, rear, right and left wheel position, respectively. On the basis of equations
(1)–(6), transfer functions Gay(s), G∆ωf (s) and G∆ωr(s) are derived, respectively
between the input δ and the output variables ay, ∆ωf and ∆ωr:

Gay(s) =
c3s

3 + c2s
2 + c1s+ c0

a4s4 + a3s3 + a2s2 + a1s+ a0

G∆ωf (s) =
g2s

2 + g1s+ g0
a4s4 + a3s3 + a2s2 + a1s+ a0

G∆ωr(s) =
h2s

2 + h1s+ h0
a4s4 + a3s3 + a2s2 + a1s+ a0

(7)

where

c3 = Jlrcfv, c2 = Jv2cf , c1 = vblcfcr, c0 = v2cfcrl
g2 = mvacf lrdf/Rw, g1 = mv2acfdf/Rw
g0 = vcfcrldf/Rw, h2 = mvacf lrdr/Rw
h1 = mv2acfdr/Rw, h0 = vcfcrldr/Rw

(8)

3. Yaw stability control using a physical yaw rate sensor

In this Section, the adopted control structure is presented, together with its design
procedure(Figure 2). The control objective is to track a reference yaw rate value
ψ̇ref (t), whose course is designed in order to improve the vehicle maneuverability,
and to assist the driver in keeping directional stability under the different driv-
ing conditions. In particular, ψ̇ref (t) is computed by means of a static map whose
inputs are the handwheel angle δv(t), issued by the driver, and the vehicle speed
v(t). For given values of δv and v(t), the map is designed so that the desired yaw
rate is higher than the one obtained by the uncontrolled vehicle, thus obtaining a
higher lateral acceleration value and narrower paths, i.e. better maneuverability.
At the same time, the reference yaw rate map is designed in such a way that the
related side-slip angle β is limited, so to improve directional stability. Finally, the
map also takes into account the nonlinear behaviour of the vehicle as it approaches
its lateral acceleration limit. The reference yaw rate map employed in this paper
is shown in Figure 1. For a detailed description of the criteria followed in the map
construction, the interested reader is referred to [14] and [16].
In the considered control structure, denoted as (Q+ ψ̇) in the following, the value
of the control input δf (t) is the sum of a feedback contribution δfb(t) with a feed-
forward one δff (t). The feedback controller is designed using IMC methodologies,
since they have been proved to be effective in the context of robust vehicle stability
control (see e.g. [14–16] for their application in different contexts).
The IMC controller Q(s) is designed to optimize the vehicle performance, while
guaranteeing robust stability in the presence of the model uncertainty induced by
the wide range of operating conditions. In order to take into account such uncer-
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Figure 1. Yaw-rate reference map employed in the control system.

Figure 2. Control structure with measured yaw rate feedback and IMC controller Q(s) (Q+ ψ̇).

tainty in the control design, an additive model set of the following form is employed:

Gψ̇(Gψ̇,Γψ̇) = {(Gψ̇(s) + ∆ψ̇(s)) : |∆ψ̇(jω)| ≤ Γψ̇(ω)} (9)

∆ψ̇(s) is the unstructured additive uncertainty (see e.g. [22]), while Γψ̇(ω) is an

upper bound on the magnitude of ∆ψ̇(jω). Such model set can be obtained consid-
ering variations of the vehicle and tyre parameters with respect to their nominal
values (see [22]), as described in Section 5. The design of Q(s) is performed by
means of the following optimization problem (see e.g. [13]):

Q (s) = argmin
∥Q(s)Γ̄ψ̇(s)∥∞

<1

∥∥W−1
S (s)S (s)

∥∥
∞ (10)

where Γ̄ψ̇ (s) is a suitable real rational stable function, whose magnitude strictly

overbounds Γψ̇(ω) (9) and WS(s) is a weighting function which accounts for the

desired performance on the nominal sensitivity S(s) = 1 − Gψ̇(s)Q(s). WS(s) is
chosen to achieve good closed loop damping properties and to slightly improve the
system bandwidth with respect to the uncontrolled vehicle.
The feedforward contribution δff , computed through the filter F (s) from the mea-
sure of angle δd, issued by the driver, has been added to improve the dynamic
response characteristic. In particular, the filter F (s) is designed to match the de-
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Figure 3. Process–virtual sensor scheme.

sired open loop yaw rate behavior, between the driver input δd and vehicle yaw
rate ψ̇, with the one described by an objective transfer function T des(s):

ψ̇(s) = T des(s)δd(s) (11)

According to the scheme in Figure 2, it results that

T des(s)δd(s) = Gψ̇(s)δd(s) +Gψ̇(s)δff (s) =

= Gψ̇(s)δd(s) +Gψ̇(s)F (s)δd(s)

thus the filter F (s) can be computed as

F (s) =
T des(s)

Gψ̇(s)
− 1 (12)

Moreover, since F (s) aims at enhancing the transient response only, its contribution
should be deactivated in steady state conditions. This is achieved when the dc–
gains of T des(s) and Gψ̇(s) are equal.

4. Vehicle yaw control using DVS

4.1. Virtual Sensors

Let us consider a process S with a set of known inputs u ∈ Rm, some unknown
inputs (named disturbances) w ∈ Rr, a set of measured outputs y ∈ Rq and an
internal variable of interest z ∈ R, to be estimated. A virtual sensor (see e.g. [3]) is
a causal and stable dynamic system that takes as inputs the known inputs u and
a subset of the measured outputs y of S, and whose output is an estimate ẑ of the
internal variable z ∈ R. In the linear case, the virtual sensor dynamic behavior can
be described as:

Ẑ(s) = Hẑ,y(s)Y (s) +Hẑ,u(s)U(s) (13)

where Hẑ,u(s) and Hẑ,y(s) are real rational stable transfer matrices of suitable di-
mension. Figure 3 shows the general process–virtual sensor scheme together with
the approximation error ϵ. Different methodologies can be employed to build a vir-
tual sensor, according to the considered prior information and assumptions. The
most common techniques rely on the use of a (usually linear) process model and
particular hypotheses about disturbances. Some of these approaches are the mini-
mum variance (Kalman) and H∞ filtering techniques. With these techniques, the
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obtained estimation accuracy may be poor due to neglected dynamics in the em-
ployed model and due to the presence of (often uncertain) nonlinear characteristics
in the real process (see [9]).

4.2. Direct virtual sensors

When the process is not completely known, a data–driven approach to the virtual
sensor design problem can be considered. In this paper, a direct procedure is fol-
lowed, in which suitable process input–output experimental data are used to design
a DVS in one step, avoiding the identification of a model of the process. A pre-
liminary experiment can be performed also when the variable z is measured. This
assumption is not restrictive, since some measurements of z are needed to evalu-
ate the performance of any virtual sensor, independently on the employed design
methodology. Moreover, in the considered automotive context, extensive exper-
imental testing campaigns are usually carried out, in order to tune the control
algorithms and to assess the active system performance. During such experimental
tests, in order to collect large quantities of data, the employed prototype car is
equipped with a full set of sensors that, usually, are not all installed on the final
commercialized vehicle due to their excessive costs.
Denote with uk, yk and zk the sampled values of u, y and z respectively, corre-
sponding to any sampling instant k ∈ N, with fixed sampling period Ts. N measure-
ments of uk, yk and zk, corresponding to sampling instants k Ts, ∀k ∈ [1, N ], are
collected in the preliminary experiment. In the following, the values of uk, yk, zk,
k = 1, ..., N , are referred to as the “data set”. Since a virtual sensor must be a
stable system, its impulse response has an exponential decay and it can be approx-
imated with desired precision by a Finite Impulse Response (FIR) filter that uses
present and past values of uk and yk to give an estimate ẑk of zk, that is:

ẑk =

nu∑
j=0

αTj uk−j +

ny∑
j=0

βTj yk−j (14)

where nu, ny are design parameters which define the structure of the DVS and
αj ∈ Rm, j = 0, . . . , nu and βj ∈ Rq, j = 0, . . . , ny are the filter coefficients, whose
values are constrained by the following exponential decay:

∥αj∥∞ ≤ Luρ
j , j ∈ [0, 1, . . . , nu]

∥βj∥∞ ≤ Lyρ
j , j ∈ [0, 1, . . . , ny]

where Lu > 0, Ly > 0 and 0 < ρ < 1. Lu, Ly and ρ are the parameters that define
the model class where the DVS is looked for. In particular, Lu and Ly define the
maximum absolute value of any one of the elements of the first coefficients in the
impulse response (i.e. α0 and β0), while ρ is the decay rate.
Assuming that z is observable from y, it can be shown that the estimation error
ϵk = zk− ẑk is bounded for any bounded input sequence (see [8]). Using FIR filters
with the structure (14), the DVS can be designed by minimizing a weighted p–norm
of the estimation error on the collected data set, i.e. on the collected values of uk,
yk and zk for any k ∈ [k,N ], where k = max(nu, ny):
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Table 1. Subsets of measurements used for the DVS design

DVS Measurements

1 [δ, ay ]
2 [δ,∆ωf ]
3 [δ,∆ωr]
4 [δ, ay ,∆ωf ]
5 [δ, ay ,∆ωr]
6 [δ,∆ωf ,∆ωr]
7 [δ, ay ,∆ωf ,∆ωr]

[α̂0, . . . , α̂nu , β̂0, . . . , β̂ny ] = argmin

(
N∑
k=k

∣∣w−1
k ϵk

∣∣p)1/p

such that
ϵk=zk−

nu∑
j=0

αjuk−j−
ny∑
j=0

βjyk−j k ∈ [k,N ]

∥αj∥∞ ≤ Luρ
j , j ∈ [0, 1, . . . , nu]

∥βj∥∞ ≤ Lyρ
j , j ∈ [0, 1, . . . , ny]

(15)

This convex optimization problem with linear constraints can be efficiently solved.
By suitably selecting the weights wk in (15), it is possible to consider noise mea-
sures dependent on k, for example relative measurement errors. Details on how to
select the exponential decay parameters Lu, Ly and ρ and weights wk are given in
[23].
Depending on the data set employed in the design, the obtained linear DVS is able
to give good estimation performance also in nonlinear process operating conditions,
when the linear models used in classic approaches suffer from under–modeling (for
a complete comparison, see [8]).
Regardless of the used norm, solution to problem (15) is usually a high order FIR
filter. Then, model order reduction techniques are used to fit the identified impulse
responses with a stable and causal IIR filter of a prefixed order n. An n-th order
state-space realization is obtained by singular value decomposition of the Hankel
matrix of the filter impulse response, such that the H∞ distance between the orig-
inal and the low order filter is bounded, see [24]. Finally, a bilinear transformation
is applied to the resulting estimator in order to obtain the form (13).

4.3. DVS for yaw rate

The design and the use of a yaw rate DVS for feedback control is now studied. Thus,
referring to Section 4.2, the variable z to be estimated is the yaw rate ψ̇, while the
variable u is the front steering angle, i.e. u = δ. As to variable y, it is assumed
that the measures of the lateral acceleration ay and of the differences between the
wheel angular speeds of the front and rear axles, ∆ωf and ∆ωr respectively, are
available. Therefore, the considered output y is composed of a suitable subset of
the variables ay, ∆ωf and ∆ωr. Table 1 lists all the possible virtual sensors.
By intuition, it could be expected that the best estimation accuracy can be obtained
when all of the possible available measurements are used. However, an interesting
outcome of this paper is that this is not true in general, since the use of all of
the three measures of ay, ∆ωf and ∆ωr does not always lead to the best accuracy
results. In particular, it will be shown that, if the initial experiment is performed
in closed loop fashion, the DVS which achieves the best accuracy employs the
measures of ay and ∆ωr only. Moreover, such DVS has better accuracy than those
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Figure 4. Control structure with estimated yaw rate feedback and IMC controller Q(s) (Q+DV S).

designed using data collected with the uncontrolled vehicle, independently on the
number of employed measurements. However, figuring out a priori which measured
variables should be used to obtain good accuracy appears to be a hard task: physical
insight and trial–and–error procedures can be used to practically establish the best
combination of measurements to be employed.

4.4. Yaw control using DVS

Closed loop stability when the DVS is used for feedback control is now investigated.
Figure 4 shows the considered control scheme where the yaw rate DVS replaces
the physical one, e.g. to recover the yaw rate sensor fault. This scheme is denoted

(Q +DV S) for brevity. Since the estimated variable ẑ is the yaw rate
̂̇
ψ and the

input u is the steering angle δ, the transfer matrices of the DVS (see (13))are
denoted with Ĥ̇

ψ,y
and Ĥ̇

ψ,δ
. A sufficient robust stability condition, based on the

small gain theorem (see e.g. [22]), is employed to assess if the controller Q(s) is
still able to robustly stabilize the system in the presence of the DVS. To this end,
the nominal transfer matrix Gy(s), from input δ to the considered output y, is
computed. Gy(s) is a single–column transfer matrix whose components are one or
more of the transfer functions (7), depending on the particular considered variable
y. For example, the transfer matrix Gy(s) related to DVS 4 (see Table 1 and (7))
is defined as:

Gy(s) =

[
Gay(s)
G∆ωf (s)

]

Model uncertainty is taken into account by the following additive model set:

Gy(Gy,Γy) = {Gy(s) + ∆y(s) : σ̄ (∆y(jω)) ≤ Γy(ω)} (16)

where σ̄(·) is the maximum singular value and ∆y(s) is the transfer matrix of
the additive uncertainty associated to Gy(s), while Γy(ω) is an upper bound of
σ̄ (∆y(jω)), which can be computed by considering variations of the vehicle and
tyre parameters with respect to their nominal values (as described e.g. in [22]).
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Table 2. Vehicle model parameters

Model parameters Values

m 1715 kg
v 100 km/h
J 2697 kgm2

a 1.07 m
b 1.47 m
lf 1 m
lr 1 m
cf 89733 Nm/rad
cr 114100 Nm/rad
Rw 0.303 m
df 1.48 m
dr 1.35 m
τ 15.4

Referring to Figure 4 and defining the functions:

GDV S(s) = Ĥ̇
ψ,y

(s)Gy(s) +Ĥ̇
ψ,δ

(s)

∆DV S(s) = Ĥ̇
ψ,y

(s)∆y(s)

C(s) = Q(s)(1−Gψ̇(s)Q(s))−1

the following sufficient condition can be used to check robust stability of control
scheme (Q+DV S).
Robust stability of control scheme (Q+DV S)
The control scheme (Q + DV S) is robustly stable with respect to the model un-
certainty ∆y in the model set (16) if∥∥ΓDV S(s)C(s)(1 + C(s)GDV S(s))

−1
∥∥
∞ < 1 (17)

where ΓDV S(s) is a stable real rational transfer function, such that

σ̄ (∆DV S(jω)) ≤ |ΓDV S(jω)|

Proof. C(s) is the equivalent feedback controller of the IMC loop formed by Q(s)

and Gψ̇(s), GDV S(s) is the nominal transfer function from δ to
ˆ̇
ψ and ∆DV S(s)

is the resulting additive uncertainty of GDV S(s). Equation (17) follows from the
application of the small gain theorem to the equivalent feedback loop with additive
uncertainty. �

5. Simulation results

5.1. Controller design

The IMC design has been performed using transfer function Gψ̇(s) (see (4)) and

vehicle parameter values as shown in Table 2. Model sets (9) and (16) have been
obtained by considering variations of the vehicle nominal speed between 70 and
130 km/h, independent variations of rear and front tyre cornering stiffness between
[-30%,+10%], increments of vehicle mass up to +20% distributed as 30% on the
front axle and 70% on the rear axle, with the consequent changes of distances
between the center of gravity and the front and rear axles and of moment of inertia.
Moreover, a variation of ±10% of the tyre radius has been considered too. The
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control input δf is supposed to be mechanically limited such that |δf | ≤ 5◦.
The IMC controller Q(s) has been obtained as the solution of (10), using the
following weighting function:

WS(s) = 1.06
s

s+ 5
(18)

The feedforward filter F (s) in (12) has been computed using the following transfer
function T des(s):

T des(s) =
4.488

(1 + s/20)2
.

Functions WS(s) and T des(s) have been chosen and tuned in order to achieve a
good compromise between steady state behavior and closed loop specifications.
In particular, for WS(s), a zero at the origin has been employed to ensure servo
performance, so that in steady-state conditions the reference yaw rate, which has
been chosen in order to improve vehicle maneuverability, is attained with zero
tracking error. The gain and the pole of WS(s) have been chosen to impose a
limited resonance peak and larger bandwidth with respect to the uncontrolled
vehicle, so to improve the damping of the vehicle transient response and reduce
the response time, thus enhancing the vehicle handling performance.

5.2. Direct virtual sensors design and performance

A 14 d.o.f. nonlinear vehicle model has been used to generate the data sets required
for the design and the validation of the virtual sensors. Nonlinear characteristics
obtained on the basis of measurements on a real vehicle have been employed to
model the tyre, steer and suspension behavior. A first-order dynamical model of
each wheel has been used to compute the wheel speed. The employed tyre model,
described e.g. in [21], takes into account the interaction between longitudinal and
lateral slip, as well as vertical tyre load and suspension motion, to compute the
tyre longitudinal and lateral forces and self–aligning moments. An example of the
employed tyre friction ellipses is shown in Figure 5, where the lateral friction co-
efficient is reported as a function of the exploited longitudinal friction (during
traction) and of the tyre slip angle α.
Figure 6 shows a comparison between the yaw rate measured on the real vehicle

during a track test, and the one obtained in simulation with the considered model.
Using such detailed 14 d.o.f. vehicle model, two data sets have been obtained
through two different experiments, lasting 90 s each. In both experiments, the ve-
hicle speed is kept constant at 70 km/h during the first 25 s, then it is gradually
increased up to 100 km/h at 35 s, from 35 s to 55 s it is kept at 100 km/h, in the
next 10 s the speed is gradually increased up to 130 km/h and maintained at this
value for the last 25 s.
In the first experiment, the vehicle has been driven in open loop, by imposing a suit-
ably designed course δidd (t) of δd, composed of quick ramps and constant intervals
plus a pseudo–random binary signal. The second experiment has been performed
in closed loop fashion using the control scheme (Q+ ψ̇). In this case, the vehicle is
driven by means of the same driver input δidd (t) and employing the controller Q(s)
and the filter F (s) designed as described in Section 3 and 5.1.
Seven DVS have been designed for each data set, considering all possible combina-
tion of the available measurements (see Table 1). Each DVS has been identified by
solving the optimization problem (15) using either the open or the closed loop data
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Figure 5. Front tyre friction ellipses considered in the 14 degrees of freedom model, with different values
of lateral slip angle α, for a constant vertical load of 4 kN.

Figure 6. Comparison between the measured yaw rate (solid) during a track test on the real vehicle, the
simulated yaw rate obtained with the 14 d.o.f. model (dotted) and the estimate provided by the DVS
(dash-dotted).

set, for p = 2 and unitary weights, i.e. the resulting filter is the FIR model that
minimizes the sum of squared errors, while having an impulse response bounded
by the decay rate defined by L and ρ.
Different bounds on the decay rate have been considered for each DVS, adjusting
the filter lengths accordingly, and the ones giving the lowest estimation error, while
satisfying the robust stability condition (17), have been selected. Table 3 shows the
length nFIR = nu = ny and decay rate constraints L = Lu = Ly and ρ of the de-
signed DVSs, and the order n of the corresponding virtual sensors obtained after
the order reduction step.
In order to evaluate the control system performance when the yaw rate estimatê̇
ψ given by the DVS is used, simulations have been performed employing the 14
d.o.f. nonlinear vehicle model and the control structure (Q+DV S). In particular,
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Table 3. Parameters for DVS design

DVS L ρ nFIR n

1 0.4 0.96 150 10
2 0.3 0.92 100 8
3 0.3 0.92 100 8
4 0.6 0.92 100 8
5 0.6 0.90 100 10
6 0.3 0.95 150 8
7 0.3 0.95 150 10

the following maneuvers have been considered:

• constant speed steering pad at 100 km/h: the handwheel angle is increased slowly
(1◦/s) to evaluate the steady state tracking behavior

• steer reversal test with handwheel angle of 5◦ and 50◦, at 90 km/h, to evaluate
steady state and transient vehicle performance in linear and nonlinear operating
conditions.

Table 4 shows the obtained accuracy results for the steering pad tests, in terms of
maximum relative estimation error Êmax and mean relative estimation error Êmean:

Êmax = max
t∈[t0,tend]

ê(t) (19)

Êmean =
1

tend − t0

∫ tend

t0

ê(t)dt (20)

where

ê(t) =

∣∣∣∣∣ ˆ̇ψ(t)− ψ̇(t)

ψ̇(t)

∣∣∣∣∣ , ψ̇(t) ̸= 0

and t0, tend are the starting and final test time instants respectively. Since the
steering pad is a steady state maneuver, the values of Êmax and Êmean can be
considered as measures of the static DVS performance.
The results presented in Table 4 show that a bounded estimation error is obtained

Table 4. Steering pad test using DVS

Open loop Closed loop

DVS Êmax Êmean Êmax Êmean

1 34.9% 24.8% 43.8% 30.8%
2 22.4% 14.3% 16.2% 9.3%
3 24.5% 16.2% 17.3% 9.7%
4 19.8% 13.4% 12.8% 8.5%
5 20.6% 13.6% 12.2% 6.9%
6 20.0% 9.5% 19.6% 13.2%
7 14.7% 7.1% 13.3% 8.2%

with all the considered virtual sensors. DVS 1, which employs the measure of
ay(t) only, gives the worst performance, while all of the other filters show similar
estimation errors. In most cases, the use of closed loop data gives better results
than using open loop data.
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Table 5. 5◦ steer reversal test using DVS

Open loop Closed loop

DVS Êmean Emean Êmean Emean

1 37.1% 37.2% 33.7% 29.8%
2 31.3% 24.6% 20.4% 16.0%
3 33.0% 25.2% 20.9% 16.2%
4 21.9% 21.6% 16.4% 13.5%
5 24.8% 23.2% 16.0% 13.9%
6 23.2% 17.3% 24.2% 18.7%
7 21.2% 17.8% 16.0% 14.0%

Table 6. 50◦ steer reversal test using DVS

Open loop Closed loop

DVS Êmean Emean Êmean Emean

1 20.0% 22.4% 16.4% 12.6%
2 12.5% 8.4% 9.0% 4.7%
3 13.2% 10.6% 8.6% 5.0%
4 12.3% 10.8% 8.6% 5.1%
5 9.5% 15.4% 6.8% 2.8%
6 8.4% 4.4% 8.4% 4.8%
7 10.3% 6.2% 7.2% 3.2%

Tables 5 and 6 show the obtained performance in the steer reversal tests in terms
of the index Êmean (20) and of the mean relative tracking error Emean:

Emean =
1

tend − t0

∫ tend

t0

eref (t)dt (21)

where

eref (t) =

∣∣∣∣∣ ψ̇ref (t)− ψ̇(t)

ψ̇ref (t)

∣∣∣∣∣ , ψ̇ref (t) ̸= 0

Note that virtual sensors identified from closed loop data perform better than those
identified from open loop data, especially in the 50◦ steer reversal maneuver. This
is due to the fact that, in the presence of the control action, the closed loop vehicle
transient response is different from the open loop one. Thus, by using closed loop
experimental data a more appropriate information about the process is taken into
account in the DVS design.
Moreover, it can be noted (see Tables 4–6, bold–faced text) that the best overall
estimation accuracy is given by DVS 5, obtained using the closed loop data set
and the measures of ay(t) and ∆ωr(t) only, which performs better than DVS 7
that exploits all of the possible available measurements, designed either using the
closed loop or the open loop data sets. It is not trivial to explain, from the prac-
tical point of view, why such a result has been obtained. From a theoretical point
of view, the signals with higher correlation with the estimated variables are those
that give more information and that should be employed. This is surely the case,
in this particular application, of the lateral acceleration, as it is intuitive and also
evident by the poor results achieved by DVSs n. 2, 3 and 6, and of at least one of
the two wheel speed differentials, since DVS 1 (that does not employ the measure
of wheel speed difference) also has bad performance. The remaining DVSs n. 4, 5
and 7 have very similar estimation accuracy. The employed vehicle is an all-wheel
drive one, so that wheel slip during traction is present on all wheels, which may
explain why the results of DVSs 4,5 and 7 (closed-loop) are so close one to the
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Figure 7. Thin solid line: weighting function WS . Sensitivity functions of the control scheme (Q + ψ̇)
(solid), (Q+DV S) (dashed).

other. With a 2-wheel drive vehicle, one would expect the non-driven wheel speeds
to give a more accurate yaw-rate estimate.
Finally, the accuracy of the DVS 5 has been evaluated on experimental data mea-
sured on the real vehicle during a track test with vehicle speed varying between
50 km/h and 120 km/h and lateral acceleration up to 7.5 m/s2. In Figure 6, the
estimate provided by DVS 5 is compared to the yaw rate measured during a track
test and to the yaw rate course obtained with the 14 d.o.f. vehicle model. The mean
relative error between the measured yaw rate and the simulated one is 8.6%, while
the mean relative error between the measured yaw rate and the one given by DVS
5 is 13%.

5.3. Vehicle performance using a direct virtual sensor for feedback control

According to the results reported in Tables 4–6, DVS 5, identified from closed loop
data, has been chosen to compare performance of the control structures (Q + ψ̇)
and (Q + DV S) which use, respectively, the measured and estimated yaw rate.
In Figure 7, sensitivity functions of the considered control schemes are compared
with the desired sensitivity described by the weighting function WS(s) (18). It can
be noted that the magnitude course of sensitivity functions related to the scheme
(Q+ ψ̇) satisfies the nominal performance. Although the magnitude of the nominal
sensitivity of the closed loop system (Q+DV S) shows a higher peak value, it has
a greater noise attenuation level at low frequencies.
In order to assess the behaviour of the control systems when a DVS is employed
for feedback and to analyze the results of the recovery strategy when a fault of the
yaw rate sensor occurs, the following simulation tests have been performed:

• 50◦ steer reversal maneuver performed on dry road with vehicle speed varying
between 50 km/h and 120 km/h. This test aims to assess the robustness of the
control system both in the absence and in the presence of DVS, in different
operating conditions.

• brake–in–a–turn test performed at 110 km/h with handwheel angle of 15◦ and a
braking action of 0.5g (g is the gravitational acceleration). The braking occurs
when the transient phase of the step steer has been finished and lasts 3 s, from
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the 5th until the 8th second of the maneuver. Note that during this maneuver the
vehicle is subject to significant lateral acceleration and non constant longitudinal
speed (from 110 to 50 km/h) due to the sudden braking, thus making this a quite
demanding robustness test. The maneuver has been also performed when a fault
of the yaw rate sensor occurs after 7 s from the beginning.

• ISO double lane change maneuver as reported in [21]. This maneuver has been
performed once on wet road with constant speed vref = 100 km/h and with
vehicle mass increased by +200 kg and then on iced road, with constant speed
vref = 50 km/h in a fault recovery situation. After 6 s from the start of the
maneuver, a fault of the yaw rate sensor occurs and the measure of the yaw rate
is replaced by its estimate provided by the DVS. The following driver’s model
has been used:

τdδ̇v(t) + δv(t) = Kd (ψref(t)− ψ(t)) (22)

where ψref(t) is the course of the reference yaw angle, corresponding to the ISO
double lane change path at the considered speed (see [21]), and Kd, τd are the
driver gain and the driver time constant respectively. Although more complex
driver models could be employed (see e.g. [21]), the simple model (22) has been
considered in this work because the purpose here is to make a comparison be-
tween the behavior of the uncontrolled vehicle and of the controlled ones, given
the same driver model, rather than to use a detailed driver model. As regards the
driver’s model parameters, the values Kd = 10.8 and τd = 0.2 s have been con-
sidered. Note that the values of τd roughly range from 0.08 s (experienced driver)
to 0.25 s (unexperienced driver), while the higher is the driver gain, the more
aggressive is the driving action which could more likely cause vehicle instability.

Figure 8 shows the variation of time responses of the controlled vehicle with phys-
ical sensor and DVS in terms of normalized yaw rate ψ̇(t)/ψ̇ref (t). As expected,
the vehicle using the measured yaw rate shows better performance both in tran-
sient and steady state however robust stability is achieved in both cases. It can
be noted that the DVS tends to underestimate the vehicle yaw rate, so that the
actual yaw rate results to be higher than the reference one (see Figure 8, bottom),
thus bringing the vehicle closer to its lateral acceleration limit. This issue can be
circumvented both by designing a reference yaw rate map that takes into account
the potential estimation errors of the DVS (i.e. leaving some “margin” between the
reference yaw rate and the limits of handling) and by alerting the driver, in case
of sensor fault, through suitable warning lights and/or sounds that notify that the
yaw control systems is running in recovery regime, so to induce a more cautious
driving behavior.
Figure 9 shows the results of the brake–in–a–turn maneuver. The results of this

test indicate that the designed yaw control system is able to effectively intervene
when the vehicle is driven in a turn at high speed and significant braking forces
occur. Note that such a test is quite demanding for the considered control system,
since braking forces have not been considered neither in the control design (based
on a LTI single track model), nor in the DVS design (since no such maneuvers have
been included in the data set collected in the preliminary experiments). Moreover,
from Figure 9.a it can be noted that while the passive vehicle is stable, the con-
trolled one becomes unstable when a fault of the yaw rate sensor occurs and it
is not recovered, see Figure 9.b. In fact, since no yaw rate measure is provided
in feedback, the control loop is open. On the other hand, recovery of the fault is
allowed when the DVS gets on duty ensuring stability and acceptable performance
on the controlled system.
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Figure 8. Steer reversal test with handwheel angle value of 50◦, performed with varying vehicle speed

between 50 km/h and 120km/h. Courses of the normalized yaw rate ψ̇(t)/ψ̇ref (t) of the vehicle controlled

with (Q+ ψ̇) (top) and with (Q+DV S)(bottom).

Figures 10–11 show the results obtained in the ISO double lane change maneuver
on wet road, in absence of fault, when the vehicle mass is increased of 200 kg. It can
be noted that the uncontrolled vehicle shows excessive oversteering and instability
in the last part of the maneuver. On the other hand the controlled vehicles (i.e.
using the (Q+ ψ̇) and (Q+DV S) schemes) are able to successfully complete the
test giving a further evidence of the robustness properties of Q+DV S structure.
Note that, as shown in Figure 10, a lateral acceleration value of about 7.3 m/s2,
corresponding to about 95% of the maximal vehicle lateral acceleration, is reached
by the vehicles controlled using the schemes (Q+DV S). Thus, the results of this
test indicate that the designed yaw control system is able to effectively aid the
driver, also when the DVS is used instead of a physical sensor, despite the presence
of driver’s feedback, wet road and increased mass, that were not considered in the
preliminary experiments performed to collect the data for the DVS identification.
Figures 12–13 show the results obtained with the ISO double lane change maneu-
ver on iced road when the yaw rate sensor fault occurs. It can be noted that the
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(a)

(b)

Figure 9. Brake in a turn test at 110 km/h with 15◦ handwheel angle and deceleration of 0.5g. Thin line:

reference yaw rate. (a) Dotted line: uncontrolled vehicle, solid: vehicle controlled with (Q + ψ̇). (b) Solid:

vehicle controlled with (Q + ψ̇) until 7 s when the sensor fault occurs and then with (Q + DVS). Dashed:

vehicle controlled with (Q + ψ̇) until 7 s and then it remains in open loop.

uncontrolled vehicle is unstable in the last part of the maneuver, while the con-
trolled ones are able to successfully complete the test. In particular, the controlled
vehicle remains stable when, at 6 s, the physical sensor is no more able to provide
the measure of the yaw rate and it is replaced by the DVS which estimates the
yaw rate.

6. Conclusions

A study on the use of VSs for fault tolerance in vehicle yaw control has been
presented. Such a study is based on a new approach to virtual sensors design in
which the VS is directly (DVS) derived from the data collected in a preliminary
experiment. It has been shown that the use of data collected in a closed loop fashion
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Figure 10. ISO double line change test at 100 km/h on wet road with vehicle mass increased by +200
kg w.r.t. nominal conditions. From top to bottom: vehicle yaw rate, vehicle lateral acceleration. Dotted

line: uncontrolled vehicle, solid line: vehicle controlled with (Q + ψ̇), dashed line: vehicle controlled with
(Q+DV S).

in the DVS design leads to improvements on the estimation performance and to
a reduction of the number of needed measured variables, with respect to the case
of data collected in open loop fashion. A deep analysis of the vehicle performance
has been carried out when the DVS replaces the physical sensor. The simulation
results are encouraging and suggest that the technology of DVSs can be effectively
applied in the automotive context.
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Figure 11. Vehicle trajectories obtained in the ISO double line change test at 100 km/h on wet road with
vehicle mass increased by +200 kg w.r.t. nominal conditions. From top to bottom: uncontrolled vehicle,

vehicle controlled with (Q+ ψ̇), vehicle controlled with (Q+DV S).
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Figure 12. ISO double line change test at 50 km/h on iced road. From top to bottom: vehicle yaw rate,

vehicle lateral acceleration. Dotted line: uncontrolled vehicle, solid line: vehicle controlled with (Q + ψ̇),

dashed line: vehicle controlled with (Q+ ψ̇) until 6 s when the fault occurs and then with (Q+DV S).

Figure 13. Vehicle trajectories obtained in the ISO double line change test at 50 km/h on iced road. From

top to bottom: uncontrolled vehicle, vehicle controlled with (Q+ ψ̇), vehicle controlled with (Q+ ψ̇) until
6 s when the fault occurs and then with (Q+DV S).
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